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Abstract. This paper addresses the problem of sequential submodu-
lar maximization: selecting and ranking items in a sequence to optimize
some composite submodular function. In contrast to most of the previ-
ous works, which assume complete knowledge of the utility function, we
assume that we are given only a set of samples. Each sample includes a
random sequence of items and its associated utility. We present an al-
gorithm that, given polynomially many samples drawn from a two-stage
uniform distribution, achieves an approximation ratio dependent on the
curvature of individual submodular functions. Our results apply to a
wide variety of real-world scenarios, such as ranking products in online
retail platforms, where complete knowledge of the utility function is often
impossible to obtain. Our algorithm gives an empirically useful solution
in such contexts, thus proving that limited data can be of great use in
sequencing tasks. From a technical perspective, our results extend prior
work on “optimization from samples” by generalizing from optimizing a
set function to a sequence-dependent function.

Keywords: Optimization from samples · Submodular sequencing · Ap-
proximation algorithms.

1 Introduction

Submodular optimization is one of the most important problems in machine
learning, with applications in sparse reconstruction [10], data summarization
[14], active learning [13, 19], and viral marketing [17]. Most of the existing work
deals with the problem of selecting a subset of items that maximizes some sub-
modular function. However, many real applications require not only the selection
of items, but also their ranking in a certain order [3, 21, 18]. This paper focuses
on one such problem, termed sequential submodular maximization [2, 22, 20]. The
problem’s input consists of a ground set Ω and k submodular functions, denoted
as f1, · · · , fk : 2Ω → R+. Our objective is to select a sequence of k items, denoted

as π = {π1, · · · , πk}, from Ω, in order to maximize F (π)
def
=

∑
t∈[k] ft(π[t]). Here,

π[t]
def
= {π1, · · · , πt} represents the first t items of π. Notably, each function ft

takes the first t items from the ranking sequence π as its input.
This problem captures the position bias in item selection, finding applications

in sequential active learning and recommendation systems [22]. One illustrative



2 Jing Yuan, Qi Cai, Xin Gao, and Shaojie Tang�

example would be product ranking in any of the online retail platforms, like
Amazon [2]. Consider Amazon’s daily task of selecting and sequencing a list
of products, possibly in vertical order, for display to its customers. Customers
browse through this list, reaching a certain position, and may proceed to make
purchases from the products they view. Then one of the primary objectives of
most platforms is to optimize selection and ranking of products to maximize
the chance of a purchase. It turns out that this application can be framed as
a sequential submodular maximization problem. In this context, parameters of
F (π) can be interpreted as follows: Let Ω be the set of products and let k be
the window size of displayed products. Given a sequence of products π of length
k, for each t ∈ {1, 2, · · · , k}, ft(π[t]) is the probability of purchase by customers
with patience level t, where a customer with a patience level of t would consider
viewing the first t products, π[t]. Typically, ft is modeled as a submodular func-
tion. In this case, F (π) captures the expected purchase probability given that a
customer is shown the sequence of products π.

While sequential submodular maximization has been extensively explored in
the literature [2, 22, 20], existing studies typically assume complete knowledge
of f1, · · · , fk : 2Ω → R+ and consequently F . However, this assumption is of-
ten unrealistic. For instance, in the aforementioned context of recommendation
systems, accurately estimating the purchase probability for every product set
is often extremely challenging, if not impossible. Instead, a more realistic sce-
nario involves the platform gathering a potentially extensive dataset comprising
browsing histories. Each record (a.k.a. sample) within this dataset includes the
sequence of displayed products along with customer feedback. For instance, a
record could look like this: {Sequence: Product A, Product B; Feedback : B was
purchased}. Consequently, the platform aims to identify the best sequence of
products based on the samples drawn from some distribution. This problem is
highly non-trivial since the platform does not have direct access to the original
utility function F , making the existing result on submodular sequencing inappli-
cable. It has been demonstrated that optimizing a set function from samples is
generally impossible, even if the set function is a coverage function [7]. Our chal-
lenge is compounded by the fact that our function F is defined over a sequence,
rather than a set, of items.

