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Abstract Graphs are commonly used in machine learning to model rela-
tionships between instances. Consider the task of predicting the political
preferences of users in a social network; to solve this task one should
consider, both, the features of each individual user and the relationships
between them. However, oftentimes one is not interested in the label
of a single instance but rather in the distribution of labels over a set
of instances; e.g., when predicting the political preferences of users, the
overall prevalence of a given opinion might be of higher interest than
the opinion of a specific person. This label prevalence estimation task is
commonly referred to as quantification learning (QL). Current QL meth-
ods for tabular data are typically based on the so-called prior probability
shift (PPS) assumption which states that the label-conditional instance
distributions should remain equal across the training and test data. In the
graph setting, PPS generally does not hold if the shift between training
and test data is structural, i.e., if the training data comes from a different
region of the graph than the test data. To address such structural shifts,
an importance sampling variant of the popular adjusted count quantifi-
cation approach has previously been proposed. In this work, we extend
the idea of structural importance sampling to the state-of-the-art KDEy
quantification approach. We show that our proposed method adapts to
structural shifts and outperforms standard quantification approaches.

Keywords: Quantification Learning · Graph Quantification · Covariate
Shift.

1 Introduction

Quantification learning (QL) refers to the task of estimating the distribution of
labels Y over a set of instances X [8–10]. More specifically, one is given a set of
labeled training instances DL ⊆ X ×Y drawn from a distribution P and a set of
unlabeled test instances XU ⊆ X drawn from a distribution Q for which the label
distribution Q(Y ) is to be estimated. For example, the problem of predicting the
prevalence of different opinions in a given population of people can be seen as
a QL task. Here, the training data consists of a sample of people with known
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opinions, while the test data consists of a second sample of people with unknown
opinions for which the opinion prevalences should be estimated.

A naïve way to solve a quantification problem is to use a standard classifica-
tion model to label all test instances XU . The relative frequencies of the predicted
labels could then be used as an estimate of Q(Y ). Given a perfect classifier, this
so-called Classify & Count (CC) strategy would indeed yield a perfect estimate
of the test label distribution. This is, however, an unrealistic assumption, leading
to the question of whether an imperfect classifier can still provide good quantifi-
cation results. Forman [8] showed that the simple CC approach can lead to poor
quantification results if the classifier is biased. To understand why, note that the
goal of a classifier is to minimize the number of classification errors, i.e., the sum
of false positive and false negative predictions (FP + FN) in the binary case.
In contrast, the goal of a quantifier is to minimize |FP− FN|; if FP = FN, the
missing positive predictions are perfectly compensated for by the missing nega-
tive predictions, leading to a perfect quantification result. This implies that even
a poor classifier (in terms of misclassifications) can provide good quantification
results and vice versa. Therefore, quantification should be treated as a distinct
task from classification [5].

Suppose the training and test data are drawn from the same distribution
(P = Q). In that case, the quantification task is trivially solved using the label
distribution of the sampled training data DL as an unbiased estimate of the
label distribution of the test data. The QL problem gets more challenging when
the training and test data are drawn from different distributions, i.e., in the
presence of so-called distribution shift. In this case, the distribution of training
labels P (Y ) is not necessarily a good estimate of the test label distribution Q(Y ).
In the extreme case, if the two sampling distributions are entirely unrelated and
the training data thus is uninformative about the test data, the quantification
task becomes intractable without other prior assumptions.

Therefore, one typically assumes at least some kind of relation between the
training and test data. The most commonly assumed type of shift is called prior
probability shift (PPS) [14, 23], which states that the class-conditional instance
distributions remain unchanged between P and Q. This assumption is made,
among others, by the well-known Adjusted Classify & Count (ACC) quantifi-
cation method [8] and by distribution matching (DM) methods, such as the
Mixture Models (MM) approach [8], HDy [15], DyS [19] or KDEy [25].

While PPS is a reasonable assumption in many domains, there are problems
where it does not hold. If the training and test data are drawn from different
regions of the instance space, the PPS assumption may not be satisfied. In this
case, P and Q may instead be related by covariate shift [23], which states that
the distributions of the instances can differ, while the instance-conditional label
distributions remain unchanged. González et al. [14] and Tasche [33] show, both
empirically and theoretically, that the standard ACC and DM approaches are
not robust to covariate shift.

One domain where covariate shift arises naturally is node label quantification
in graph data. Here, instances are nodes in a graph which are connected by
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edges indicating some notion of relatedness. Consider the opinion quantification
problem mentioned earlier, where people can be naturally represented as nodes
in a social network with edges indicating social relations (coworkers, friendships,
or familial relations). The structural information contained in such graph repre-
sentations has been used with great success by graph neural network models to
solve node classification tasks [16]. However, there has been little work on graph
quantification learning (GQL). Milli et al. [22] and Tang et al. [31] have proposed
simple GQL methods based on community detection algorithms which do not
make use of current predictive graph models. Recently, Damke and Hüllermeier
[4] proposed the first classifier-based quantification method for graph data. They
extend ACC to account for structural covariate shift by introducing the kernel-
based structural importance sampling (SIS) method. ACC with SIS is shown to
give unbiased estimates of Q(Y ) under covariate shift. However, state-of-the-art
DM methods, such as KDEy, generally tend to outperform ACC methods un-
der PPS [25]. Translating the practical advantages of DM to the covariate shift
setting via SIS is therefore desirable.

In this work, we extend SIS to the DM framework and adapt KDEy to struc-
tural covariate shift and show that this combination outperforms previously
proposed quantification approaches. To this end, we begin with a brief intro-
duction to QL in general and DM methods in particular (Section 2). Section 3
then describes the SIS method and how it can be used in the DM framework.
In Section 4, we evaluate the proposed method on a set of benchmark datasets
under different types of distribution shift and compare it to other quantification
approaches. Finally, we conclude with a brief outlook in Section 5.

