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Abstract. Bayesian active learning is based on information theoretical
approaches that focus on maximising the information that new obser-
vations provide to the model parameters. This is commonly done by
maximizing the Bayesian Active Learning by Disagreement (BALD) ac-
quisition function. However, it is challenging to estimate BALD when
the new data points are subject to censorship, where only clipped values
of the targets are observed. To address this, we derive the entropy and
the mutual information for right-censored distributions and derive the
BALD objective for active learning in censored regression (C-BALD).
We propose a novel modeling approach to estimate the C-BALD objec-
tive and use it for active learning in the censored setting. Across a wide
range of datasets and models, we demonstrate that C-BALD outperforms
other Bayesian active learning methods in censored regression.

1 Introduction

Active learning is a framework where a model learns from a small amount of
labeled data and chooses the data it wants to acquire a label for [43]. This ac-
quisition of new data points is done iteratively to improve the model’s predictive
performance and reduce model uncertainty [33]. This naturally poses the chal-
lenge: which new data points can improve the model the most? Information the-
oretical approaches are often the basis to solve this challenge by reasoning about
the information that new labels can provide to the model’s parameters [34].
A widely used strategy in active learning is the Bayesian Active Learning by
Disagreement (BALD) acquisition function, which identifies new data points by
estimating the mutual information between the model parameters and the ac-
quired labels [17]. BALD has demonstrated effectiveness across various domains
such as computer vision [8], natural language processing [45], and survival analy-
sis [37]. However, applying BALD to censored regression tasks introduces unique
challenges, where labels are only partially observed due to censoring.

Censored data arises in scenarios where certain observations are incomplete
or “clipped” due to limitations in the measurement process [4]. This phenomenon
has substantial implications across multiple critical real-world domains. A par-
ticularly important context where censoring plays a key role is the ubiquitous
predict-then-optimize framework, where systematic bias introduced by censor-
ship can lead to suboptimal decision-making. Let us illustrate this problem
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Fig. 1. Evolving shared bikes demand over a 3-year period. The dashed black line
represents the (unobserved) true demand. The blue circles denote non-censored obser-
vations and the blue crosses represent censored observations (due to limited supply). In
the context of bike-sharing network expansion, obtaining new observations of demand
in an arbitrary location is expensive since it may involve buying new equipment.

through an application from the transportation domain. Consider the synthetic
dataset shown in Figure 1 mimicking bike sharing rentals (demand) for an ex-
panding network of docking stations through time, where the blue markers rep-
resent the number of observed rentals (censored observations), and the dashed
line represents the unobserved “true demand". Every year, the number of users
increases in the population, albeit with seasonal fluctuations. However, the avail-
able bicycles (supply) are limited and their number often reaches zero in certain
locations, thus resulting in censored observations of the “true demand” as studied,
for example, in [20]. In the context of this application, the predict-then-optimize
cycle consists of periodically re-estimating the demand and placing new bikes
(or docking stations) in areas to minimize the difference between predicted de-
mand and supply. Although costly, additional supply can be placed in areas with
high uncertainty to “probe" the demand, i.e., uncover unobserved demand, thus
resulting in an active learning setup.

Another example with important real-world implications in the energy do-
main is electrical vehicle charging infrastructure expansion [11]. The decision
of where to place new infrastructure, such as additional fixed or mobile charg-
ers, hinges on these censored observations, aiming to minimize the mismatch
between predicted demand and available supply. Obtaining new observations
(e.g., via placing new infrastructure) can aid in uncovering the spatio-temporal
distribution of the true (uncensored) demand, but it can be extremely costly.

