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Abstract. An intelligent driving system should dynamically formulate
appropriate driving strategies based on the current environment and
vehicle status while ensuring system security and reliability. However,
methods based on reinforcement learning and imitation learning often
suffer from high sample complexity, poor generalization, and low safety.
To address these challenges, this paper introduces an efficient and gener-
alized end-to-end autonomous driving system (EGADS) for complex and
varied scenarios. The RL agent in our EGADS combines variational in-
ference with normalizing flows, which are independent of distribution as-
sumptions. This combination allows the agent to capture historical infor-
mation relevant to driving in latent space effectively, thereby significantly
reducing sample complexity. Additionally, we enhance safety by formulat-
ing robust safety constraints and improve generalization and performance
by integrating RL with expert demonstrations. Experimental results
demonstrate that, compared to existing methods, EGADS significantly
reduces sample complexity, greatly improves safety performance, and ex-
hibits strong generalization capabilities in complex urban scenarios. Par-
ticularly, we contributed an expert dataset collected through human ex-
pert steering wheel control, specifically using the G29 steering wheel. Our
code is available: https://github.com/Mark-zjtang/EGADS?tab=readme-
ov-file.

1 Introduction

An intelligent autonomous driving systems must be able to handle complex road
geometry and topology, complex multi-agent interactions with dense surround-
ing dynamic objects, and accurately follow the planning and obstacle avoidance.
Current, autonomous driving systems in industry are mainly using a highly
modularized hand-engineered approach, for example, perception, localization,
behavior prediction, decision making and motion control, etc. [40] and [41]. Par-
ticularly, the autonomous driving decision making systems are focusing on the
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Fig. 1. Overview of the efficient and generalized end-to-end autonomous driving system
with latent deep reinforcement learning and demonstrations.

non-learning model-based methods, which often requires to manually design a
driving policy [14] and [31]. However, the manually designed policy could have
two several weaknesses: 1) Accuracy. The driving policy of human heuristics and
pre-training model can be suboptimal, which will lead to either conservative or
aggressive driving policies. 2) Generality. For different scenarios and complicated
tasks, we might need to be redesigned the model policy manually for each new
scenario.

To solve those problems, existing works such as imitation learning (IL) is
most popular approach, which can learn a driving policy by collecting the expert
driving data. However, those methods can suffer from the following shortcom-
ings for imitation learning: (1) High training cost and sample complexity. (2)
Conservation. Due to the collect driving data from the human expert, which can
only learn driving skills that are demonstrated in the datasets. (3) Limitation
of driving performance. What’s more, the driving policy based on reinforcement
learning (RL) is also popular method in recent years, which can automatically
learn and explore without any human expert data in various kinds of different
driving cases, and it is possible to have a better performance than imitation
learning. However, the existing methods also have some weakness: (1) Existing
methods in latent space are based on specific distribution assumptions, whereas
distributions in the real world tend to be more flexible, resulting in a failure
to learn more precisely about belief values. (2) High costs of learning and ex-
ploration. (3) The safety and generalization of intelligent vehicles need further
improvement.

Combining the advantages of RL and IL, the demonstration of enhanced RL
is not only expected to accelerate the initial learning process, but also gain the
potential of experts beyond performance. In this paper, we introduce an efficient
and generalized end-to-end autonomous driving system (EGADS) for complex
and varied scenarios. The RL agent in our EGADS combines variational infer-
ence with normalizing flows independent of distribution assumptions, allowing it
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to sufficiently and flexibly capture historical information useful for driving in la-
tent space, thereby significantly reducing sample complexity. In addition, unlike
traditional methods that constrain policy actions directly, we integrate safety
constraints into the reward function, which allows the agent to consider safety
during training, thereby improving its robustness and generalization. To further
increase the upper limit of the overall system, we further enhance the RL search
process with a dataset of human experts. In particular, we contributed a dataset
of human experts to driving by driving the G29 steering wheel. The experimen-
tal results show that compared with the existing methods, our EGADS greatly
improves the safety performance, shows strong generalization ability in multiple
test maps, and significantly reduces the sample complexity. In summary, our
contributions are:

• We present an EGADS framework designed for complex and varied scenarios.
• The RL agent in EGADS uses variational inference with normalizing flows

(NFRL), independent of distribution assumptions, to capture historical driv-
ing information in latent space, significantly reducing sample complexity.

• we incorporate Safety Constraints (SC) directly into the reward function to
enable the agent to account for safety considerations during training.

• By fine-tuning with a small amount of human expert dataset via using the
G29 steering wheel, NFRL agents can learn more general driving principles,
significantly improving generalization and sample efficiency.

2 Related Work

Imitation learning, which utilizes an efficient supervised learning approach, has
gained widespread application in autonomous driving research due to its sim-
plicity and effectiveness. For instance, imitation learning has been employed in
end-to-end autonomous driving systems that directly generate control signals
from raw sensor inputs [27, 8, 1, 5].