2 An Overview of Quantification Learning

In the literature on QL, one typically distinguishes between aggregative and
non-aggregative approaches [5]. Aggregative methods are based on a standard
classification model that is trained on labeled training instances. The predictions
of this model on the test data are aggregated to estimate the test label distribu-
tion. Non-aggregative methods, in contrast, are directly trained to predict label
prevalences given a set of instances. Here, we focus on aggregative methods; the
extension of non-aggregative quantification methods to covariate shift is left for
future work. First, we fix some notation and formally define the quantification
learning setting.

2.1 Notation and Problem Setting

As described in the introduction, let X denote the instance space and Y =
{1, . . . ,K} the (finite) label space. Let P and Q be probability measures on
X × Y representing the training and test data distributions, respectively. Let
X and Y denote random variables that project the joint instance-label space to
the instance and label spaces, respectively. In QL, we are given a labeled sample
DL ⊆ X × Y drawn from P and an unlabeled sample XU ⊆ X drawn from
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Figure 1. Overview of the three typically considered types of distribution shift.

Q(X) = Q ◦ X−1. The goal of QL is to estimate Q(Y ) from DL and XU . The
two measures P and Q are assumed to be related by some kind of distribution
shift [23]:

(i) In prior probability shift (PPS), P (Y ) and Q(Y ) might differ but the label-
conditional instance distributions remain equal, i.e., P (X | Y ) = Q(X | Y ).

(ii) In covariate shift, the distributions of the instances P (X) and Q(X) differ,
while the conditional label distributions remain unchanged, i.e., P (Y | X) =
Q(Y | X).

(iii) In concept shift, it is the conditional label distributions P (Y | X) and Q(Y |
X) that change while the marginal instance distributions P (X) and Q(X)
remain equal.

See Fig. 1 for an overview. Depending on the problem domain, different types of
distribution shift can occur [23]. For example, PPS might arise in the context of
epidemiological studies where the task is to estimate the prevalence of a disease in
a population. Here, the training data might be collected via a case-control study
where the percentage of healthy and infected people is fixed by design, while
the test data is collected from a random sample of the population. In contrast,
the opinion estimation problem mentioned earlier might be subject to covariate
shift if the training data is collected in a different region of the population than
the test data. Last, concept shift occurs if the meaning of labels change between
training and test data, e.g., whether a newspaper article is about a local or world
news depends on the location of the reader/newspaper.

Assuming PPS, the training and test distributions are related by P (X |
Y ) = Q(X | Y ). Consequently, for any measurable mapping ϕ : X → Z, we have
P (Z | Y ) = Q(Z | Y ) where Z = ϕ(X) [18]. This allows us to factorize Q(Z) as
follows:

Q(Z) =

K∑
i=1

Q(Z | Y = i)Q(Y = i) =

K∑
i=1

P (Z | Y = i)Q(Y = i) (1)

Given DL and XU , both, Q(Z) and P (Z | Y ) can (in principle) be estimated,
resulting in a system of equations which can be solved for the desired test label
distribution Q(Y ). This idea forms the basis for many QL methods, including
ACC [2, 8, 10] and the family of DM methods [3, 7, 25]. The main difference
between those methods lies in how the mapping ϕ is chosen and how the system
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of equations is solved. One common approach is to define ϕ in terms of a hard
classifier h : X → Y or a probabilistic classifier hs : X → ∆K , where ∆K is the
unit (K−1)-simplex. Let Ŷ = h(X) denote the predicted label and Ŝi = hs(X)i
be the predicted probability of label i.

For ϕ = h, Eq. (1) turns into ACC, where P (Ŷ | Y ) is simply the confusion
matrix of h. Tasche [32] shows that this results in an unbiased estimate of Q(Y )
under PPS. Similarly, using a confusion matrix derived from hs leads to the
Probabilistic Adjusted Classify & Count (PACC) approach [1], while the unad-
justed pendant of CC is referred to as Probabilistic Classify & Count (PCC).
Next, we will describe the distribution matching framework.

2.2 Histogram-based DM Approaches

The first DM quantification method, simply refered to as Mixture Models (MM),
was proposed by Forman [8]. MM is designed for binary quantification problems,
i.e., Y = {⊕,⊖}, and uses ϕ = hs, where hs : X → [0, 1] is a soft binary classifier.
Equation (1) then becomes

Q(Ŝ) = P (Ŝ | Y = ⊕)︸ ︷︷ ︸
P⊕

Q(Y = ⊕)︸ ︷︷ ︸
α

+ P (Ŝ | Y = ⊖)︸ ︷︷ ︸
P⊖

Q(Y = ⊖)︸ ︷︷ ︸
1−α

.

