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Abstract. Time series forecasting plays a vital role in various fields.
Due to the special ability of its self-attention mechanism in capturing
long-term dependencies, Transformer has been widely used in time series
modeling. However, the majority of contemporary Transformer-based
models adopt variate tokenization, where the self-attention mechanism
is used to extract variable correlations, which weakens the extraction
of temporal correlations. Furthermore, the self-attention mechanism ex-
tracts correlations within the look-back window. Owing to the absence
of a global perspective, the correlations it captures may be influenced
by local noise. To tackle these issues, we propose an advanced Trans-
former architecture entitled G-GLformer, which designs two novel mod-
ules, Bidirectional-Patch-GRU-Embedding (BPGE) and Global-Local-
Attention (GLA), and integrates them into the Transformer to achieve
more accurate forecast. Specifically, the BPGE module is mainly used
to model temporal relationships and enhance local semantics. The GLA
module integrates the correlation coefficients of the training set data with
the data from the local look-back window. This endows the data in the
look-back window with a global perspective, making it less susceptible
to the influence of noise. Moreover, they can also be used as plug-ins in
other models. Extensive experiments on public datasets demonstrate its
superior performance over other state-of-the-art models.

Keywords: Time series forecasting · Multivariate time series · Trans-
former.
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1 Introduction

Multivariate time series forecasting holds significant importance in real-world
domains such as weather [19], energy [25], transportation [1] and finance [16].
In recent years, various deep learning models have been proposed, significantly
pushing the performance boundaries [13, 14, 4, 21]. Transformers have demon-
strated impressive performance in time series forecasting, primarily due to their
attention mechanisms [18, 26, 11, 9]. Traditionally, the majority of methods based
on Transformer have employed temporal tokenization, which considers all vari-
ates at a specific timestamp as one single token. However, recent research find-
ings indicate that variate tokenization, in which every variate is embedded as
an individual token, surpasses temporal tokenization in terms of capturing the
dependencies among variates. Due to its broad applicability to Transformers,
variate tokenization has been adopted in recent advancements in multivariate
time series forecasting [10, 15, 3]. However, these models overlook two important
issues.

First, these models use the self-attention mechanism to model variable corre-
lations instead of temporal correlations. The absence of self-attention mechanism
for modeling temporal correlations undoubtedly weakens the model’s ability to
capture sequential relationships. Although the model adds positional encoding
during embedding, this is insufficient for the model to recognize temporal rela-
tionships [23]. We contend that Recurrent Neural Networks (RNNs) may offer
solutions to these issues with Transformers. This is mainly because the internal
structure of RNNs is highly suitable for sequential data and hidden units can
serve as an excellent representation of time series. However, when dealing with
long time series, RNNs tend to encounter problems such as gradient vanishing
or explosion, as well as the inability to capture long-term dependencies [12].
Therefore, we divide the time series into patches of the same size. This method
can reduce the length of the sequence, mitigate the problems mentioned above,
and enhance the local features of the sequence.

Secondly, these models always extract correlations within a limited look-back
window. Due to the lack of a global perspective, the extraction of correlations
is vulnerable to the influence of local noise. Based on the above situation, we
have provided an example as shown in Figure 1. When there is a high positive
global correlation, locally, due to the presence of noise, there may be situations
where the variables are uncorrelated or even negatively correlated. Therefore,
we attempt to integrate global and local correlations to enhance the robustness
of variable correlations extraction. Specifically, we calculate the Pearson correla-
tion coefficients among variates in the training set. Subsequently, we take these
Pearson correlation coefficients as a static graph and apply graph convolution
to the query and key in the self-attention mechanism, aiming to integrate the
global correlations with the local correlations.

To this end, We propose a novel Transformer architecture based on variate
tokenization. The model mainly improves the performance of time series pre-
diction through the method of GRU embedding and by integrating the global
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Fig. 1. The figure on the left indicates that there is no local correlation between the
two time series. However, there is a high degree of positive correlation except for the
locally noisy parts. The right-hand figure shows a negative correlation between the two
time series locally, yet there is a high positive correlation except for the locally noisy
part.

correlation with the local correlation. The main contributions are summarized
as follows:

– We propose the BPGE module to enhance the temporal features of the
variate-tokenized Transformer. Furthermore, the BPGE module is only used
during the embedding process. Therefore, it will not significantly increase
the computational burden.