The predict-then-optimize framework is common across various domains with
real-world applications, often involving censored data and requiring strategic
decision-making under uncertainty. For instance, sensor networks in environ-
mental monitoring, such as oceanography and forestry, face limitations where
data collection is constrained by device capabilities. In these cases, models opti-
mize sensor placement in dynamic environments to maximize information gain
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despite censored/noisy observations. [38] explore Bayesian Gaussian processes
for processing sensor data in real-time, accounting for the censoring inherent in
environmental or technical constraints. Similarly, [35] examines optimal sensing
policies for dynamic decisions based on censored or incomplete data. [12] discuss
strategies in cognitive radio systems, where censorship arises from bandwidth
limitations or interference, affecting the system’s ability to observe the full envi-
ronment. Emergency response logistics face similar challenges, where resources
like medical supplies or personnel must be deployed based on censored demand
data. During natural disasters or pandemics, real-time demand for critical re-
sources is often unobserved due to limited availability, creating uncertainty in
supply chain optimization. [32] apply Bayesian methods to update demand in-
formation, while [49] focus on optimizing emergency logistics in epidemics by
accounting for demand urgency.

Common for all these applications is the high cost associated with gathering
new data or labels, while maintaining good estimates of the true targets. For
instance, in the case of electric vehicle charging networks, obtaining additional
observations implies moving or building new infrastructure. Similarly, in online
advertisement bidding systems, exploring new strategies comes with a trade-off:
the cost of exploration versus the potential gains from exploitation. This bal-
ance between acquiring more information and managing costs is crucial across
various domains, influencing decision-making under uncertainty and resource
constraints. Therefore, this work introduces a novel approach to Bayesian active
learning in the context of censored regression. We extend the BALD acquisi-
tion function to handle censored observations, formulating the Censored-BALD
(C-BALD) acquisition function. This function quantifies the mutual information
between censored data points and the model parameters, allowing us to effi-
ciently select the most informative observations, even when they are subject to
censoring. By explicitly modeling the censoring process and incorporating it into
the active learning framework, we aim to reduce uncertainty in censored regres-
sion tasks, providing a principled method to address these complex real-world
problems.

2 Background & Setting

We are interested in the supervised learning of a probabilistic regression model,
p(y∗i |xi, θ), where xi ∈ X ⊆ Rd for d ≥ 1, y∗i ∈ Y∗ ⊆ R, and θ is a set of stochastic
model parameters. We assume that we can sample a set of model parameters,
θ, from the posterior distribution p(θ|D). We consider the special regression
case, where y∗i is subject to censoring, meaning that for some observations in
our dataset, y∗i is unknown. Specifically, we consider right-censored data, which
means that instead of observing y∗, we observe yi = min(y∗i , zi), where zi ∈ Z ⊆
R is a threshold value of yi. In addition, we also observe a censoring indicator
ℓi = 1{y∗i ≤ zi}, which indicates whether yi is censored or not. A censored
dataset of size n can thus be denoted D = {xi, yi, ℓi}ni=1.
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In the case of censored regression, the objective is to infer the true distribu-
tion p(y∗i |xi, θ) and the model parameters, θ, based on the censored dataset D.
In censored regression, one typically assumes that the distributions of p(y∗i |xi)
and p(zi|xi) are independent given the covariates, xi [46]. This assumption is
more general than other assumptions, such as fixed-value censoring, i.e., zi =
constant,∀i [40]. We formally state this assumption as follows:

Assumption 1. (Independent censoring) Conditioned on the covariates, xi,
the censoring distribution and the true distribution of the target are independent.
That is y∗i ⊥ zi|xi.

Under Assumption 1, we obtain the following densities for p(y∗) and p(y),

p(y∗|x, θ) = φ (y∗|x, θ) , (1)

p(y|ℓ,x, θ) = φ (y|x, θ)ℓ (1− Φ (y|x, θ))(1−ℓ)
, (2)

where Φ is the Cumulative Distribution Function (CDF) and φ is the Proba-
bility Density Function (PDF) of p(y∗|x, θ). Since we do not have access to the
non-censored dataset, y∗, we can only estimate θ through their censored coun-
terparts, y. Equation 2, also known as Tobit likelihood [46], thus models the
joint distribution of censored (ℓ = 1) and censored data points (ℓ = 0). The
corresponding log-likelihood loss function for right-censored models simplifies
to:

LC (θ) = −
∑
i∈D

(
ℓi log (φ (yi|xi, θ))︸ ︷︷ ︸

Observed loss

+(1− ℓi) log (1− Φ (yi|xi, θ))︸ ︷︷ ︸
Censored loss

)
, (3)

While we focus on right-censoring, left-censoring (i.e. yi = max(y∗i , zi)) can be
handled by inverting yi,∀i.