Here, the distribution of predicted probabilities Q(Ŝ) is modeled as a mixture
of the class-conditional predicted probability distributions P⊕, P⊖. Forman esti-
mates those distributions via discrete cumulative distribution functions (CDFs)
p̂⊕, p̂⊖ predicted by hs on DL. Analogously, an estimate q̂ of Q(Ŝ) is obtained by
computing the discrete CDF using XU . The mixture weight α is then determined
by solving the following optimization problem:

α∗ = argmin
α∈[0,1]

ℓ (α · p̂⊕ + (1− α) · p̂⊖, q̂) , (2)

where ℓ is a loss function measuring the discrepancy between the mixture CDF
and q̂. Forman proposes two different loss functions: PP-Area, which is equivalent
to minimizing the L1-norm between the two CDFs [7], and the Kolmogorov-
Smirnov statistic. González-Castro et al. [15] extend MM by proposing a variant
that estimates the probability density functions (PDFs) of P⊕, P⊖ and Q(Ŝ) via
normalized histograms p̂⊕, p̂⊖, q̂ ∈ Rb instead of discrete CDFs estimates; here,
b ∈ N0 is the number of bins. Additionally, they suggest using the Hellinger
distance (HD) as a loss function ℓ between PDFs:

HD(p, q) :=
1√
2
∥√p−√

q∥2 (3)

This variant of MM is referred to as HDy. Note that, both, MM and HDy can
only be applied to binary quantification problems. Extensions of HDy to the
multi-class regime have been proposed by Firat [7] and Bunse [3]. If K > 2,
one can compute a class-conditional histogram p̂j,i ∈ Rb of P (Ŝj | Y = i) for
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each pair of classes j, i and one histogram q̂j of Q(Ŝj) for each i ∈ Y. To obtain
a representation of P (Ŝ | Y = i), one can then combine the class-conditional
histograms by concatenating and renormalizing them to obtain a single his-
togram p̂i = 1

K (p̂1,i, . . . , p̂K,i) ∈ RbK [7], or by directly averaging them, i.e.,
p̂i =

1
K

∑K
j=1 p̂j,i [3]. Moreo et al. [25] show that both of these histogram aggre-

gation variants are theoretically flawed, since neither of them produces a proper
estimate of the divergence between PDFs. The problem of those multi-class ex-
tensions of HDy is that the per-class histograms p̂j,i and q̂j are unable to capture
inter-class information.

2.3 Kernel Density Estimation-based DM

To address the shortcomings of histogram-based DM methods, Moreo et al. [25]
propose the KDEy quantification approach. Unlike MM and HDy, KDEy does
not represent Q(Ŝ) and P (Ŝ | Y ) by decomposing them into class-wise his-
tograms but instead uses kernel density estimation (KDE) to model the PDFs
of the predicted probabilities as Gaussian mixture models (GMMs). More specif-
ically, let q(ŝ) be the PDF of Q(Ŝ) and p(ŝ | i) be the PDF of P (Ŝ | Y = i),
with s = (s1, . . . , sK) ∈ ∆K being a vector of predicted label probabilities. Using
KDE, we can estimate those PDFs as follows:

q̂(ŝ) =
1

|XU |
∑
x∈XU

k(ŝ, hs(x)) and p̂(ŝ | i) = 1

|Di
L|

∑
(x,y)∈Di

L

k(ŝ, hs(x)) , (4)

where k : ∆K ×∆K → R≥0 is a kernel function and Di
L := {(x, y) ∈ DL | y = i}.

In KDEy, the kernel k is chosen to be a Gaussian kernel with bandwidth σ:

k(ŝ, ŝ′) :=
1√

(2π)KσK
exp

(
− 1

2σ2
∥ŝ− ŝ′∥22

)
. (5)

The bandwidth σ is treated as a model hyperparameter. Using the linearity of
the Radon-Nikodym derivative4 we can plug our PDF estimates into Eq. (1) to
obtain the following equation:

q̂(ŝ) =

K∑
i=1

p̂(ŝ | i)q(i) , (6)

where both sides of the equation are GMMs and q ∈ ∆K is the vector of la-
bel prevalences in the test distribution which we are looking for. Analogous to
the histogram-based DM approaches, we can now solve for q by minimizing a
divergence ℓ between the left-hand side and the right-hand side of Eq. (6):

q̂ = argmin
q∈∆K

ℓ

(
q̂(ŝ),

K∑
i=1

qi · p̂(ŝ | i)

)
. (7)

4 Note that q(ŝ) = dQ(Ŝ)
dµ

and p(ŝ | i) = dP (Ŝ|Y =i)
dµ

, with the Lebesgue measure µ.
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Different choices of ℓ are possible here, e.g., HD (see Eq. (3)), L2, Cauchy-
Schwarz, Jensen-Shannon or Kullback-Leibler divergence (KLD). Since ℓ has
to be computed for continuous distributions which, depending on the diver-
gence, can be computationally intractable, Moreo et al. [25] suggest a number
of divergence-dependent optimization strategies. For the Cauchy-Schwarz diver-
gence, they derive a closed-form solution to Eq. (7). For the HD, Jensen-Shannon
and L2 divergences, they propose a Monte Carlo approximation approach. For
the KLD, they show that Eq. (7) reduces to

q̂ = argmin
q∈∆K

−
∑
x∈XU

log

K∑
i=1

qi · p̂(hs(x) | i) , (8)

which can be solved using standard (gradient-based) constrained optimization
techniques. In their experiments, the different variants of KDEy generally outper-
form the histogram-based DM methods, with the HD- and KLD-based variants
performing particularly strongly.

3 DM under Structural Covariate Shift

The DM approaches for quantification described in the previous section are all
based on the PPS assumption. However, as discussed before, this assumption is
not always justified in practice. When dealing with graph data, covariate shifts
are of particular interest. If the training data is collected from a different region of
the graph than the test data, there is so-called structural covariate shift between
P and Q. Damke and Hüllermeier [4] propose an extension of ACC to account
for such structural covariate shifts via so-called structural importance sampling
(SIS). We will now show how this idea can be extended to the DM framework.