– The GLA module we proposed innovatively integrates global and local cor-
relations to improve the model’s robustness to local noise. In addition, this
module can also serve as a plug-in and be applied to other models that use
the self-attention mechanism to extract variable correlations.

– Our model is rigorously validated on multiple standard benchmark datasets.
Compared to the iTransformer (SOTA), our model achieves an average re-
duction in Mean Squared Error(MSE) of up to 6.12 % and Mean Absolute
Error(MAE) of up to 5.08 %, demonstrating its superior ability in time series
forecasting.

2 Related Work

2.1 Transformer-Based Forecasters

Inspired by the success of Transformers in natural language processing, numerous
Transformers have been proposed for multivariate time series forecasting. Classic
works such as Autoformer [18], Informer [25], Pyraformer [8], and FEDformer [26]
represent early Transformer-based time series forecasters. These models adopt
the method of temporal tokenization, encoding the values of all variates at a
specific time step into an independent token. Then, the self-attention mecha-
nism is used to extract the correlations between different tokens. However, these
models fail to capture the correlations among different variates. iTransformer
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[9] introduces the inverted Transformer to capture multivariate dependencies
and achieves accurate forecasts. Due to the good predictive performance and
interpretability, an increasing number of models now adopt variate tokenization.
Timer [10] combines several variates originating from diverse domains into a uni-
fied time series and regards time series as a single token. MCformer [3] performs
tokenization on each individual variate and then blends these variates together,
aiming to capture the correlations existing between different variates. Similarly,
TimeXer [15] also makes use of variate tokenization when it comes to introducing
exogenous variates.

2.2 Dependency Modeling

Time series correlations mainly includes variable correlations and temporal cor-
relations. Some models [11, 6, 23] adopt a Channel Independency(CI) strategy,
that is, they only consider temporal correlations. These models solely rely on
the historical information of each individual sequence for prediction, overlook-
ing the correlations among different variates. Although this method is robust, it
squanders the potential information among different variates. Channel Depen-
dency(CD) strategy [9, 24, 22] model the correlations among all variates, and as
a result, they reduce robustness. The primary cause of the lack of robustness
is the incorrect extraction of variable correlations due to local noise. Therefore,
designing a robust CD method is challenging.

3 Methodology

In this section, we will describe the Bidirectional-Patch-GRU-Embedding mod-
ule, the Global-Local-Attention module, and the overall architecture of the model.
In multivariate time series forecasting, given historical observations X ∈ RT×N

with T time steps and N variates, we predict the future S time steps Y ∈ RS×N .
The time series forecasting problem aims to learn a function f(·) that maps the
time step T of history to the next time step S:

[Xt−T+1, Xt−T+2, · · · , Xt]
f(·)−→ [X̂t+1, X̂t+2, · · · , X̂t+S ]. (1)

The architecture of our proposed model, referred to as G-GLformer, is depicted
in Figure 2.

3.1 Bidirectional-Patch-GRU-Embedding

To enhance the model’s ability to capture temporal relationships, we adopt the
GRU model [2] with a recurrent structure. However, due to the inherent flaws of
the recurrent structure, it is unable to capture long-term dependencies. More-
over, it is prone to problems such as vanishing or exploding gradients. Therefore,
time series is split into non-overlapping patches, and each patch is projected to a
temporal token. The patch technique can effectively reduce the sequence length,
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Fig. 2. G-GLformer is mainly composed of three modules: the Bidirectional-Patch-
GRU-Embedding module, the Global-Local-Attention module, and the Feed-Forward
module.

thus avoiding the above-mentioned problems. The reason for adopting bidirec-
tional GRU is that it can extract more abundant and comprehensive features
from the input sequence. During the learning process, the forward and back-
ward GRU capture feature information from different aspects. By combining
these features, a more representative feature representation can be provided for
subsequent tasks. The overall Bidirectional-Patch-GRU-Embedding is formally
stated as:

Patchify(X) = {P1, P2, · · · , PS} , (2)

Pforward = GRUforward(P1, P2, · · · , PS), (3)

Pbackward = GRUbackward(P1, P2, · · · , PS), (4)

P = PatchEmbed(Pforward +Pbackward). (5)

Denote by L the length of the patch, by S =
⌊
T
L

⌋
the number of patches

split from the time series, and by Pi the i-th patch. Specifically, Patchify(·) :



6 Wenjun Yu et al.

RN×T → RN×S×L is a process of splitting a time series into non-overlapping
patches. GRU(·) : RN×S×L → RN×S×D maps a patch with a length of L into
a hidden state of dimension D. PatchEmbed(·) : RN×S×D → RN×D maps all
patches into a D-dimensional vector via a trainable linear projector. Through
the above operations, we complete the embedding work of the sequence.