We will assume p(y∗i |xi, θ) to be Gaussian, such that p(y∗i |xi, θ) = N (µ∗
i , σ

2∗
i |xi, θ).

As a consequence, p(y|ℓ,xi, θ) will be a mixture model that reduces to a Gaussian
when all ℓ = 1.

Using the loss in Equation 3 we can fit a model of p(y∗i |xi, θ), as long as
its PDF φ and CDF Φ are well-defined. Since our focus is on Bayesian active
learning, and concretely BALD, we consider the broad class of Bayesian models.
Common choices include deep ensembles [28] and neural networks with stochastic
parameters [7,44].

2.1 Active Learning

In the supervised regression setting, active learning involves selecting which la-
bels to acquire during training to increase the model performance [34,43]. It
maximizes an acquisition function, which captures the utility of acquiring the
label for a given input [26]. We are interested in such settings, but where the
data points are subject to censoring. Typically, one starts with a small training
dataset, Dtrain = {(xi, yi, ℓi)}ni=1, which is used to train a probabilistic model
with likelihood p(y∗i |xi, θ). Then, from a larger (finite or infinite) pool of fu-
ture unlabelled data, Dpool = {xi}mt=1, the model is used to actively select xi
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to acquire a label for [26]. Once the label is acquired, the sample is added to
the training set. In the pool, Dpool , the censorship status of new observations
is unknown, i.e., during acquitions of new observations, both yi and ℓi are un-
known [37]. Thus, acquiring new labels involves obtaining its label yi alongside
its censorship status ℓi [48].

2.2 Bayesian Experimental design

Bayesian experimental design is a formal framework for quantifying the informa-
tion gained from an experiment [31]. In active learning, we can view the input
xi as the design of an experiment and the acquired label yi as the experiment’s
outcome and formalize the information gained from observing yi [2]. Let θ be
the quantity we are trying to infer. Given a prior (or the most recent knowledge),
p(θ), and a likelihood function, p(yi|xi, θ), then we can quantify the information
gain (IG) in θ due to an acquisition of (xi, yi), as the reduction in Shannon
entropy in θ that results from observing (xi, yi):

IGθ(xi, yi) = H[p(θ)]−H[p(θ|xi, yi)] . (4)

Since yi is a random variable, the expected information of yi can be computed
across multiple simulated outcomes using

pθ(yi|xi) = Ep(θ)[p(yi|xi, θ)], (5)

which leads to the expected information gain,

EIGθ(xi) = Epθ(yi|xi) [H [p(θ)]−H [p(θ|xi, yi)]] . (6)

This is the expected reduction in uncertainty of θ after conditioning on (xi, yi).
Equivalently, it is the mutual information between θ and yi given xi, denoted
I [yi, θ|xi] [2].

2.3 Bayesian active learning

The expected information gain has often been the basis for Bayesian active
learning, seeking to acquire data points that provide high information gain in
the model parameters θ. This acquisition function is referred to as the Bayesian
Active Learning by Disagreement (BALD) [17]:

BALD (xi) = Epθ(yi|xi)[H[p(θ)]−H[p(θ|xi, yi)]]

= Ep(θ)[H[p(yi|xi)]−H[p(yi|xi, θ)]]

= H[p(yi|xi)]− Ep(θ)[H[p(yi|xi, θ)]] ,

(7)

where the unconditional entropy is obtained by marginalizing over the parame-
ters θ,

H[p(yi|xi)] = H[Ep(θ)[p(yi|xi, θ)]] . (8)
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The BALD score is often used when the update to the model parameters is
non-Bayesian, for example, when applying Monte Carlo dropout in a neural
network [8], which we use to approximate the marginalizing over the parameters
θ in Equation 8. For Bayesian active learning without censoring, the BALD
acquisition function can be used for classification and regression methods, as the
entropies are well-defined for these tasks [8,21].