To motivate our approach, consider the following example: Figure 2 shows
a simple graph consisting of three vertex clusters, each corresponding to one
label Y = {A,B,C}. Most vertices in each cluster have the matching label; there
are, however, a few outliers incident to the edges between clusters. Assume that
the training data DL is sampled uniformly at random from all three clusters and
that the test data XU comes only from the topmost cluster A (indicated by the
large nodes), i.e., there is covariate shift between both samples. A probabilistic
classifier hs has high confidence on inlier vertices and low confidence for outliers.
The simplex plots on the left of Fig. 2 show the PDFs of P (Ŝ | Y ) for all three
labels Y. The standard KDEy method described in Section 2.3 tries to find an
optimal mixture of those PDFs to match the target PDF Q(Ŝ) of the test data
(shown in black) by minimizing a divergence ℓ between the mixture PDF and
Q(Ŝ). Since outliers are rare for each class, the PDFs P (Ŝ | Y ) are concentrated
around the high confidence regions of each class. XU , on the other hand, contains
many outliers, causing the test PDF Q(Ŝ) to be less concentrated. In this case,
the optimal mixture found by KDEy will put all weight on P (Ŝ | Y = A),
resulting in a heavily biased estimate of Q(Y ).

The problem is that the global PDFs P (Ŝ | Y ) are not representative of the
local (shifted) PDFs Q(Ŝ | Y ). Instances with label B and C within cluster A
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Figure 2. Illustration of the advantage of SIS in the DM framework under structural
covariate shift.

will receive low confidence scores, as shown in the simplex plots on the right side
of Fig. 2. By combining these estimates of Q(Ŝ | Y ), as opposed to P (Ŝ | Y ), one
can find a PDF mixture that better matches Q(Ŷ ) resulting in a better predicted
label distribution. The core idea behind SIS is to use the graph structure to
obtain such estimates. We will now describe SIS more formally and then adapt
it to the DM framework.

3.1 Structural Importance Sampling for ACC

As described in Section 2.1, both, ACC and DM methods are based on the
factorization in Eq. (1). Under covariate shift, this factorization does not hold,
since Q(Z | Y ) is unknown. If ϕ = h, i.e., Z = Ŷ = h(X), we can rewrite
Q(Ŷ | Y ) via importance sampling [4]:

Q(Ŷ = j | Y = i) =

∫
x∈X

1[h(x) = j]dQ(X = x | Y = i)

=

∫
x∈X

1[h(x) = j]
qX|Y (x | i)
pX|Y (x | i)︸ ︷︷ ︸
=ρX|Y (x|i)

dP (X = x | Y = i) (9)

Here, qX|Y and pX|Y denote the conditional PDFs of Q and P , and ρX|Y denotes
the ratio between those densities. Under (structural) covariate shift, we know
that pY |X = qY |X , which allows us to rewrite ρX|Y :

ρX|Y (x | y) =
qX|Y (x | y)
pX|Y (x | y)

=
qY |X(y | x)qX(x)pY (y)

pY |X(y | x)pX(x)qY (y)
= ρX(x) · ρY (y)−1 (10)
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Plugging this into Eq. (9) gives us

Q(Ŷ = j | Y = i) =
ρY (i)

−1
∫
X 1[h(x) = j]ρX(x)dP (X = x | Y = i)

ρY (i)−1
∫
X ρX(x)dP (X = x | Y = i)

=
EP (X|Y=i)[1[Ŷ = j]ρX(X)]

EP (X|Y=i)[ρX(X)]
. (11)

To compute ρX = qX
pX

, Damke and Hüllermeier [4] propose to use kernel density
estimation. Since we are given samples DL from P and samples XU from Q(X),
qX and pX can be estimated as follows:

q̂X(x) =
1

|XU |
∑

x′∈XU

κ(x, x′) and p̂X(x) =
1

|DL|
∑

(x′,y′)∈DL

κ(x, x′) , (12)

where κ : X × X → R≥0 is a suitable instance kernel function. Without any
domain assumptions, choosing κ appropriately is difficult.

However, in the context of graph data where instances x are vertices, assum-
ing structural covariate shift, the probability of sampling a vertex x from P or
Q should depend on how close x is to the training or test vertices, respectively.
Damke and Hüllermeier suggest that the appropriate notion of “closeness” in a
graph depends on the nature of the covariate shift. For example, if the data is
sampled via random walks, a personalized page-rank (PPR) kernel [27] is appro-
priate:

κPPR(xi, xj) = Πi,j , where Π =
(
αI+ (1− α)Ā

)L
. (13)

Here, Ā = AD−1 is the normalized adjacency matrix of the graph, α ∈ (0, 1)
is a teleportation parameter and L is the number of steps in the random walk.
If the vertex sampling process is based on the shortest path lengths between
vertices, a shortest path (SP) kernel can be used, e.g.,

κSP(xi, xj) = exp (−λ · dSP(xi, xj)) , (14)

where dSP(xi, xj) is the length of the shortest path between xi and xj and λ
is a scaling parameter. To summarize, k should be chosen based on available
knowledge about the quantification problem at hand to reflect the nature of the
shift as closely as possible.

3.2 SIS in the DM Framework

In ACC, the instance mapping ϕ reduces an instance X to a single label pre-
diction Ŷ , discarding much, potentially valuable, information. As discussed in
Section 2, DM methods instead consider the distribution of predicted probability
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vectors Ŝ = hs(X). To apply SIS in the DM framework, we can rewrite q(ŝ | y):

q(ŝ | y) =
∫
x∈X

q(ŝ | x)dQ(X = x | Y = y)

=

∫
x∈X

p(ŝ | x)
qX|Y (x | y)
pX|Y (x | y)︸ ︷︷ ︸
=ρX|Y (x|y)

dP (X = x | Y = y) (15)

Analogous to SIS for ACC, we can use Eq. (10) for the following replacement:

q(ŝ | Y = i) =
EP (X|Y=y)[p(ŝ | X)ρX(X)]

EP (X|Y=y)[ρX(X)]
. (16)