Deep reinforcement learning (DRL) has demonstrated its strength in ad-
dressing complex decision-making and planning problems, leading to a series
of breakthroughs in recent years. Researchers have been trying to apply deep
RL techniques to the domain of autonomous driving. Lillicarp et.al [24] intro-
duced a continuous control DRL algorithm that trains a deep neural network
policy for autonomous driving on a simulated racing track. Wolf et.al [43] used
Deep Q-Network to learn to steer an autonomous vehicle to keep in the track
in simulation. Chen et.al [4] developed a hierarchical DRL framework to handle
driving scenarios with intricate decision-making processes, such as navigating
traffic lights. Kendall et.al [22] marked the first application of DRL in real-world
autonomous driving, where they trained a deep lane-keeping policy using only a
single front-view camera image as input. Chen et.al [3] proposed an interpretable
DRL method for end-to-end autonomous driving. Nehme et.al [30] proposed safe
navigation. Murdoch et.al [29] propose a partial end-to-end algorithm that de-
couples the planning and control tasks. Zhou et.al [46] proposes a method to
identify and protect unreliable decisions of a DRL driving policy. Zhang et.al [44]
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a framework of constrained multi-agent reinforcement learning with a parallel
safety shield for CAVs in challenging driving scenarios. Liu et.al [26] propose the
Scene-Rep Transformer to enhance RL decision-making capabilities.

By combining the advantages of RL and IL is also a relatively popular method
in recent years. The techniques outlined in [38], [42], [47] and [45] have proven
to be efficient in merging demonstrations and RL for improving learning speed.
Liu et.al [25] propose a novel framework combining RL and expert demonstra-
tion to learn a motion control strategy for urban scenarios. Huang et.al [19]
introduces a predictive behavior planning framework that learns to predict and
evaluate from human driving data. Huang et.al [20] propose an enhanced human
in-the-loop reinforcement learning method, while they rely on human expert per-
formance and can only accomplish simple scenario tasks. DPAG [32] combines
RL and imitation learning to solve complex dexterous manipulation problems.
Our approach utilizes the potential for reinforcement learning and normalization
flows to learn useful information from historical trajectory information, further
learning expert demonstrations through DPAG methods.

3 Methodology

The proposed framework of our EGADS is illustrated in Figure 1. Firstly, hu-
man experts collect demonstrations offline using the G29 steering wheel. These
expert demonstrations are then utilized as the RL fine-tuning experience replay
buffers for training the entire model. Subsequently, a pre-training process is con-
ducted to establish a model with human expert experience that does not update
environmental data during training. The resulting model, enriched with human
expert experience, is then used to fine-tune the policy for RL agent. Addition-
ally, we have designed safety constraints for the intelligent vehicle, enhancing its
safety performance.

3.1 Preliminaries

We model the control problem as a Partially Observable Markov Decision Process
(POMDP), which is defined using the 7-tuple: (S,A, T,R,Ω,O, γ), where S is a
set of states, A is a set of actions, T is a set of conditional transition probabilities
between states, R is the reward function, Ω is a set of observations, O is a
set of conditional observation probabilities, and γ is the discount factor. The
goal of the RL agent is to maximize expected cumulative reward E[

∑∞
t=0 γtrt].

After having taken action at−1 and observing ot, an agent needs to update its
belief state, which is defined as the probability distribution of the environment
state conditioned on all historical information: b(st) = p(st | τt, ot), where τt =
{o1, a1, . . . , ot−1, at−1}.

3.2 Latent dynamic model for autonomous driving

We propose the use of latent variables to solve problems in end-to-end au-
tonomous driving. This potential space is used to encode complex urban driv-



End-to-End Driving via Latent RL and Demonstrations 5

( )a ( )b ( )c

3â2â
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Fig. 2. (a) RL agent learns potential dynamics from past experience datasets. (b) RL
agent predicts driving action in an imaginary space. (c) RL agent interacts with driving
environment. Where o is observation, a is action, s is latent state, r̂t is reward, ôt is
reconstructed and v̂t is value.

ing environments, including visual inputs, spatial features, and road conditions.
Historical high-dimensional raw observation data is compressed into this low-
dimensional latent space and learned through a sequential latent environment
model that learns in conjunction with the maximum entropy RL process. We
introduce RL agent model consists of components can be constructed the prob-
abilistic graphical model of POMDP as follow:

State transition model: pθ(st|st−1, at−1)

Reward model: pθ(rt|st)
Observation model: pθ(ot|st)

(1)

where p is prior probability, q is posterior probability, o is observation, a is action,
is latent state and θ is the parameter of the model.