3 Censoring and Information

Ideally, we would still like to use the BALD objectives for active learning in
the censored data case. However, we must consider that, for a new observation
xi in the pool, the corresponding label yi can provide a varying amount of
information for the distribution of yi and θ depending on the censorship status
of the label [1,14,15,16]. To use the EIG and BALD acquisition functions, we will
derive the information (Shannon entropy) for a model trained with Equation 3.
Using the derived entropy, we extend the BALD objective to the censored case
and use this as an acquisition function for Bayesian active learning in this setting.
For the entropy equations in the following, we omit the dependency on xi, i, and
θ for readability.

3.1 Censored information

In the case of non-censorship, the amount of information that y provides to the
continuous distribution p(y) corresponds to the Shannon differential entropy,
defined as,

H[p(y)] = −
∫

p(y) log p(y)dy = −Ey∼p(y) [log p(y)] . (9)

If we consider the density of a (right) censored distribution introduced in Equa-
tion 2, we can formulate the entropy for a censored distribution into the following
entropy,

H[p(y|ℓ)] = −Ey∼p(y|ℓ) [ℓ logφ(y) + (1− ℓ) log(1− Φ(y))] . (10)

This entropy naturally reflects our assumption of censored observations that the
reduction in entropy from observing y is conditioned on its censorship status.
Using the fact that if y is censored, then y = z and if y is not censored, y = y∗,
then we can reformulate the entropy as,

H [p(y|ℓ)] = −Ey∼p(y|ℓ)[ℓ logφ (y∗) + (1− ℓ) log(1− Φ(z))] . (11)

However, the censoring information (both z and ℓ) is unknown during acqui-
sitions of new data points. To use this entropy for active learning, we propose
treating the indicator variable ℓ as a binary random variable. Later, we describe
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Fig. 2. Illustration of a 1-dimensional censored dataset, in which the dashed black
line represents the underlying function that generated the data. The (blue) circles
denote non-censored observations, while the (green) crosses represent observations that
have been censored. The grey background indicates areas where the observations are
censored.

our approach to modeling ℓ. Having a model of p(ℓ), we propose to approximate
Eq. 11 with its expectation with respect to p(ℓ):

H[p(y|ℓ)] ≈ Ep(ℓ) [H[p(y|ℓ)]]
= −Ey∼p(y|ℓ)[p(ℓ) logφ (y∗) + (1− p(ℓ)) log(1− Φ(z))] . (12)

3.2 Expected information gain in censored acquisitions

We can use the derived entropy to calculate the information that newly observed
targets yi will provide to the parameters of a Bayesian model. However, the ac-
quisition of new labels not only requires obtaining new values of yi, but it also
involves acquiring new censoring indicators ℓi [37]. Consequently, it is necessary
to account for the mutual information between yi and θ and consider the infor-
mation provided by ℓi. As a result, we jointly compute the mutual information
between the set (yi, ℓi) and θ. This leads to the following mutual information
(derivation in Appendix A.1),

C-BALD(xi) = I [(yi, ℓi), θ|xi]

= Ep(θ)[H[pθ(yi, ℓi|xi)]−H[p(yi, ℓi|xi, θ)]] .

= I [yi, θ|ℓi,xi] + I [ℓi, θ|xi] .