Given DL and XU we can compute an estimate ρ̂X(x) via Eq. (12). Additionally,
q(ŝ | Y = i) can be estimated via

q̂(ŝ | y) = 1∑
(x,y)∈Di

L
ρ̂X(x)

∑
(x,y)∈Di

L

p(ŝ | x) · ρ̂X(x) (17)

Since p(ŝ | x) = δ[ŝ = hs(x)] is a Dirac delta, i.e., the density is zero everywhere
except at ŝ = hs(x), this estimate is not particularly useful given a finite sample
DL. To account for this, we replace the Dirac delta with a Gaussian kernel
k : ∆K ×∆K → R≥0 and obtain

q̂(ŝ | y) = 1∑
(x,y)∈Di

L
ρ̂X(x)

∑
(x,y)∈Di

L

k(ŝ, hs(x)) · ρ̂X(x) . (18)

The result is a weighted version of KDEy (cf. Eq. (4)), where the instance weights
ρ̂X(x) are themselves estimated via KDE using a vertex kernel κ. By reweighting
the labeled samples DL via SIS, KDEy can be applied to quantification problems
with structural covariate shift.

4 Evaluation

We evaluate the proposed combination of SIS and KDEy on a set of benchmark
datasets under different types of distribution shift using multiple node classi-
fiers and quantification metrics. We compare our approach against PCC, PACC,
PACC with SIS and standard KDEy without SIS. We use the QuaPy Python
library [24] and torch-geometric [6] to implement our experiments5. For effi-
cient GPU-based sampling of breadth-first search (BFS)-based test sets and the
computation of the SP kernels, we use Nvidia’s cuGraph library. All experiments
were conducted using an AMD Ryzen 9 7950X CPU, 64GB RAM and an Nvidia
RTX 4090 GPU.
5 Code available at https://github.com/Cortys/graph-quantification.

https://github.com/Cortys/graph-quantification
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4.1 Experimental Setup

Quantification Metrics To compare the quality of a label distribution estimate q̂
against the ground-truth label distribution q, we use the following two common
quantification metrics: Absolute error (AE) and relative absolute error (RAE):

AE(q, q̂) =
1

K

K∑
i=1

|qi − q̂i| RAE(q, q̂) =
1

K

K∑
i=1

|qi − q̂i|
qi

(19)

While AE penalized all errors equally, RAE [15] penalizes errors on rare labels
more heavily.

Datasets We generate quantification tasks from the following five node classi-
fication datasets: 1. CoraML, 2. CiteSeer, 3. PubMed, 4. Amazon Photos and
5. Amazon Computers [12, 13, 20, 21, 26, 29, 30]. The first three datasets are
citation networks, where the nodes are documents and the edges represent cita-
tions between them. The two Amazon datasets are product co-purchasing graphs,
where the nodes are products and the edges represent that are often bought to-
gether. All nodes are labeled with the topic or product category they belong to.
All datasets were split randomly 10 times into three partitions classifier train,
quantifier train and quantifer test with sizes 5%/15%/80%. Using those splits,
we train each classifier 10 times on each of the 10 classifier train sets and use
each of the resulting 100 classifiers per dataset with each type of quantifier.

Distribution Shift To evaulate the behavior of the quantifiers under distribution
shift, we synthetically introduce shifts to the test partitions of the datasets, while
the training data is sampled uniformly at random from the training split. We
consider the following types of distribution shift:

1. PPS: We sample 10 ·K sets of 100 nodes such that each set has a prescribed
label distribution q ∈ ∆K which is sampled from a Zipf distribution over the
labels [28].

2. Structural covariate shift via random walks (RWs): For each label, we select
10 corresponding vertices and for each of those vertices we sample 100 nodes
via random walks of length 10 with teleportation parameter α = 0.1.

3. Structural covariate shift via BFS: Analogous to the PPR setting, we also
evaluate structural covariate shift by sampling 100 nodes via breadth-first
search instead of random walks.

Classifiers We use four types of vertex classifiers: 1. A standard Multilayer
Perceptron (MLP) which does not use any graph information, 2. Graph Con-
volutional Network [17], 3. Graph Attention Network [34] and 4. Approximate
personalized propagation of neural predictions (APPNP) [11]. All models con-
sist of two hidden fully connected layers and two convolutional layers (where
applicable) with widths of 64 and ReLU activations.
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Quantifiers We compare PACC and KDEy with and without SIS. Additionally,
we include PCC, as it should, in principle, be able to account for covariate shift
to some extent [14, 33]. For KDEy, we use the KLD as the divergence, referred
to as KDEy-ML by Moreo et al. [25], as this variant generally produces good
quantification results while also being computationally tracktable. For SIS, we
use an interpolated version of the PPR kernel from Eq. (13) for the KDE estimate
of qX :

κλ(x, x
′) = λκPPR(x, x

′) + (1− λ) ,

where λ ∈ [0, 1] is a hyperparameter that controls the minimum weight that
should be assigned to each vertex. For the KDE estimate of pX , we use a constant
kernel κ1(x, x

′) = 1 since the training data is not subject to synthetic distribution
shift in our setup. This implies that ρX = qX , simplifying the SIS estimation.
Additionally, we evaluate SIS with the SP kernel from Eq. (14) with λ = 1

2 in
the BFS-based covariate shift setting to check whether the distance-based BFS
sampling is better matched by this kernel.