3.3 RL agent in the latent space

Visual control [39], [34], [2] can be defined as a POMDP. The traditional com-
ponents of agents that learn through imagination include dynamics learning,
behavior learning, and environment interaction [16], [17]. The RL agent in the
latent space in our EGADS mainly includes the following:

(1) RL agent learns potential dynamics from past experience datasets of au-
tonomous vehicle. As shown in Figure 2(a), using p to represent prior probability,
q to represent posterior probability, agent learns to encode observation and ac-
tion into compact latent state, and ôt is reconstructed with q(ôt|st) while st is
determined via p(st|st−1, at−1, ot).

(2) RL agent predicts driving action in an imaginary space. As shown in
Figure 2(b), RL agent is in a close latent state space where it can predict value
v̂t, reward r̂t and action ât based on current input ot−1 with q(v̂t, r̂t, ât|st),
p(st|st−1, ât−1), q(ât−1|st−1).

(3) RL agent interacts with driving environment. As shown in Figure 2(c),
RL agent predicts next action values ât+1 by encoding historical trajectory in-
formation via q(ât+1|st+1), p(st+1|st, at, ot+1).
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3.4 Normalizing Flow for inferred belief

Existing latent RL models in autonomous driving either suffer from the curse
of dimensionality or make some assumptions and only learn approximate dis-
tributions. This approximation imposes strong limitations and is problematic,
whereas distributions in the real world tend to be more flexible. In the continu-
ous and dynamic space, existing methods based on normalizing flows (NF) [10] ,
[18], [33] can learn more flexible and generalized beliefs. These methods provide
a solid foundation for RL agents to accurately predict future driving actions.
Inspired by [7], we added a belief inference model: qθ(st|τt, ot), where θ is the
parameter of the model. The belief model can be substituted for the probability
density with NF in the KL-divergence term of equation 2.

qK(st|τt, ot) = log q0(st|τt, ot)−
K∑
k=1

|det ∂fψk

∂st,k−1
|

pK(st|τt) = log p0(st|τt)−
K∑
k=1

|det ∂fωk

∂st,k−1
|

(2)

where q0 = qθ, qK = qθ,ψ, p0 = pθ, pK = pθ,ω, ψ and ω are the parameters
of a series of mapping transformations of the posterior and prior distributions.
Where τt = {o1, a1, · · · , ot−1, at−1}. The input images o1:t and actions a1:t−1 are
encoded with qθ(st|τt, ot). Then the final inferred belief is obtained by propa-
gating qθ(st|τt, ot) through a set of NF mappings denoted fψK

. . . fψ1 to get a
posterior distribution qθ,ψ(st|τt, ot). The final prior is obtained by propagating
pθ(st|τt) through a set of NF mappings denoted fωK

. . . fω1 to get a prior distri-
bution pθ,ω(st|τt). Where pK(st|τt) = pK(st|st−1, at−1), given the sampled st−1

from qK(s1:t|τt, ot). Finally, our NF inference RL model (NFRL) is optimized by
variational inference method, in which the evidence lower bound (ELBO) [21],
[9] is maximized. The loss function is defined as:

Mmodel(θ, ψ, ω) =

T∑
t=1

(
Eq(st|o≤t,a<t)[log pθ(ot | st)+

log pθ(rt | st)]− EqK(s1:T |o1:T ,a1:T−1)[DKL

(
qK(st | τt, ot)∥

pK(st | τt, ot))]
) (3)

3.5 Policy optimization

The action model implements the policy and is designed to predict the actions
that are likely to be effective in responding to the simulated environment. The
value model estimates the expected reward generated by the behavior model at
each state sτ .

aτ ∼ qϕ(aτ |sτ ), vη(sτ ) = Eqϕ [

t+H∑
t=t

γτ−trτ ] (4)

where ϕ, η are the parameters of the approximated policy and value. The obe-
jective of the action model is to use high value estimates to predict action that
result in state trajectories

Mactor(ϕ) = Eqϕ(

t+H∑
τ=t

V λτ ) (5)
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To update the action and value models, we calculate the value estimate vη(sτ )
for all states sτ along the imagined trajectory. V λτ can be defined as follow:

V λτ = (1− τ)vη(sτ+1) + λV λτ+1, τ < t+H (6)

Then we can train the critic to regress the TD(λ) [35] target return via a mean
squared error loss:

Mcritic(η) = E
[ t+H∑
τ=t

1

2

(
vη (sτ )− V λτ

)2 ]
(7)

where η denote the parameters of the critic network and H is the prediction
horizon. Then the loss function is as follows:

min
ψ,η,ϕ,θ,ω,η

α0Mcritic(η)− α1Mactor(ϕ)− α2Mmodel(θ, ψ, ω) (8)

we jointly optimize the parameters of model loss ψ, θ, ω, critic loss η and actor
loss ϕ, where α0, α1, α2 are coefficients for different components.