(13)

Therefore, in the censored regression case, the information gained from ob-
serving yi and ℓi is the information provided by observing the label yi given the
censoring indicator ℓi, plus the information from observing the censoring indica-
tor ℓi. The mutual information criteria can be computed similarly to the BALD
objective using the derived entropies,

I [yi, θ|ℓi,xi] = Ep(θ)[H[pθ(yi|ℓi,xi)]−H[p(yi|ℓi,xi, θ)]] ,

I [ℓi, θ|xi] = Ep(θ)[H[pθ(ℓi|xi)]−H[p(ℓi|xi, θ)]] .
(14)
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Fig. 3. Left): Overview of the fit of the proposed modeling approach on the 1-D
synthetic dataset. Red: Estimated distribution of the true function, p(y∗

i |xi, θ). Blue:
Estimated distribution of the observed values, p(yi|xi, θ). Orange: Estimated proba-
bility of being censored, pθ(ℓi|xi) (scaled between 0 and 2 for illustration purposes).
Middle): The mutual information calculations for the label y and the censoring sta-
tus. Grey areas indicate areas with complete censoring. Most information comes from
the cross-over point between the censored and non-censored values. Right): The right
censored NLL for the models across different acquisition functions on the synthetic
dataset (mean ± standard error). C-BALD achieves the best overall fit on the test set.

4 Information Gain in C-BALD

A fundamental challenge of C-BALD for active learning is that the censored re-
gression model, estimated using the censored loss function from Equation 3, only
approximates the parameters for the distribution of y∗i , and its corresponding
PDF φ and CDF Φ. This means that during acquisition, there is no knowledge of
the potential censoring status of new observations ℓi, which is required to com-
pute the mutual information (Equation 13), and there is no knowledge of the
potential censoring threshold zi, which is required to compute the entropy of yi
(Equation 12). Therefore, applying C-BALD in practice is not straightforward.
To overcome these challenges, we propose explicitly modeling the probability of
being censored ℓi and the censoring threshold zi as described below.

Modelling of ℓi: Recall that the censoring indicator ℓi = 1{y∗i ≤ zi} is
observed for each data point in a censored dataset. It is a binary indicator of
whether the observations are censored or not. Using a neural network, we propose
to fit the distribution of p(ℓi|xi, θ). Concretely, we parameterise p(ℓi|xi, θ) as a
Bernoulli distribution Ber(λi|xi, θ), and infer the parameters θ using the binary
cross entropy loss (LBCE(θ)). Consequently, this explicit modelling of ℓi allows
us to approximate the mutual information I[ℓi, θ|xi] required for Equation 13
(C-BALD).

Modelling of zi and yi: Explicit modeling of zi is more challenging, as
it is not fully observed (similarly to y∗i ). However, notice that for computing
the conditional entropy in Equation 12, we are only interested in the value of
zi for the case when xi is subject to censoring, i.e. ℓi = 0, in which case yi =
zi. This implies that we directly observe the true values of zi when we have
censored data points. Therefore, we propose to also explicitly model yi using a
standard Gaussian distribution, p̃(yi|xi, θ) = N (µi, σ

2
i |xi, θ), estimated with the
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maximum likelihood (with loss LGAUSS(θ))1. Notice that p̃(yi|xi, θ) represents
the distribution of the observations regardless of censorship, while p(y∗i |xi, θ)
represents that actual latent distribution we are trying to model. By explicitly
modelling both p̃(yi|xi, θi) and p(ℓi|xi, θ), for censored observations (when ℓi =
0), E[yi] = µi provides an estimate of zi, while for uncensored observations
E[y∗i ] = µ∗. This approach thus allows us to estimate zi for censored cases, which
is crucial for the entropy calculations described in Equation 12. An example of
this can be seen in Figure 3, where p̃(yi|xi, θi) follows the data points, also for
censored observations, thereby estimating zi.

Entropy estimation: With this explicit modeling approach, we can ap-
proximate information that new observations provide to the parameters of the
censored model.

H[p(yi)] ≈− Eyi∼p(yi)[pθ(ℓi|xi) logφ (yi) + (1− pθ(ℓi|xi)) log(1− Φ(µi))] .
(15)

4.1 Summary and implementation details

We want to use the mutual information between observations of (yi, ℓi) and the
model parameters θ to acquire new labels to reduce model uncertainty about y∗i .
Since the distribution of y∗ is not fully observed, we use the entropy defined in
Equation 12 to compute the mutual information. However, the entropy relies on
the knowledge of unknown variables zi and ℓi. We propose explicitly modeling
them using neural networks, thus resulting in the estimated entropy of Equation
15.