3.2 Global-Local-Attention

To capture more reliable multivariate correlations, we introduce a new Global-
Local-Attention(GLA) mechanism to calculate attention weights for more effec-
tive attention distribution. Taking the first layer of the Encoder as an example,
P ∈ RN×D is the output after passing through the BPGE layer. We form the
query, key, and value matrices for each attention head h as:

Qh = PWh
Q, Kh = PWh

K , V h = PWh
V , (6)

where Wh
Q,W

h
K ,Wh

V ∈ RD×DH , DH is the heads’ hidden dimension. Then, we
apply the Mixhop graph convolution [20] to Qh ∈ RN×DH and Kh ∈ RN×DH ,
where N is the number of variates. The GLA is defined as follows:

Q̃h = GCN(Qh, Ã), K̃h = GCN(Kh, Ã), (7)

Sh = Softmax(
Q̃h ˜(Kh)

T

√
DH

)V h, (8)

GLA(P) =
∑
h

ShV hWh
O, (9)

where Wh
O ∈ RDH×D is output matrix, GCN(·) denotes Mixhop graph convo-

lution layer and Ã ∈ RN×N represents the adjacency matrix. The adjacency
matrix learning process in our approach involves generating a learnable matrix.
Then, the learnable matrix is added to the Pearson correlation coefficients of the
training set. The specific process is as follows:

Ã = M + Pr, (10)

where M ∈ RN×N is a learnable matrix, and Pr ∈ RN×N is the Pearson corre-
lation coefficient matrix of the training set.

After obtaining the adjacency matrix, we use the Mixhop graph convolution
layer to embed the global correlation into the local correlation. The Mixhop
graph convolution layer consists of two steps: the information propagation step
and the information selection step. The information propagation step is defined
as follows:

H(k) = βHin + (1− β)ÃH(k−1), (11)

where β is a hyper parameter, which controls the ratio of retaining the root
node’s original states. The information selection step is defined as follows:

Hout = Linear((Concatenate(H(0), H(1), · · · , H(k)))), (12)
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where k is the depth of propagation. H(0) = Hin represents the input of the
graph convolution layer, and Hout represents the output of the graph convolution
layer. Finally, the output dimension is unified with the input dimension through
a linear layer.

3.3 Feed-Forward Layer

Transformer adopts the feed-forward network (FFN) as the basic building block
for encoding token representation and it is identically applied to each token. In
this paper, we employ FFN to learn variable representations for time series fore-
casting. In order to reduce overfitting and improve the generalization ability of
the model, Dropout is adopted in the FFN layer. FFN employs a Gaussian Error
Linear Unit (GELU) activation function to facilitate non-linear transformations.
The FFN is defined as follows:

Xh = Dropout(GELU(Linear(Xin))), (13)

Xout = Dropout(Linear(Xh)) +Xin, (14)

where Xin and Xout ∈ RN×D are the input and output of the FFN, Xh ∈
RN×F ,where F represents the size of the hidden layer.

3.4 Projection Prediction

A linear layer is used to obtain the final prediction Ŷ = [X̂t+1, X̂t+2, · · · , X̂t+S ] ∈
RN×S . The formula is as follows:

Ŷ = Projection(Xout), (15)

where Xout ∈ RN×D is the output of the last layer of the Encoder.
We use Mean Squared Error (MSE) to measure the difference between the

predicted values Ŷ and the ground truth Y . MSE is calculated within S time
steps. The formula is as follows:

L =
1

S

S∑
i=1

∥∥∥X̂t+i −Xt+i

∥∥∥2
2
. (16)