4.2 Experimental Results

Table 1 shows the mean quantification performance for all combinations of quan-
tifiers, classifiers, distributions shifts and datasets. Additionally, the last block
of columns shows the average rank of each quantifier across all datasets for all
combinations of classifiers and distribution shifts. Bold numbers indicate that
there is no statistically significant difference between the reported mean and the
best mean within a given block, determined by the 95th percentile of a one-
sided t-test. The PPR quantifiers use SIS with the interpolated PPR kernel κλ

for different values of λ.
Overall, looking at the average ranks, we find that KDEy with SIS outper-

forms KDEy without SIS and, both PCC and PACC. The results are consistent
across all three types of distribution shift, all model types and, both the AE and
RAE metrics. Under PPS, where SIS is not necessary, SIS generally does not
significantly improve the quantification performance; nonetheless, we note that
KDEy with SIS has a better average rank than KDEy without SIS.

Influence of the Classifier Unsurprisingly, the choice of classifier has a significant
impact on the quantification performance. Even though, a good classifier h is not
required by QL to obtain an unbiased estimate of the label prevalences, the qual-
ity of this estimate is still correlated with the classifier’s accuracy. Overall, the
structure-unaware MLP classifier thus performs worst while APPNP performs
best.

Influence of the Type of Covariate Shift The κλ used in our experiments is based
on the assumption that the distribution shift is induced by sampling localized
random walks. In the RW covariate setting, this assumption is satisfied, while in
the BFS setting, the PPR kernel is, at least in theory, not appropriate. Since the
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Table 1. Quantification results (absolute error and relative absolute error).

Model CoraML CiteSeer A. Photos A. Comp. PubMed Avg. Rank
& Shift Quantifier AE RAE AE RAE AE RAE AE RAE AE RAE AE RAE

MLP
PPS

PCC .0827 .8565 .0361 .2782 .0497 1.105 .0533 .6342 .0470 .1870 6.8 7.0
PACC .0481 .4186 .0336 .2271 .0191 .3036 .0334 .3690 .0181 .0649 3.6 4.0
PACC PPR 0.5 .0482 .4199 .0335 .2263 .0190 .3034 .0334 .3688 .0181 .0646 3.0 3.2
KDEy .0469 .4076 .0345 .2289 .0178 .2642 .0389 .4072 .0178 .0623 3.0 3.6
KDEy PPR 0.5 .0468 .4065 .0343 .2282 .0178 .2639 .0389 .4070 .0178 .0622 2.4 2.4
KDEy PPR 0.9 .0471 .4095 .0339 .2266 .0180 .2633 .0388 .4055 .0178 .0622 3.0 2.2
KDEy PPR 1.0 .0526 .4774 .0420 .2743 .0223 .3017 .0433 .4537 .0263 .0963 6.2 5.6

GAT
PPS

PCC .0479 .5323 .0219 .1573 .0314 .9570 .0398 .4674 .0463 .1911 6.8 7.0
PACC .0297 .2660 .0192 .1262 .0147 .2776 .0217 .2326 .0176 .0635 5.0 5.0
PACC PPR 0.5 .0295 .2647 .0190 .1251 .0147 .2785 .0217 .2321 .0174 .0630 3.8 4.4
KDEy .0254 .2296 .0185 .1208 .0132 .2055 .0217 .2311 .0166 .0593 3.2 2.6
KDEy PPR 0.5 .0252 .2287 .0183 .1200 .0131 .2056 .0217 .2310 .0165 .0591 2.0 2.0
KDEy PPR 0.9 .0246 .2267 .0178 .1168 .0132 .2078 .0216 .2302 .0164 .0585 1.4 1.4
KDEy PPR 1.0 .0277 .2700 .0220 .1427 .0165 .2773 .0243 .2612 .0321 .1192 5.8 5.6

GCN
PPS

PCC .0438 .4697 .0221 .1574 .0315 .8508 .0391 .4667 .0405 .1665 7.0 7.0
PACC .0246 .2216 .0190 .1259 .0122 .2056 .0228 .2411 .0161 .0591 5.2 5.0
PACC PPR 0.5 .0243 .2204 .0188 .1248 .0122 .2065 .0227 .2405 .0160 .0584 4.2 4.4
KDEy .0212 .1971 .0181 .1197 .0102 .1430 .0223 .2325 .0152 .0553 2.8 2.6
KDEy PPR 0.5 .0211 .1970 .0180 .1189 .0102 .1430 .0223 .2324 .0152 .0551 1.8 1.6
KDEy PPR 0.9 .0210 .1984 .0174 .1159 .0103 .1435 .0222 .2323 .0149 .0545 1.4 1.8
KDEy PPR 1.0 .0241 .2381 .0218 .1420 .0145 .1973 .0269 .2755 .0263 .0998 5.6 5.6

APPNP
PPS

PCC .0374 .4124 .0214 .1509 .0318 .9795 .0390 .4657 .0398 .1664 6.6 7.0
PACC .0217 .1986 .0184 .1211 .0124 .2442 .0256 .2638 .0165 .0597 4.4 4.2
PACC PPR 0.5 .0215 .1975 .0182 .1201 .0124 .2454 .0256 .2632 .0163 .0589 3.4 3.6
KDEy .0193 .1783 .0181 .1194 .0102 .1535 .0299 .3088 .0154 .0550 2.4 2.4
KDEy PPR 0.5 .0193 .1784 .0180 .1184 .0102 .1540 .0299 .3088 .0153 .0549 2.2 2.2
KDEy PPR 0.9 .0194 .1812 .0173 .1145 .0105 .1612 .0300 .3089 .0153 .0548 2.6 2.6
KDEy PPR 1.0 .0225 .2239 .0218 .1413 .0204 .3371 .0412 .4178 .0277 .1054 6.4 6.0