3.6 Safety constraint

In the Gym-Carla benchmark, the reward function proposed by Chen et.al [6]
is denoted as f1. To ensure the intelligent vehicle operates safely and smoothly
in complex environments, we incorporated additional safety and robustness con-
straints into f1, denoted as f2 = f1 + 200rft + 50rlt + 2rsc. rft is the front time
to collision. rlt is lateral time to collision. rsc is the smoothness constraint.

(1) Front time to collision. When around vehicles are within the distance of
ego vehicle (our agent vehicle) head in our setting, then we can calculate the front
time to collision between ego vehicle and around vehicles. Firstly, the speed and
steering vector (sτ , aτ ) ∈ S of the ego vehicle are defined, where sτ represents the
angle vector of vehicle steering and aτ represents the acceleration vector of the
vehicle in local coordinate system. Secondly, two waypoints closest to the current
ego vehicle are selected from the given navigation routing as direction vectors wp
for the entire route progression, where → indicates a vector in world coordinates.
The position vectors for both ego vehicle and around vehicles are represented
by (x∗t , y

∗
t ), respectively. Finally, δe and δa representing angles between position

vectors for ego vehicle and around vehicles with respect to wp are calculated
respectively.

wp =
[
(
wxt+1 − wxt

2
)− (wxt ), (

wyt+1 − wyt
2

)− (wyt )
]

δe =
[vx∗t , vy∗t ] · wp

∥vx∗t , vy∗t ∥2 ∥wp∥2
, δa =

[vxt , v
y
t ] · wp

∥vxt , v
y
t ∥2 ∥wp∥2

(9)

where, l is the length of the set of waypoints W stored. The variable t ∈ τ ,
and wxt ∈ W1 represents the x coordinate of the first navigation point closest
to the intelligent vehicle on its current route at time t. Similarly, wxt+1 ∈ W2.
Furthermore, it is possible to calculate the Fttc as follows:
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Fttc =
∥xt − x∗t , yt − y∗t ∥2

|∥vx∗t , vy∗t ∥2sin(δe)− ∥vxt , v
y
t ∥2sin(δa)|

(10)

(2) Lateral time to collision. When around vehicles are not within the dis-
tance of ego vehicle head in our setting, we consider significantly the Lttc. The
calculation method for Lttc and Fttc is the same. However, the collision con-
straint effect of Lttc on intelligent vehicle is limited, mainly due to the slow
reaction time of intelligent vehicle to Lttc, lack of robustness and generalization
ability. Therefore, we have implemented a method of assigning values to different
intervals for Lttc as follows:

min(zτ , cτ + 1.0), νg ≤ (cτ − 1.5) and µa ≤ (cτ − 0.5).

min(zτ , cτ − 1.8), νg ≤ (cτ − 3.0) and µa ≤ (cτ − 2.0).

min(zτ , cτ − 3.0), νg ≤ (cτ − 3.5) and µa ≤ (cτ − 3.0).

(11)

where cτ is the empirical const of Lttc in our setting at (5,7), zτ is the ttc based
on their combined speed. νg is the ttc obtained by calculating the longitudinal
velocity. µa is the ttc obtained by calculating the lateral velocity.

(3) Smooth steering is defined as |sδt − s∗δt | ∈ ec. sδt is the actual steering
angle. s∗δt is the predicted steering angle based on policy π. The range of ec can
be established based on empirical data.

3.7 Augmenting RL policy with demonstrations

Though, NFRL can significantly reduce complexity, and reward design based on
safety constraints can enhance safety. Demonstrations can mitigate the need for
painstaking reward shaping, guide exploration, further reduce sample complex-
ity, and help generate robust, natural behaviors. We propose the demonstration
augmented RL agent method which incorporates demonstrations into NFRL
agent in two ways:

(1) Pretraining with behavior cloning. We use behavior cloning to provide
a policy π∗ via expert demonstrations and then to train a model Mexpert with
some expert ability.

Mexpert = maximize
ξ

∑
(s′,a′)∈π∗(De)

lnπ∗
ξ (a

′
τ |s′τ ) (12)

where De is a human expert dataset obtained from driving G29 steering.
(2) RL fine-tuning with augmented loss: we employ Mexpert to initialize a

model trained by deep RL policies, which reduces the sampling complexity of
the deep RL policy. The training loss of the actor model as follows:

M ˆactor(ϕ, ξ) = Mactor(ϕ) + k lnπ∗
ξ (a

′
τ |s′τ ), (a′τ , s′τ ) ∈ De (13)

where k represents the balance between the behavior cloning policy and NFRL
policy, and is set as a constant based on empirical data. We only changed the
actor model of NFRL, and the optimization of the other parts is exactly the
same.
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4 Experiment

4.1 Experiment setup

Models were trained on an NVIDIA RTX 3090 GPU using Python 3.8. Our
experiments were conducted on a benchmark called Gym-carla, a third-party
environment for OpenAI gym that is used with the CARLA simulator[11]. In
our experiments, as shown in Figure 3, the NFRL series models and baseline
methods were trained in Town03 (random) and evaluated across four scenar-
ios: Town03, Town04, Town05, and Town06. These scenarios are abbreviated as
Town03-Town06, encompassing both random and roundabout modes. Town03
simulates a realistic urban environment with diverse features such as tunnels, in-
tersections, roundabouts, curves, and turnaround bends. Here, "random" refers
to randomly selected intersections and driving scenarios, while "roundabout"
focuses specifically on roundabout intersections. Town04, a small town embed-
ded in the mountains with a special infinite highway. Town05, squared-grid town
with cross junctions and a bridge. Town06, long many lane highways with many
highway entrances and exits.