4 Experiments

4.1 Datasets

We evaluate the performance of G-GLformer on 13 real-world datasets, includ-
ing Weather, Exchange, ECL, Traffic, ETT (ETTh1, ETTh2, ETTm1, ETTm2)
used by Autoformer [18], Solar-Energy used by LST-Net [5] and PEMS datasets
(PEMS03, PEMS04, PEMS07, PEMS08) adopted by SCINet [7]. These are
widely used multivariate time series datasets, and we handle the datasets the
same way as iTransformer [9]. The details of datasets are as follows:
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– ETT (Electricity Transformer Temperature) [25] includes four sub-
sets. ETTh1 and ETTh2 collect hourly data on 7 different factors from two
distinct electricity transformers from July 2016 to July 2018. ETTm1 and
ETTm2 record the same factors at a higher resolution of every 15 minutes.

– Traffic [18] collects hourly data from the California Department of Trans-
portation, describing road occupancy rates measured by 862 sensors on San
Francisco Bay Area freeways.

– ECL(Electricity) [18] captures the hourly electricity consumption of 321
clients from 2012 to 2014.

– Weather [18] records 21 meteorological factors such as air temperature and
humidity every 10 minutes throughout the year 2020.

– Exchange [18] records the daily exchange rates of eight different countries
ranging from 1990 to 2016.

– Solar-Energy [5] includes data from 137 PV plants in Alabama State, with
solar power production sampled every 10 minutes during 2006.

– PEMS [7] includes traffic network data from California, sampled every 5
minutes, focusing on four public subsets: PEMS03, PEMS04, PEMS07, and
PEMS08.

The summary of the datasets is shown in Table 1.

Table 1. Detailed dataset descriptions. Dim denotes the variate number of each
dataset. Dataset Size denotes the total number of time points in (Train, Validation,
Test) split respectively. Prediction Length denotes the future time points to be pre-
dicted and four prediction settings are included in each dataset. Frequency denotes the
sampling interval of time points.

Dataset Dim Prediction Length Dataset Size Frequency

ETTh1,ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly
ETTm1,ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min
PEMS03 358 {12, 24, 48, 96} (15617, 5135, 5135) 5min
PEMS04 307 {12, 24, 48, 96} (10172, 3375, 3375) 5min
PEMS07 883 {12, 24, 48, 96} (16911, 5622, 5622) 5min
PEMS08 170 {12, 24, 48, 96} (10690, 3548, 3548) 5min

4.2 Baselines

We compare G-GLformer with six state-of-the art models from three categories,
including (1) Transformer based models: iTransformer [9] , PatchTST [11], FED-
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former [26], Autoformer [18] (2) CNN-based model: TimesNet [17] and (3) Linear-
based models: DLinear [23].

4.3 Experimental Results

Table 2 shows the average errors for the four prediction lengths of 96, 192, 336,
and 720. Due to the limitation of the length of this paper, we have not presented
all the results. As can be seen from the Table 2, G-GLformer achieves a total of
13 first places and 5 second places in long-term time series prediction. However, it
can also be observed that although the Mean Squared Error (MSE) of the Traffic
dataset achieved the second place for G-GLformer, there is still a significant gap
compared with the first-place result of iTransformer. We believe this is due to
the presence of a large number of outliers in the Traffic dataset. We will discuss
this issue in detail in the "Discussion" section.

Table 2. Full results for the long-term forecasting task. The input sequence length is
set to 96 for all baselines. The results in the table are the averages of the prediction
lengths of 96, 192, 336, and 720. The best results are in bold and the second best are
underlined.

Models
G-GLformer iTransformer PatchTST DLinear TimesNet FEDformer Autoformer

(Ours) (2024) (2023) (2023) (2023) (2022) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.433 0.433 0.457 0.449 0.469 0.454 0.456 0.452 0.458 0.450 0.440 0.460 0.496 0.487

ETTh2 0.377 0.402 0.384 0.407 0.387 0.407 0.559 0.515 0.414 0.427 0.437 0.449 0.450 0.459

ETTm1 0.394 0.401 0.408 0.412 0.387 0.400 0.403 0.407 0.400 0.406 0.448 0.452 0.588 0.517

ETTm2 0.283 0.328 0.293 0.336 0.281 0.326 0.350 0.401 0.291 0.333 0.305 0.349 0.327 0.371