Implementation: We will use Gaussian distributions for y∗i and yi and a
Bernoulli distribution for ℓi. We enforce the constraint that σ∗

i and σi should
be positive by applying the softplus activation function on these parameters. To
summarise,

p(y∗i |xi, θ) ∼ N (µ∗
i , σ

2∗
i |xi, θ)︸ ︷︷ ︸

True distribution of y∗
i

p(yi|xi, θ) ∼ N (µi, σ
2
i |xi, θ)︸ ︷︷ ︸

Dist. of observed values yi

,

p(ℓi|xi, θ) ∼ Ber(λi|xi, θ)︸ ︷︷ ︸
Distribution of ℓi

.

(16)

We model all these distributions with a single Bayesian neural network with
stochastic parameters. The outputs of the Bayesian neural network are the pa-
rameters of the distributions p(y∗i |xi, θ), p(yi|xi, θ) and p(ℓi|xi, θ), i.e. five out-
puts neurons for the set {µ∗

i , σ
∗
i , µi, σi, λi}. The latter can then be used to com-

pute the conditional entropy in Equation 15 as highlighted by the respective

1 Note that this distribution is different from Eq. 2, where we fit a distribution for y
using a Tobit likelihood.
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Name Num. features Censorship n0 Acquisition size Steps repetitions Dpool Dval Dtest

Synthetic 1 44% 10 3 150 50 9000 250 500
BreastMSK 5 77% 5 3 150 50 1285 183 366
Metabric 9 42% 5 3 150 50 1523 76 305
Whas 6 58% 5 3 150 50 1310 65 263
GBSG 7 37% 5 3 150 50 1546 137 549
Support 14 32% 5 3 150 50 7098 355 1420
Churn 26 53% 5 3 150 50 1276 136 546
Credit Risk 47 30% 5 3 150 50 650 70 280
SurvMNIST 28× 28 53% 100 5 100 25 60000 5000 5000

Table 1. Overview of the various datasets used in this analysis, including the number
of features and the percentage of censorship in Dpool . We also include n0 as the initial
data points in Dtrain

colors. The parameters of the neural network, θ, are inferred using the total loss
from the maximum likelihood estimation of all these distributions,

L(θ) = LC(θ) + LGAUSS(θ) + LBCE(θ) . (17)

Figure 3 shows the fit of the proposed model for all the different distribu-
tions on a synthetic dataset. Using all the explicit models of y∗i , yi and ℓi, we
can compute the C-BALD objective (Equation 13) and use it as an acquisition
function in active learning.

5 Experiments

In this section, we present the results of the proposed acquisition function
with multiple experiments on synthetic and real-world datasets. Source code
for reproducing the experiments is available at: https://github.com/fbohu/
Censored-Active-Learning.

Models: We implement the Bayesian Neural Network with stochastic pa-
rameters using Monte Carlo Dropout [7]. We use three layers, 128 hidden units,
a dropout probability of 0.25, and the ADAM optimizer with a learning rate of
0.3 · 10−3 [23] and the ReLU activation function2.

Baselines: We compare the proposed acquisition function with the follow-
ing baselines: Random acquisitions, which randomly acquires data points in
Dpool , the Entropy (Entropy) of Bayesian neural networks, which is propor-
tional to variance between the individual’s models in the sampled ensemble,
Varθ∼p(θ|D)[p(yi|xi)], and the BALD objective from Equation 7.

Evaluation: To quantify the performance of the acquisition function, we
evaluate the relative decrease in the area under the curve (RD-AUC) across the
entire active learning experiment [41]. We compare the relative decrease to a
baseline acquisition function (Random) and evaluate the models’ right censored

2 In Appendix C, we experiment with different model architectures.

https://github.com/fbohu/Censored-Active-Learning
https://github.com/fbohu/Censored-Active-Learning
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negative log-likelihood (NLL) on a test set (Dtest ). Since the NLL is not bounded
by 0, we use the lowest NLL obtained across all the acquisition functions as a
lower bound for the metric. We compute the average across all the number of
acquisitions, NAcq. The RD-AUC is defined as follows:

RD-AUC =
1

NAcq

NAcq∑
i=0

(
NLLRandom −NLLs

NLLRandom

)
, (18)

where NLLs is the negative log-likelihood of the model with the acquisition
function s and NLLRandom is the negative log-likelihood of from Random acqui-
sition.