Town03 Roundabout in Town03 Town04

Town05 Town05 Town06

Fig. 3. The road networks of the CARLA include routes for Town03, Town04, Town05,
and Town06

4.2 Comparison settings

In order to evaluate the performance of our autonomous driving system more ef-
fectively, we have conducted various comparisons with existing methods such as
DDPG [24], SAC [15], TD3 [12], DQN [28], Latent_SAC [3], Dreamer [16], CQL
[23]. We decomposed EGADS into three components: NFRL, Safety Constraint
(SC) and augmenting RL policy with demonstrations (Demo). We then con-
ducted evaluations using four comparison settings, NFRL, NFRL+SC, BC+Demo,
NFRL+SC+Demo. BC+Demo indicates the use of behavioral cloning to imitate
the expert dataset, while NFRL+SC+Demo involves using expert datasets to
augment the NFRL policy combined with SC.
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4.3 Hyperparameter settings

Mmodel, the KL regularizer is clipped below 3.0 free nats for imagination range
H = 15 using the same trajectories for updating action and value models sep-
arately with λ = 0.99 and λ = 0.95, while k = 1.5. The size of all our trainig
and evaluating images is 128× 128× 3. A random seed S = 5 is used to collect
datasets for the ego vehicle before updating the model every C = 100 steps
during training process.

All baseline methods share a model size of 32 but differ in other hyper-
parameters: conventional RL algorithms (DDPG, SAC, TD3, DQN) and La-
tent_SAC use a larger batch size of 256 with 5 evaluation episodes and ac-
tion repeat of 2, while NFRL-based methods (NFRL, NFRL+SC, BC+Demo,
NFRL+SC+Demo) and Dreamer adopt a smaller batch size of 32 with 10 eval-
uation episodes and action repeat of 1.

Regarding learning rates: The standard RL methods (DDPG, SAC, TD3,
DQN) and Latent_SAC share identical learning rate configurations, with model
learning rate at 1× 10−4, and both actor and value learning rates at 3× 10−4.
The model-based approaches (Dreamer, NFRL series methods and BC+Demo)
demonstrate different patterns, using a higher model learning rate of 1 × 10−3,
while maintaining lower actor and value learning rates at 8× 10−5. Notably, all
NFRL variants (NFRL, NFRL+SC, NFRL+SC+Demo) and BC+Demo main-
tain identical learning rate configurations with the Dreamer method.

4.4 Measure Driving Performance Metrics

In the Gym-Carla benchmark, an episode terminates under any of the follow-
ing conditions: the number of collisions exceeds one, the maximum number of
time steps is reached, the destination is reached, the cumulative lateral deviation
from the lane exceeds 10 meters, or the vehicle remains stationary for 50 sec-
onds. EGADS is an end-to-end autonomous driving system. We implemented our
trained model on an autonomous vehicle for urban navigation, assessing perfor-
mance through five standard metrics: Off-road Rate (OR), Episode Completion
Rate (ER), Average Safe Driving Distance (ASD), Average Reward (AR) using
the reward function from Chen et.al [6] that accounts for driving dynamics (yaw,
collisions, speeding, and lateral velocity), and Driving Score (DS): a composite
metric calculated as DS = ER × AR in accordance with CARLA Leaderboard
standards. During model selection, we focused on checkpoints that simultane-
ously optimized DS and AR, while implementing the remaining metrics (ER,
OR, AR, ASD) based on the methodology from Gao et.al [13] and Tang et.al
[37] [36]. As below:

OR =
Noff_road_events

Ntotal_episodes
, ER =

Ncompleted_steps

Ntotal_steps
, AR =

∑Nepisodes
i=1 rewardsi
Ntotal_episodes

(14)

ASD =

∑Nepisodes
i=1 distancei
Ntotal_episodes

, DS = ER×AR (15)
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Where Noff_road_events is the number of times the vehicle went off-road, and
Ntotal_steps is the total number of episodes. Where Ntotal_episodes is the total
number of episodes in the test. Where distancei is the distance driven during the
i-th safe driving episode. Where Ncompleted_steps is the number of successfully
completed steps, and Ntotal_steps is the total number of steps in the episode.
Where AR is the average reward f collected during the episode.