MLP
BFS

PCC .1243 7.212 .1588 14.84 .0668 4.028 .0662 3.635 .0800 10.44 7.6 7.8
PACC .0645 3.508 .1158 10.63 .0237 .9928 .0392 1.608 .0816 7.663 6.4 5.6
PACC PPR 0.5 .0637 3.458 .1155 10.61 .0235 .9909 .0388 1.609 .0808 7.661 5.2 5.0
KDEy .0547 2.883 .1015 9.315 .0191 .6689 .0394 1.069 .0772 7.218 3.8 2.8
KDEy PPR 0.5 .0545 2.864 .0993 9.105 .0189 .6578 .0391 1.059 .0768 7.218 2.6 1.6
KDEy PPR 0.9 .0552 2.972 .1039 9.621 .0187 .6592 .0374 1.023 .0743 7.146 2.4 2.0
KDEy PPR 1.0 .0685 4.145 .1494 14.01 .0218 1.041 .0300 1.080 .0680 10.55 4.2 6.6
KDEy SP 0.5 .0613 3.550 .1478 13.81 .0209 .9092 .0379 1.142 .0707 7.193 3.8 4.6

GAT
BFS

PCC .0741 4.840 .0820 7.349 .0291 1.757 .0455 2.415 .0650 9.922 6.2 7.6
PACC .0561 2.533 .0656 5.347 .0243 .7255 .0331 .9463 .0930 6.906 6.8 6.0
PACC PPR 0.5 .0545 2.460 .0646 5.261 .0240 .7220 .0327 .9424 .0922 6.898 5.8 5.0
KDEy .0449 1.735 .0520 4.118 .0212 .6491 .0305 .8432 .0855 5.659 4.2 2.6
KDEy PPR 0.5 .0430 1.608 .0483 3.797 .0208 .6266 .0303 .8296 .0857 5.858 3.2 2.2
KDEy PPR 0.9 .0405 1.568 .0465 3.665 .0200 .6183 .0295 .8084 .0850 6.669 2.0 1.6
KDEy PPR 1.0 .0443 2.420 .1021 9.175 .0187 .8031 .0259 .9357 .0680 7.678 3.0 6.2
KDEy SP 0.5 .0454 2.058 .0980 8.808 .0216 .7892 .0304 .9411 .0785 5.707 4.8 4.8

GCN
BFS

PCC .0539 3.489 .0783 7.060 .0256 1.513 .0418 2.255 .0573 9.553 6.2 7.4
PACC .0488 2.093 .0637 5.267 .0241 .5966 .0401 .9320 .0888 6.713 6.8 5.8
PACC PPR 0.5 .0475 2.037 .0631 5.212 .0239 .5933 .0397 .9295 .0881 6.706 5.8 4.8
KDEy .0355 1.340 .0555 4.533 .0174 .5114 .0326 .7999 .0716 4.876 4.0 2.2
KDEy PPR 0.5 .0347 1.300 .0517 4.209 .0170 .4811 .0325 .8007 .0714 4.941 2.8 1.8
KDEy PPR 0.9 .0340 1.376 .0513 4.211 .0167 .4799 .0315 .7807 .0716 5.732 2.0 2.0
KDEy PPR 1.0 .0400 2.408 .1084 10.08 .0184 .7908 .0280 .8680 .0687 9.987 4.0 6.8
KDEy SP 0.5 .0394 1.991 .0989 9.203 .0188 .7241 .0319 .8874 .0701 5.927 4.4 5.2

APPNP
BFS

PCC .0469 3.074 .0737 6.609 .0271 1.492 .0468 2.339 .0569 9.867 6.0 7.6
PACC .0457 1.881 .0603 4.944 .0225 .5731 .0430 .9227 .0927 7.449 6.6 5.6
PACC PPR 0.5 .0444 1.835 .0594 4.866 .0222 .5687 .0425 .9179 .0919 7.438 5.6 4.6
KDEy .0334 1.143 .0506 4.023 .0168 .4527 .0362 .7739 .0735 5.278 3.4 2.2
KDEy PPR 0.5 .0321 1.073 .0473 3.741 .0166 .4415 .0362 .7828 .0736 5.410 2.8 2.0
KDEy PPR 0.9 .0304 1.071 .0457 3.671 .0176 .4705 .0351 .7556 .0746 6.468 2.6 2.0
KDEy PPR 1.0 .0368 2.154 .1096 10.05 .0295 .9202 .0328 .9331 .0632 7.743 4.6 7.2
KDEy SP 0.5 .0372 1.803 .0989 9.044 .0186 .7283 .0351 .8860 .0709 6.060 4.4 4.8

MLP
RW

PCC .1263 5.275 .1494 13.84 .0727 3.820 .0718 3.224 .0913 1.376 7.0 7.0
PACC .0733 2.347 .0869 7.425 .0332 1.251 .0471 1.837 .0882 .7452 5.2 4.8
PACC PPR 0.5 .0728 2.327 .0870 7.448 .0330 1.250 .0468 1.842 .0876 .7474 4.6 5.0
KDEy .0639 1.667 .0799 6.857 .0261 .7495 .0457 1.235 .0863 .6486 2.8 2.4
KDEy PPR 0.5 .0629 1.604 .0775 6.665 .0257 .7254 .0453 1.222 .0860 .6503 1.8 1.8
KDEy PPR 0.9 .0653 1.713 .0824 7.225 .0245 .6922 .0438 1.171 .0845 .6638 2.0 2.2
KDEy PPR 1.0 .0825 2.968 .1397 12.92 .0265 1.038 .0377 1.206 .0892 .9004 4.6 4.8