ECL 0.166 0.261 0.176 0.267 0.205 0.290 0.212 0.300 0.192 0.295 0.214 0.327 0.227 0.338

Exchange 0.353 0.400 0.365 0.407 0.367 0.404 0.354 0.414 0.416 0.443 0.519 0.429 0.613 0.539

Traffic 0.448 0.281 0.422 0.283 0.481 0.304 0.625 0.383 0.620 0.336 0.610 0.376 0.628 0.379

Weather 0.252 0.277 0.260 0.280 0.259 0.281 0.265 0.317 0.259 0.287 0.309 0.360 0.338 0.382

Solar-Energy 0.231 0.257 0.236 0.262 0.270 0.307 0.330 0.401 0.301 0.319 0.291 0.381 0.885 0.711

1st Count 6 7 1 0 2 2 0 0 0 0 0 0 0 0

Table 3 shows the results of G-GLformer in short-term forecasting. The re-
sults show that G-GLformer achieves the best performance in all aspects of short-
term prediction. Specifically, G-GLformer has an average decrease of 34.21% and
15.96% in MSE and MAE over the previous SOTA iTransformer [9] in short-term
forecasting.

4.4 Ablation Study

We conducted ablation experiments to prove the effectiveness of Bidirectional-
Patch-GRU-Embedding and Global-Local-Attention module. We considered 3
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Table 3. Full results for the short-term forecasting task. The input sequence length
is set to 96 for all baselines. Avg means the average results from all four prediction
lengths. The best results are in bold.

Models G-GLformer iTransformer PatchTST DLinear TimesNet FEDformer Autoformer
(Ours) (2024) (2023) (2023) (2023) (2022) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

P
E

M
S0

3

12 0.065 0.171 0.069 0.174 0.099 0.216 0.122 0.243 0.085 0.192 0.126 0.251 0.272 0.385
24 0.089 0.201 0.098 0.209 0.142 0.259 0.201 0.317 0.118 0.223 0.149 0.275 0.334 0.440
48 0.131 0.244 0.164 0.276 0.211 0.319 0.333 0.425 0.155 0.260 0.227 0.348 1.032 0.782
96 0.214 0.315 0.240 0.338 0.269 0.370 0.457 0.515 0.228 0.317 0.348 0.434 1.031 0.796

Avg 0.125 0.233 0.143 0.249 0.180 0.291 0.278 0.375 0.147 0.248 0.213 0.327 0.667 0.601

P
E

M
S0

4

12 0.077 0.184 0.081 0.188 0.105 0.224 0.148 0.272 0.087 0.195 0.138 0.262 0.424 0.491
24 0.091 0.204 0.100 0.212 0.153 0.275 0.224 0.340 0.103 0.215 0.177 0.293 0.459 0.509
48 0.111 0.228 0.131 0.245 0.229 0.339 0.355 0.437 0.136 0.250 0.270 0.368 0.646 0.610
96 0.133 0.249 0.165 0.277 0.291 0.389 0.452 0.504 0.190 0.303 0.341 0.427 0.912 0.748

Avg 0.103 0.216 0.119 0.231 0.195 0.307 0.295 0.388 0.129 0.241 0.231 0.337 0.610 0.590

P
E

M
S0

7

12 0.066 0.163 0.066 0.164 0.095 0.207 0.115 0.242 0.082 0.181 0.109 0.225 0.199 0.336
24 0.076 0.175 0.087 0.190 0.150 0.262 0.210 0.329 0.101 0.204 0.125 0.244 0.323 0.420
48 0.083 0.181 0.113 0.218 0.253 0.340 0.398 0.458 0.134 0.238 0.165 0.288 0.390 0.470
96 0.102 0.202 0.140 0.246 0.346 0.404 0.594 0.553 0.181 0.279 0.262 0.376 0.554 0.578

Avg 0.082 0.180 0.102 0.205 0.211 0.303 0.329 0.395 0.124 0.225 0.165 0.283 0.367 0.451

P
E

M
S0

8

12 0.082 0.185 0.088 0.193 0.168 0.232 0.154 0.276 0.112 0.212 0.173 0.273 0.436 0.485
24 0.117 0.221 0.138 0.243 0.224 0.281 0.248 0.353 0.141 0.238 0.140 0.236 0.467 0.502
48 0.183 0.235 0.339 0.354 0.321 0.354 0.440 0.470 0.198 0.283 0.320 0.394 0.966 0.733
96 0.200 0.244 0.418 0.416 0.408 0.417 0.674 0.565 0.320 0.351 0.442 0.465 1.385 0.915