Fortunately, in practice, we often encounter submodular functions that may
demonstrate more favorable behavior. To this end, we introduce a notation called
curvature [6]. Intuitively, curvature measures the deviation of a given function
from a modular function. Specifically, we say a submodular function f has cur-
vature c ∈ [0, 1] if f(i | S) ≥ (1 − c)f({i}) for any S ⊆ Ω and i /∈ S. Here

f(i | S) def
= f(S ∪ {i}) − f(S) denotes the marginal utility of an item i ∈ Ω

on top of a set of items S ⊆ Ω. Hence, if f is a modular function, it has a
curvature of 0. In general, the complexity of optimizing a submodular function
often hinges on the curvature of the focal function. That is, the instances of
submodular optimization become challenging typically only when the curvature
is unbounded, i.e., c close to 1. In this paper, we study how to optimize a func-
tion F (π) =

∑
t∈[k] ft(π[t]) from samples when the curvature of each individual
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function ft is bounded. Our contribution is the development of an approxima-
tion algorithm that draws polynomially-many samples from a natural two-stage
uniform distribution over feasible sequences and achieves an approximation ratio
dependent on the curvature.

2 Related Work

While submodular maximization has been extensively studied in the literature
[15], most existing studies assume that the submodular function to be opti-
mized is known. Recently, there has been a line of research focused on learning
a submodular function from samples [5, 11, 4, 12], aiming to construct a func-
tion that approximates those from which the samples were collected. It has been
shown that monotone submodular functions can be approximately learned from
samples drawn from a specific distribution [5]. However, it has also been demon-
strated that even if an objective function is learnable from samples, optimization
for such a function might still be impossible [7]. Despite these negative results,
there exists a series of studies [6, 8, 9] that develop effective algorithms to opti-
mize submodular functions from samples.

In our paper, we focus on an important variant of submodular optimiza-
tion known as sequential submodular maximization. The objective of sequen-
tial submodular maximization is more general than simply selecting a subset of
items: it involves jointly selecting and sequencing items. [2] studied this problem
with monotone and submodular functions. [20] extended this study to the non-
monotone setting. However, all these studies assume a known utility function.
Our research builds on and extends these studies by expanding the “learning-
from-samples” framework [6] from set functions to sequence functions. Moreover,
we identify a gap in the analysis presented in existing studies; more details are
provided in Section 5.1.

3 Preliminaries and Problem Formulation

Throughout the remainder of this paper, let [m] = {0, 1, 2, . . . ,m} for any pos-

itive integer m. Given a function f , let f(i | S) def
= f(S ∪ {i}) − f(S) denote

the marginal utility of an item i ∈ Ω on top of a set of items S ⊆ Ω. We say
a function f is submodular if and only if for any two sets X and Y such that
X ⊆ Y and any item i /∈ Y , f(i | X) ≥ f(i | Y ). Moreover, we say a submodular
function f has curvature c ∈ [0, 1] if f(i | S) ≥ (1− c)f({i}) for any S ⊆ Ω and
i /∈ S.

3.1 Utility Function

Now we are ready to introduce our research problem. Given k submodular func-
tions f1, · · · , fk : 2Ω → R+, the sequential submodular maximization problem
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aims to find a sequence π = {π1, · · · , πk} from a ground set Ω that maximizes
the value of F (π). Here,

F (π)
def
=

∑
t∈[k]

ft(π[t]), (1)

where π[t]
def
= {π1, · · · , πt} represents the first t items of π. That is, each function

ft takes the first t items from π as its input. Throughout this paper, we use
the notation π to denote both a sequence of items and the set of items in that
sequence.