GAT
RW

PCC .0799 3.555 .0766 6.693 .0340 1.689 .0500 2.195 .0691 .7488 5.6 6.8
PACC .0610 1.648 .0594 4.563 .0293 .7767 .0382 .9639 .0952 .6084 5.4 5.6
PACC PPR 0.5 .0590 1.580 .0583 4.466 .0290 .7726 .0378 .9604 .0946 .6062 4.4 4.2
KDEy .0490 .8774 .0475 3.353 .0239 .6194 .0330 .7808 .1035 .6065 4.4 3.2
KDEy PPR 0.5 .0472 .8092 .0439 3.028 .0235 .5966 .0328 .7801 .1030 .6049 3.2 2.0
KDEy PPR 0.9 .0443 .7559 .0425 2.938 .0226 .5964 .0321 .7815 .0999 .5951 2.2 1.4
KDEy PPR 1.0 .0479 1.445 .1008 8.699 .0219 .8045 .0296 .9615 .0864 .6009 2.8 4.8

GCN
RW

PCC .0539 2.085 .0694 5.990 .0276 1.247 .0451 1.961 .0566 .4972 4.8 5.8
PACC .0571 1.267 .0554 4.204 .0298 .6101 .0428 .8952 .0956 .5915 6.4 5.6
PACC PPR 0.5 .0556 1.216 .0546 4.134 .0296 .6071 .0424 .8910 .0952 .5897 5.4 4.6
KDEy .0412 .6563 .0489 3.550 .0190 .4836 .0325 .7496 .0904 .5459 3.6 3.4
KDEy PPR 0.5 .0400 .6125 .0456 3.262 .0187 .4551 .0323 .7445 .0899 .5432 2.6 2.4
KDEy PPR 0.9 .0373 .5533 .0432 3.092 .0182 .4516 .0314 .7375 .0870 .5252 1.6 1.4
KDEy PPR 1.0 .0430 1.324 .0984 8.784 .0196 .7839 .0282 .8437 .0761 .4474 3.6 4.8

APPNP
RW

PCC .0465 1.750 .0659 5.638 .0293 1.197 .0504 2.016 .0546 .4160 5.2 5.6
PACC .0527 1.121 .0541 4.060 .0282 .5726 .0452 .8693 .0979 .5958 6.2 5.4
PACC PPR 0.5 .0513 1.074 .0530 3.962 .0280 .5685 .0449 .8662 .0974 .5941 5.2 4.4
KDEy .0388 .5171 .0468 3.225 .0197 .4548 .0378 .7761 .0941 .5520 3.6 3.2
KDEy PPR 0.5 .0373 .4688 .0434 2.928 .0194 .4332 .0375 .7773 .0935 .5495 2.6 2.4
KDEy PPR 0.9 .0340 .4052 .0418 2.879 .0193 .4339 .0362 .7676 .0902 .5327 1.6 1.6
KDEy PPR 1.0 .0400 1.218 .1031 8.877 .0243 .7835 .0322 .9118 .0754 .4704 3.6 5.4
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Figure 3. Quantification performance of KDEy with SIS, using the PPR kernel κλ for
different values of λ.

test vertices are selected by BFS based on their distance to some start vertex, a
SP-based kernel, as in Eq. (14), seems plausible here. However, our results show
that a perfect match between the SIS kernel and the underlying distribution
shift is not necessary. In fact, the PPR kernel performs well even in the BFS
setting, clearly outperforming all other quantifiers, while the SP kernel performs
comparatively poorly.

Influence of κ on SIS Note that the performance of SIS strongly depends on
the choice of the kernel κ. For λ = 1, the PPR kernel performs poorly on all
datasets except Amazon Computers. Figure 3 shows that decreasing λ slightly
to 0.9 already improves the performance significantly, further decreasing λ then
has little to no effect. This illustrates an important tradeoff to consider when
using SIS: By making κ more aggressive, in the sense that little to no weight
is assigned to distant vertices, one can in-principle improve the performance of
SIS by reducing the influence of irrelevant or misleading vertices from different
regions of the graph. However, if too many vertices are excluded, the effective
sample size for the estimate q̂(ŝ | y) is reduced, making it more noisy.

The dataset-dependent optimal λ value differences can be explained by dif-
ferent connectivity patterns in the datasets. For example, while the CiteSeer
dataset consists of multiple disconnected components, the Amazon Computers
dataset mostly consists of a single large connected component (excluding a few
disconnected outlier vertices). If all vertices in a structurally shifted test set are
sampled from a single (small) connected component, the PPR kernel with λ = 1
will assign zero weight to all training vertices that are not in the same compo-
nent, resulting in noisy estimates based on only a few vertices. For less connected
datasets, where sampling a test set from a small component is more likely, it is
therefore often beneficial to assign at least some weight even to disconnected
vertices, which is achieved by using a λ < 1. For a well-connected dataset, such
as Amazon Computers, this is not necessary.
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To summarize, we have seen that KDEy combined with SIS and the PPR
kernel perform very well across different datasets and shift types, corroborating
that SIS is able to effectively account for (structural) covariate shift given an
appropriate kernel.

5 Conclusion

We proposed a novel approach to quantification under structural covariate shift
extending SIS from ACC to the KDEy quantification method. We showed the
effectiveness of this approach on a set of benchmark datasets with different
types of distribution shift. For future work, it would be interesting to investigate
whether SIS can also be applied outside of the graph domain, e.g., in the context
of timeseries data or geospatial data, where covariate shifts might occur in time
or space. Second, a more thorough analysis of the influence of the choice of the
kernel κ on the quantification performance is needed, especially since the choice
of κ is crucial for the performance of SIS. Third, in this work we focused on the
combination of SIS and KDEy, since KDEy is a state-of-the-art quantification
method within the DM framework. Making other QL methods that assume PPS
applicable to covariate shifts would be another avenue for future work. More
specifically, investigating the combination of non-aggregative quantification ap-
proaches [28] would be interesting.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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