4.5 Collect expert datasets

CARLA can be operated and controlled through using the python API. Fig-
ure 4 shows that we establish a connection between the Logitech G29 steer-
ing wheel and the CARLA, and then human expert can collect the datasets of
teaching via the G29 steering wheel. Specifically, we linearly map accelerator
pedals, brake pedals, and turning angles into accel[0,3](min,max), brake[-8,0]
(min,max), steer[-1,1](left,right). The tensors are written into user-built Python
scripts and combined with CARLA built-in Python API so that users can pro-
vide input from their steering wheels to autonomous driving cars in CARLA
simulator for Dexpert collection. Particularly, we contributed a dataset collected
through human expert steering wheel control.

Logitech G29

Tensor(steer)

Tensor(accel,brake)

Autonomous vehicle

Pygame.joystick()

Steering

Accelerator
Brake

CARLA

(a) (b)

Fig. 4. (a) CARLA connects with the G29 steering wheel (b) Human expert collects
the datasets via the G29 steering wheel

4.6 Results on trajectory prediction

In order to accurately evaluate our model prediction of driving actions for intel-
ligent vehicle, this problem can be viewed as a special POMDP problem with
the reward value maintained at 0. As shown in Figure 5, the comparison with
ground-truth data demonstrates that our NFRL model achieves higher accuracy
and greater diversity than Dreamer, with no mode collapse and significantly
reduced blurring effects.
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Ground Truth
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Fig. 5. Randomly sample sensor inputs Lidar_noground o1, o2, · · · , o15, and then our
model can imagine driving behaviors ô16, ô17, · · · , ô30.

Table 1. In training, all methods were compared under different RL baselines in
Town03 (random), with episodes of 500 steps. +∞ indicates failure to reach the baseline
within the maximum tested runtime of 250 GPU hours.

Method ASD=50m ASD=100m

episodes↓ times↓ episodes↓ times ↓

DDPG +∞ +∞ +∞ +∞
SAC +∞ +∞ +∞ +∞
TD3 ≥161 ≥192h +∞ +∞
DQN ≥163 ≥53h +∞ +∞

Latent_SAC ≥167 ≥43h ≥352 ≥105h
Dreamer +∞ +∞ +∞ +∞

NFRL(our) ≥141 ≥21h ≥121 ≥65h

4.7 How to reduce sampling complexity ?

To evaluate the sampling complexity of different methods, we used the aver-
age ASD as the test threshold and set three distinct checkpoints at 50m, 100m,
and 200m. We measured the GPU hours required for each method to reach the
corresponding ASD threshold, with a maximum testing duration capped at 250
GPU hours, as shown in Tables 1 and 2. Notably, in Table 1, although different
methods require varying numbers of episodes to reach the ASD threshold, the ac-
tual time consumed differs significantly. This is because each episode has a fixed
length of 500 steps. Some methods remain stationary for most of the episode,
yet the episode does not terminate early, leading to prolonged total runtime. In
contrast, other methods may collide or deviate from the lane, triggering early
termination of the episode.

As shown in Table 1, our proposed NFRL method significantly improves
training time efficiency, achieving at least a 2-fold acceleration in reaching the
50-meter and 100-meter baselines compared to existing reinforcement learning
methods. However, due to frequent collision issues observed in experiments, the
method fails to surpass the 150-meter baseline. To address this limitation, we
innovatively design a reward function incorporating Safety Constraints (SC). Ex-
perimental results, as presented in Table 2, show that the enhanced NFRL+SC
method not only successfully achieves the 200-meter baseline but also improves
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Table 2. In training, all methods were compared under different NFRL baselines in
Town03 (random), with episodes of 500 steps. +∞ indicates failure to reach the baseline
within the maximum tested runtime of 250 GPU hours.

Method ASD=50m ASD=100m ASD=200m

episodes↓ times↓ episodes↓ times ↓ episodes↓ times ↓

NFRL ≥141 ≥21h ≥121 ≥65h +∞ +∞
NFRL+SC ≥71 ≥12h ≥301 ≥40h ≥1100 ≥146h

NFRL+SC+Demo ≥21 ≥1.3h ≥58 ≥3h ≥321 ≥48h

Table 3. Performance Comparison Across multiple Towns (Trained in Town03, Eval-
uated in Town04-Town06, hereinafter referred to as T04-T06)