Avg 0.146 0.221 0.246 0.302 0.280 0.321 0.379 0.416 0.193 0.271 0.286 0.358 0.814 0.659
1st Count 20 20 0 0 0 0 0 0 0 0 0 0 0 0

ablation methods and evaluated them on 4 datasets. The following will explain
the variants of its implementation:

– w/o-BPGE: We removed the Bidirectional-Patch-GRU-Embedding module
and used a linear layer as the embedding layer.

– w/o-GLA: We replaced the Global-Local-Attention mechanism with the
traditional self-attention mechanism.

– w/o-BPGE&GLA: We replaced the Bidirectional-Patch-GRU-Embedding
with a linear layer and replaced the Global-Local-Attention with the tradi-
tional attention mechanism.

As can be seen from Table 4, G-GLformer achieves the best results. When the
Bidirectional-Patch-GRU-Embedding module is absent, the model fails to cap-
ture the temporal relationships adequately, resulting in a decline in its perfor-
mance. When the model lacks the Global-Local-Attention module, it leads to the
model’s lack of a global correlation perspective. As a result, the extraction of
correlations is vulnerable to local noise, thus causing a decline in prediction per-
formance. When both modules are absent, the prediction performance achieved
by the model is the worst.
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Table 4. Ablation analysis of ETTh2, ETTm2, Weather and Solar-Energy datasets.
Results represent the average error of prediction length {96, 192, 336, 720}, with the
best performance highlighted in bold black.

Datasets ETTh2 ETTm2 Weather Solar-Energy

Metric MSE MAE MSE MAE MSE MAE MSE MAE

G-GLformer 0.377 0.402 0.283 0.328 0.252 0.277 0.231 0.257
w/o-BPGE 0.381 0.405 0.290 0.334 0.254 0.278 0.234 0.261
w/o-GLA 0.381 0.404 0.287 0.330 0.257 0.279 0.234 0.260

w/o-BPGE&GLA 0.383 0.407 0.291 0.335 0.260 0.281 0.238 0.263

4.5 Modules Generality

To verify the generality of the modules, we use the Bidirectional-Patch-GRU-
Embedding module and the Global-Local-Attention module as plugins to en-
hance other models.

Global-Local-Attention. To prove the generality of the Global-Local-Attention
module on other models, we applied this module to iTransformer [9] and used
three different correlation coefficients. As shown in Figure 3, we conducted tests
on four datasets, namely PEMS03, PEMS04, PEMS07, and PEMS08, and then
used the Pearson correlation coefficient, the Spearman correlation coefficient, and
the Kendall correlation coefficient respectively. As can be found from Figure 3,
the error of iTransformer with the Global-Local-Attention module is lower than
those of the original iTransformer on all the four datasets. There are no signifi-
cant differences among the three correlation coefficients on PEMS03, PEMS04,
and PEMS07. However, there are relatively large fluctuations on PEMS08. The
reason for this situation is that the calculation methods of the three correlation
coefficients are different and the situations to which they are applicable are also
different. We will discuss this issue in the "Discussion" section.

Table 5. Results represent the average error of prediction length {96, 192, 336, 720},
with the best performance highlighted in bold black.

Models iInformer +BPGE iReformer +BPGE iFlashformer +BPGE Impr.Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.487 0.465 0.441 0.435 0.472 0.457 0.440 0.436 0.454 0.448 0.441 0.438 5.39%
ETTh2 0.390 0.410 0.379 0.405 0.384 0.409 0.381 0.406 0.389 0.410 0.379 0.403 1.75%
ETTm1 0.402 0.406 0.389 0.399 0.405 0.409 0.394 0.401 0.411 0.414 0.406 0.408 1.96%
ETTm2 0.288 0.332 0.281 0.327 0.288 0.332 0.283 0.328 0.292 0.335 0.287 0.330 1.61%
Impr. 4.02% 3.14% 1.78% 2.78%
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Fig. 3. The results shown in the above figure represent the average error of prediction
length {96, 192, 336, 720}. P, S, and K represent the Pearson correlation coefficient, the
Spearman correlation coefficient, and the Kendall correlation coefficient respectively.