Synthetic Data: We begin our empirical evaluation of the proposed ac-
quisition by considering the following 1D synthetic dataset, with xi = N (5, 1),
and,

y∗i =
1

2
sin(2xi) + 2 + εi zi =

1

2
cos(2xi) + 2 + εi , (19)

yi = min(y∗i , zi), and ℓi = 1{y∗i ≤ zi} and εi ∼ N (0, 0.01|xi|). The dataset can
be seen in Figure 2 and our proposed modeling fit in Figure 3. We generate
a small pool of labelled data points (n0 = 10), a larger set of unlabelled data
points |Dpool | = 9000, and a |Dtest | = 500. We train a model of the small pool
of labeled data and acquire three new data points with labels every iteration.
During each training step, we use a small validation set Dval with 250 obser-
vations to evaluate the models and apply early stopping on the right censored
maximum likelihood.

Figure 3 shows the C-BALD scores across the entire range of x. C-BALD
assigns a high mutual information value in regions where the censoring status
changes, i.e. when the model is uncertain about the information that new samples
will provide. In the right of Figure 3, we show the right censored negative log-
likelihood for the different acquisition functions. We find that C-BALD achieves
the best overall fit of the data with the lowest NLL, which shows that it identifies
which data point provides the most information to the model.

Real Datasets: We test the proposed functions on seven real-world datasets:
five from a biomedical context [22] and two from a predictive analytics con-
text [6]. Three datasets focus on estimating the survival time for various types
of cancer patients (BreastMSK, METABRIC, and GBSG), one dataset for
modeling the survival time of myocardial infarction (WHAS), and the last
dataset estimates the survival time for critically-ill hospital patients (SUPPORT).
For the predictive analytics datasets, we focus on predicting the time customers
remain subscribed to a service (Churn) and the other on estimating the time
for borrowers to repay their credit (Credit Risk)3.

Table 1 summarises the datasets used in the experiments, including the num-
ber of features, the percentage of censored observations, and the total number of
observations. Additionally, it includes a summary of the parameters used for the
active learning experiments for each dataset. The results reported are averages
3 A more extensive summary of these datasets can be found in Appendix B.3.
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Dataset Entropy BALD C-BALD

Synthetic 8.65± 0.42 −0.12± 0.14 33.49± 1.11
BreastMSK 8.21± 1.43 −1.89± 0.66 8.75± 1.42
Metabric −0.67± 0.39 2.25± 0.34 18.26± 0.94
whas 0.42± 0.27 1.68± 0.17 0.26± 0.32
GBSG −0.81± 0.05 −0.04± 0.05 5.58± 0.05
support 0.70± 0.02 −0.53± 0.01 4.55± 0.02
churn 5.14± 0.31 0.17± 0.21 32.75± 0.87
credit risk −0.72± 0.36 −0.17± 0.33 22.11± 0.64
Survmnist −0.05± 0.28 1.06± 0.30 13.47± 0.66

Table 2. Relative decrease in the area under the curve (RD-AUC) compared to the
Random scoring function. A higher value in the table represents better performance,
with the best performance highlighted in bold.

over the number of repetitions for each dataset and acquisition function (mean
± standard error). Table 2 reports the RD-AUC compared across the different
scoring functions. Figure 4 shows the right-censored NLL across the different
runs for two real-world datasets. We find that the proposed acquisition function
leads to better acquisition of new data points by obtaining a superior fit on the
test set compared to the baselines.
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Fig. 4. Results of the real-world experiments on two of the seven datasets, namely
the METABRIC and CREDIT RISK datasets, respectively. The figure shows the NLL
(mean ± standard error) across the multiple repetitions of the experiment.