Method DS ↑ AR (f1) ↑ EC (%) ↑ OR (%) ↓ ASD (m) ↑

T04 T05 T06 T04 T05 T06 T04 T05 T06 T04 T05 T06 T04 T05 T06

DDPG -0.10 -0.01 -0.08 -10.01 -10.1 -10.02 0.00 0.01 0.00 - - - 0.00 0.00 0.00
DQN 17.50 60.67 69.09 76.37 174.89 206.66 11.38 15.84 16.34 11.83 11.83 15.26 20.29 31.01 36.83
TD3 -15.89 -2.24 -25.62 -131.36 -84.30 -195.60 9.18 8.16 5.82 33.32 16.94 16.02 6.17 10.05 4.50
SAC -20.56 -14.89 -15.02 -14.08 -18.92 -16.67 4.95 69.07 85.60 0.00 0.00 0.00 6.71 6.07 8.03
L_SAC 102.61 110.66 21.52 170.79 8.70 145.77 15.09 12.78 12.21 1.05 4.96 4.64 15.97 21.24 42.15
Dreamer -0.01 -0.03 -0.03 -15.10 -15.10 -15.20 0.00 0.12 0.20 - - - 0.01 0.01 0.00
NFRL (base) 326.78 390.54 431.44 1509.90 785.92 947.26 15.81 22.61 29.59 30.88 12.05 16.50 220.18 123.24 143.61

training efficiency by at least 1.5 times compared to the original NFRL method.
To further optimize performance, we introduce expert datasets for fine-tuning.
Experimental data indicate that the NFRL+SC+Demo method achieves a re-
markable 3-fold improvement in training efficiency over the NFRL+SC method
when reaching the 200-meter baseline.

The performance improvements are primarily driven by three key mecha-
nisms: (1) The NFRL framework employs Normalizing Flow technology to re-
construct training data distributions, aligning them more closely with real-world
driving scenarios. This technique enables both accurate future trajectory predic-
tion and comprehensive coverage of possible trajectories across diverse driving
situations. Such high-quality data representation allows the model to rapidly
learn correct behavioral patterns. (2) The Safety Constraint (SC) module dy-
namically limits the policy exploration scope to safe regions, thereby minimizing
costly divergent behaviors. (3) Demonstration data accelerates reward function
discovery by injecting domain-specific prior knowledge. This co-design enables
EGADS to achieve efficient convergence in complex autonomous driving scenar-
ios, establishing it as a paradigm for sample-efficient reinforcement learning.

4.8 Ablation study

In the ablation study of the EGADS system, we evaluated the contributions
of each module in cross-domain scenarios (evaluated in Town04, Town05 and
Town06, trained in Town03) to validate the generalization performance of the
NFRL, SC and Demo modules, as shown in Tables 5. The driving score (DS)
served as the primary comprehensive metric, with other indicators providing
supplementary reference. The addition of the SC module significantly improves
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Table 4. Evaluation results for different methods in CARLA Town03 (random) and
Town03 (roundabout): we denote RND as random and RBT as roundabout. For a fair
comparison, all reward functions are in the form of f1. Particularly, − indicates that
valid data could not be obtained because the episode completion rate for this method
is close to 0.

Method DS ↑ AR (f1) ↑ EC(%) ↑ OR(%) ↓ ASD(m) ↑

RND RBT RND RBT RND RBT RND RBT RND RBT

DDPG −0.11 −0.08 −10.01 −10.02 0.01 0.00 − − 0.00 0.00
DQN 30.64 36.33 86.50 121.24 17.02 16.42 8.52 11.83 21.68 26.27
TD3 2.40 −6.60 −18.15 −129.52 6.91 4.07 51.53 49.32 7.51 3.12
SAC −7.57 −20.56 −19.90 −24.74 63.76 67.95 0.00 0.65 6.27 6.71

L_SAC 125.95 31.59 161.24 84.13 11.98 10.50 14.72 1.14 31.31 13.87
Dreamer −0.03 −0.02 −15.12 −15.12 0.01 0.02 − − 0.01 0.01

NFRL (base) 170.03 48.73 424.60 249.17 24.04 10.88 20.93 18.11 72.16 46.27

Table 5. During the evaluation, an ablation study of EGADS’s three modules across
scenarios was conducted (Trained in Town03, Evaluated in Town04-Town06, hereinafter
referred to as T04-T06)

Method DS ↑ AR (f1) ↑ EC (%) ↑ OR (%) ↓ ASD (m) ↑

T04 T05 T06 T04 T05 T06 T04 T05 T06 T04 T05 T06 T04 T05 T06

NFRL 326.78 390.54 431.44 1509.90 785.92 947.26 15.81 22.61 29.59 30.88 12.05 16.50 220.18 123.24 143.61
NFRL+SC 649.46 213.17 1234.89 418.22 381.39 1571.85 48.70 38.80 63.42 0.00 0.00 0.00 91.34 50.42 195.36
NFRL+SC+Demo 1174.16 723.90 2155.40 1329.89 894.58 2294.30 57.41 46.85 82.47 3.25 11.51 6.05 159.42 116.96 265.92

the cross-scenario performance of NFRL (e.g. NFRL vs. NFRL + SC), demon-
strating the effectiveness of our SC module design. Further incorporating the
Demo learning module on top of NFRL+SC, the experimental results show
that NFRL+SC+Demo achieves the highest scores in Town04 (1174.16), Town05
(723.90), and Town06 (2155.40), with substantial improvements over both the
baseline NFRL and NFRL+SC configurations. This proves that the Demo mod-
ule enhances cross-domain generalization through expert knowledge.