Bidirectional-Patch-GRU-Embedding. To verify the generality of the BPGE
module, we applied this module to iInformer [9], iReformer [9], and iFlashformer
[9]. As can be found from Table 5, the BPGE module enhances the respective
backbones by an average of 2.78%. Among them, the BPGE module has the
most obvious effect on the ETTh1 dataset, with the error being reduced by an
average of 5.39%. This fully demonstrates the effectiveness of the BPGE module.

4.6 Instance Visualization

As can be seen from Figure 4, in the ETTh1 dataset, there is a highly positive
correlation between the "MUFL" variable and the "HUFL" variable, and the
Pearson correlation coefficient between them is as high as 0.99. When there are
no outliers, the time-series diagrams of the "MUFL" variable and the "HUFL"
variable are highly consistent.

When outliers appear in the look-back window, as shown in Figure 5, the
"HUFL" variable and the "MUFL" variable show a clear divergence in the time-
series diagram. The iTransformer [9] model will be affected by local outliers
when extracting correlations, because this model extracts correlations within a
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Fig. 4. The left figure shows the overall Pearson correlation coefficient on the ETTh1
training set and the right figure shows a normal look-back window without outliers.

Fig. 5. The figure in the middle is a time-series diagram of a look-back window with
outliers. The figure on the left is the score map of iTransformer on this look-back
window, and the figure on the right is the score map of G-GLformer on this look-back
window.

limited look-back window. As shown in Figure 5, when the iTransformer model
uses the self-attention mechanism to extract correlations, the presence of outliers
causes it to assign lower weights to two highly correlated time series. Since G-
GLformer embeds global correlations, it is more robust to the situation of local
outliers. It assigns higher weights to the two variables on the score map. This
fully demonstrates that G-GLformer is more robust to local outliers.

5 Discussion

In this section, we will discuss a special case. When there are a large number
of outliers in the data, the calculation of the global correlation coefficient will
be affected by these outliers, which may lead to the obtained global correlation
deviating from the true global correlation. We calculated the average number
of outlier points for each channel in seven datasets respectively. As can be seen
from Table 6, the average number of outliers per channel in the Traffic dataset
is 279.29. The number of outliers in the Traffic dataset is much larger than that
in other datasets. A large number of outliers in the Traffic dataset affect the
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calculation of global correlations, thus influencing the prediction performance of
G-GLformer. This is the reason why the prediction performance of G-GLformer
on the Traffic dataset in Table 2 is significantly worse than that of iTransformer
[9]. Compared with the Pearson correlation coefficient, we can use the Spearman
correlation coefficient, which is more robust to outliers.

Table 6. Average number of extreme points per channel (Z-Score>3).

Datasets ECL Solar-Energy Traffic PEMS03 PEMS04 PEMS07 PEMS08

Extreme Points 109.29 3.48 279.29 18.37 6.07 16.98 17.26

As shown in Figure 6, we replaced the Pearson correlation coefficient with
the Spearman correlation coefficient on the Traffic dataset, and MSE decreased
for all four prediction lengths. Therefore, in general, G-GLformer is not suitable
for datasets with a large number of outliers. When there are a large number
of outliers, we can use the Spearman correlation coefficient to alleviate this
problem.

6 Conclusion

This paper proposes G-GLformer, a novel Transformer-based architecture that
concentrates on tackling the issue of insufficient capture of time lag relationships
and the impact of outliers on the extraction of local correlations. Specifically,
we introduce the Bidirectional-Patch-GRU-Embedding module to enhance the
ability to extract time lag relationships. Besides, we propose the Global-Local-
Attention module to enhance the robustness of the model in extracting variable
correlations. These innovations jointly boost the ability of G-GLformer to utilize
multivariate correlations. Experiments on various datasets have demonstrated
its effectiveness and accuracy. In the future, we will explore the performance of
G-GLformer on large-scale real-world datasets.
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Fig. 6. The results shown in the above figure represent the Mean Squared Error of
prediction length {96, 192, 336, 720} in Traffic dataset. G-GLformer-S and G-GLformer-
P represent G-GLformer using the Spearman correlation coefficient and the Pearson
correlation coefficient respectively.
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