Existing studies on sequential submodular maximization all assume that
f1, · · · , fk are known in advance, however, in our setting, we do not have direct
access to those functions. Instead, we rely on a dataset comprising observations
(π, ϕ(π)), where in each sample (π, ϕ(π)), π denotes a feasible sequence and ϕ(π)
denotes the observed utility of π. It is important to note that the observed util-
ity of a sequence π may be subject to randomness, rendering ϕ(π) a realization
of this stochastic variable. Take, for instance, the product sequencing example
outlined in the introduction: F (π) denotes the likelihood of purchase from a
product sequence π. Here, the observed utility ϕ(π) of π is a binary variable,
with ϕ(π) = 1 denoting a purchase and ϕ(π) = 0 denoting a non-purchase. In
this example, randomness stems from two sources: the user’s type, characterized
by their patience level (i.e., a random function ft is sampled from {f1, · · · , fk}),
and the probabilistic decision-making process of whether the user will purchase
a product from π (note that ft represents only the aggregated likelihood of pur-
chase).

3.2 Problem Formulation

Our objective is to compute a sequence π = {π1, · · · , πk} that maximizes the
value of F (π) based on the samples drawn from a distribution D. We say this
problem is γ-optimizable with respect to a distribution D, if there exists an
algorithm which, given polynomially many samples drawn from D, returns with
high probability a sequence π of size at most k such that F (π) ≥ γF (π∗) where
π∗ denotes the optimal solution of this problem.

As with the standard PMAC-learning framework, we fix a distribution called
two-stage uniform sampling and assume that samples are drawn i.i.d. from this
distribution. In particular, two-stage uniform sampling works in two stages: In
the first stage, a length t is randomly selected from the set {1, · · · , k} with
uniform probability. Subsequently, a sequence of length t is randomly chosen,
and its realized utility is observed. We would like to clarify that in the first stage,
we randomly select the sequence length displayed to the user. However, we do
not assume that the attention span of different users (e.g., the actual number
of items they browse) follows a uniformly random distribution. In the following,
we present an approximation algorithm with respect to this distribution.
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Algorithm 1 Sequencing-from-Samples (SeqSamp)

1: Solve P.1 to obtain πs

2: if (1− c)2 ≥ α · 1−c
1+c−c2 then

3: π⋄ ← πs

4: else if (1− c)
∑
t∈{1,··· ,k} ∆̃(πst , t− 1) ≥ avg(Φk) then

5: π⋄ ← πs

6: else
7: π⋄ ← a random sequence of length k
8: return π⋄;

4 Algorithm Design

Our algorithm first estimates the expected marginal contribution ∆(i, t) of each
item i ∈ Ω to a uniformly random sequence of size t, that does not contain i,
for every item i ∈ Ω and every size t ∈ [k − 1]. A formal definition of ∆(i, t) is
given by:

∆(i, t) = EΠt+1,i

[
F (Πt+1,i)

]
− EΠt,−i

[
F (Πt,−i)

]
(2)

where Πt+1,i denotes a random sequence of length t+1 with i being placed at the
last slot and Πt,−i denotes a random sequence of length t that does not contain
i. Unfortunately, one can not access the value of either EΠt+1,i

[
F (Πt+1,i)

]
or

EΠt,−i

[
F (Πt,−i)

]
directly. To estimate these values, we draw inspiration from

a technique proposed in [6], estimating the value of EΠt+1,i

[
F (Πt+1,i)

]
and

EΠt,−i

[
F (Πt,−i)

]
using avg(Φt+1,i) and avg(Φt,−i) respectively. Here, avg(Φt+1,i)

represents the average (observed) utility of all samples where the length is t+ 1
and i is placed at the last slot, while avg(Φt,−i) denotes the average (observed)
utility of all samples with length t that do not contain i. Then we use

∆̃(i, t) = avg(Φt+1,i)− avg(Φt,−i) (3)

as an estimation of ∆(i, t) for all i ∈ Ω and t ∈ [k − 1].

In the following, we treat ∆̃(i, t) as the weight of placing i at position t+1. As
a subroutine of our algorithm, we aim to find a feasible sequence that maximizes
the total weight. This objective can be reframed as a maximum weight matching
problem. Specifically, we introduce a set of item-position pairs Ψ = {(i, t) | i ∈
Ω, t ∈ {1, 2, · · · , k}}, where selecting a pair (i, t) indicates assigning item i to
position t. Consequently, the task of identifying a feasible sequence maximizing
the total weight is transformed into the following maximum weight matching
problem.