High-dimensional data: Lastly, we evaluate the performance of our pro-
posed scoring functions with Bayesian convolutional neural networks on the
SurvMNIST dataset [10]. In SurvMNIST, each label is replaced with a random
draw from a Gamma distribution, with different distributional parameters across
the labels [39]. The observations in the dataset are censored uniformly, between
the minimum and the 90th percentile in the training set [10]. The initial training
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set contains ten samples from each class in the dataset4. The experiment on the
SurvMNIST dataset shows that the proposed scoring functions outperformed
the baseline functions, as shown in Table 2.

6 Related work

The study of the information that an experiment or observation provides was
introduced by [31] and has often been the basis for new acquisition functions
in active learning [34,33]. The study of information in censored experiments
has traditionally focused on survival experiments, where observations are stud-
ied over time [14,16]. In survival experiments, an individual is observed for an
amount of time and is considered censored if the person drops out of the ex-
periment [15]. For the discrete and continuous case, the entropy calculations
come down to the integral over the time an individual was observed [1], and en-
tropy decreases after observations are censored [15]. In these and other settings
with censored data, such as transportation systems [20,18], subscription-based
businesses [5,3,36], and in health survival applications [37,30], data can be ex-
pensive to collect and label, necessitating the need for active learning in this
context. Despite the challenges of censored data, there is limited research on
active learning in this context. Two notable exceptions from the survival analy-
sis literature include the work of [48], who proposed a query strategy based on
discriminative gradients to identify the most informative points, and the work of
[37], who suggested a query strategy for acquiring data points with the highest
expected performance increase if their labels were known. A popular approach
is Bayesian Active Learning with the BALD objective [17], specifically with its
ability to work in conjunction with deep neural networks [8] and extensions to
batch-acquisitions [25]. In the Deep Bayesian active learning, the BALD objec-
tive has primarily been used for classification tasks with MC Dropout models
but has recently seen applications for deep regression tasks, such as estimating
causal treatment effects [21] and for black-box models [24]. While plenty of re-
search has focused on the BALD objective, to our knowledge, we are the first to
explore the BALD objective in censored regression.

As previously mentioned, this work is motivated by predict-then-optimize
scenarios, often involving dynamic feedback between supply and demand, which
aligns with exploration/exploitation approaches as in Bayesian Optimization
(BO) and Reinforcement Learning (RL), however in our work, we not focused
on optimization, but increase the predictive quality of the censored regression
models, used in these contexts. This is an important distiction, as supply is often
limited and needs proper allocation, which is often done by optimizing a utility
function, such as profit or cost [11]. While BO extensions for censored data (e.g.
[19]) exist that handle uncertainty from censoring, focusing on active learning
allows for the separation between learning from optimization, thus allowing for
greater flexibility in applying and comparing different optimization techniques.
4 The details of the gamma distributions and the model architecture can be found in

Appendix B.4.
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For instance, [11] shows that a Chance Constrained Mixed Integer Program-
ming approach outperforms a BO baseline when censoring is not modeled. In
contrast, while RL has been studied in the context of censored data (e.g., [47,9]),
it is less suited to the type of problems targeted by our work due to the high
cost of acquiring new data (e.g., deploying infrastructure). This restricts the ex-
tensive exploration typically needed in RL, making it impractical for real-world
applications with tight exploration budgets.

7 Conclusion

This paper studies Bayesian active learning for censored regression problems.
This problem is prevalent in many fields, such as engineering, marketing, finance,
and medicine, where datasets often contain censored observations and obtaining
new observations can be costly, thus constraining the learning process of the
true underlying uncensored distribution and requiring careful strategic decision-
making under uncertainty. Motivated by this challenge, we derive the entropy
for censored distributions and propose the C-BALD acquisition function, which
accounts for censored observations. Empirically, across various synthetic and real
datasets, we show that C-BALD outperforms BALD on synthetic and real-world
datasets.
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