As shown in Table 6, we conducted comprehensive comparisons with various
mainstream baselines (online RL methods such as L_SAC and Dreamer; offline
or imitation learning approaches including BC+Demo and CQL+Demo) across
two challenging scenarios (Town03 RND and RBT). The multi-dimensional eval-
uation metrics clearly demonstrate that: 1) The NFRL framework itself surpasses
existing online RL methods; 2) The SC module universally and significantly en-
hances both safety and overall performance across all methods, including base-
lines; 3) The NFRL framework effectively utilizes demonstration data, achieving
far superior results compared to imitation learning and offline RL baselines; 4)
The final NFRL+SC+Demo solution comprehensively outperforms all methods,
including enhanced baselines, across nearly all positive metrics (DS, AR, EC,
ASD) while maintaining excellent safety performance. These results fully vali-
date the absolute superiority of our proposed method, the effectiveness of each
module, and the powerful synergistic effects of their combination.
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Table 6. Evaluation results for different methods in CARLA Town03 (random) and
Town03 (roundabout): we denote RND as random and RBT as roundabout. For a fair
comparison, all reward functions are in the form of f1. Particularly, − indicates that
valid data could not be obtained because the episode completion rate for this method
is close to 0.

Method DS ↑ AR (f1) ↑ EC(%) ↑ OR(%) ↓ ASD(m) ↑

RND RBT RND RBT RND RBT RND RBT RND RBT

L_SAC 125.95 31.59 161.24 84.13 11.98 10.50 14.72 1.14 31.31 13.87
Dreamer −0.03 −0.02 −15.12 −15.12 0.01 0.02 − − 0.01 0.01
NFRL 170.03 48.73 424.60 249.17 24.04 10.88 20.93 18.11 72.16 46.27

L_SAC+SC 156.23 64.76 284.02 148.50 13.98 15.91 10.64 12.88 50.52 18.67
Dreamer+SC 98.12 50.02 124.74 74.98 10.42 11.20 18.08 16.35 42.85 16.90
NFRL+SC 192.84 101.29 341.56 181.28 38.46 34.66 5.87 4.04 80.21 50.24

BC+Demo −6.30 −1.63 −62.43 −27.92 9.22 10.31 15.49 15.57 14.78 15.34
CQL+Demo 8.52 4.35 42.10 49.06 10.58 8.21 13.45 19.08 19.25 16.01
NFRL+Demo 203.26 143.03 478.04 26.15 25.71 20.66 10.50 12.82 81.32 64.80

NFRL+SC+Demo 485.92 380.17 720.27 653.21 44.25 36.63 7.69 5.48 100.13 84.92

4.9 How to improve generalization capabilities ?

The EGADS system enhances cross-scenario generalization through the co-design
of the NFRL framework, SC module, and Demo module. NFRL decouples state
representation from policy learning, establishing a transferable foundation for
driving policies. As shown in Table 3, in the cross-town evaluation (Town04-
Town06), NFRL achieves a significantly higher DS value compared to traditional
reinforcement learning methods, demonstrating robust generalization capabili-
ties.

As evidenced in Tables 5 and 6, the SC module effectively mitigates high-
risk behaviors through trajectory smoothing, improving overall DS values com-
pared to standalone NFRL and enhancing system robustness. Meanwhile, the
Demo module accelerates policy convergence and optimizes exploration via imi-
tation learning. As shown in Tables 5 and 6, the NFRL+SC+Demo configuration
demonstrates significant improvements across multiple metrics including DS and
AR , confirming that demonstration data effectively reduces inefficient sampling.

The synergy between the SC module and Demo data can be summarized
as follows: the SC module establishes safety boundaries to prevent the policy
from entering hazardous or suboptimal states, while Demo data alleviates the
conservatism of the SC module. EGADS integrates imitation learning (BC loss)
and reinforcement learning (NFRL loss), dynamically balancing their weights
to enable the agent to leverage expert knowledge while exploring autonomously
within safe limits. This balanced mechanism enhances the policy’s generaliza-
tion capability and environmental adaptability, enabling efficient task execution
across diverse scenarios and rapid adaptation to new challenges.
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5 Conclusion

In summary, our EGADS framework effectively enhances sample efficiency, safety,
and generalization in autonomous driving systems. The inclusion of safety con-
straints significantly enhances vehicle safety. NFRL, our proposed method, ac-
curately predicts future driving actions, reducing sample complexity. By fine-
tuning with a small amount of expert data, NFRL agents learn more general
driving principles, which greatly improve generalization and sample complexity
reduction, offering valuable insights for autonomous driving system design.
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