P.1 maxψ⊆Ψ :|ψ|≤k
∑

(i,t)∈ψ ∆̃(i, t− 1)

subject to |ψ ∩ Ψi| ≤ 1 for all i ∈ Ω; |ψ ∩ Ψt| = 1 for all t ∈ [k − 1].

Here Ψi = {(i, t) | t ∈ {1, 2, · · · , k}} denote the set of all item-position pairs
involving item i, and Ψt = {(i, t) | i ∈ Ω} denote the set of all item-position pairs
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involving position t. The condition “|ψ∩Ψi| ≤ 1 for all i ∈ Ω” ensures that each
item appears at most once in a sequence, while “|ψ ∩ Ψt| = 1 for all t ∈ [k − 1]”
ensures that each position contains exactly one item. It is straightforward to
confirm the existence of a one-to-one correspondence between feasible sequences
and feasible solutions of P.1. That is, given a feasible solution ψ of P.1, one can
construct a feasible sequence such that for each i ∈ Ω and t ∈ {1, 2, · · · , k}, item
i is placed in position t if and only if (i, t) ∈ ψ.

Because P.1 is a classic maximum weighted matching problem, it can be
solved efficiently in polynomial time [16]. Now we are ready to present our final
algorithm SeqSamp (as listed in Algorithm 1). Assume all individual functions
f1, · · · , fk have curvature c, that is, for all t ∈ [k], we have ft(i | S) ≥ (1 −
c)ft({i}) for any S ⊆ Ω and i /∈ S. First, we solve P.1 optimally, and let πs

denote the sequence corresponding to this solution. Then, we compute the final
sequence as follows: If (1−c)2 ≥ α · 1−c

1+c−c2 , where α = n−k
n · n−k−1

n−1 · . . . · n−2k+1
n−k+1 ,

then our algorithm returns πs as the final solution. Otherwise, if (1 − c)2 <

α · 1−c
1+c−c2 and (1 − c)

∑
t∈{1,··· ,k} ∆̃(πs

t , t − 1) ≥ avg(Φk), then our algorithm

still returns πs as the final solution. Here, avg(Φk) denotes the average utility
of all samples with a sequence length of k. Otherwise, our algorithm returns
a random sequence of length k as the final solution. We note that the overall
design-randomly selecting between a carefully crafted solution and a randomly
generated one-is inspired by the framework developed in [6].

4.1 Remark

While our algorithm assumes the curvature of all individual functions is known,
this assumption can be relaxed. Specifically, if its exact value is unknown, any
upper bound on this value can be used as a surrogate for the curvature without
affecting the algorithm’s analysis. In the extreme case where the curvature is
entirely unknown, one can simply adopt πs, which yields an approximation ratio
of (1− c)2 (an immediate corollary of Lemma 1).

5 Performance Analysis

Let π⋄ be the sequence returned from Algorithm 1, we next analyze the ap-
proximation ratio of π⋄, assuming ft is a monotone submodular function with
curvature c for all t ∈ {1, 2, · · · , k}. We first present two technical lemmas. The
first lemma derives an approximation ratio for the case when (1−c)2 ≥ α· 1−c

1+c−c2 ,
while the second lemma derives an approximation ratio for the remaining cases.
The final approximation ratio is the better of these values.

Lemma 1. Assume ft is a monotone submodular function with curvature c for
all t ∈ {1, 2, · · · , k}, for the case when (1−c)2 ≥ α · 1−c

1+c−c2 , we have that, with a

sufficiently large polynomial number of samples, F (π⋄) ≥
(
(1− c)2− o(1)

)
F (π∗)

where α = n−k
n · n−k−1

n−1 · . . . · n−2k+1
n−k+1 .
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Proof: According to Line 2 in Algorithm 1, when (1− c)2 ≥ α · 1−c
1+c−c2 , it returns

πs as π⋄. Here πs denotes the sequence corresponding to the optimal solution of
P.1. To prove this lemma, it suffices to show that F (πs) ≥

(
(1−c)2−o(1)

)
F (π∗).

Let πs = {e1, e2, · · · , ek} and πs
[t] = {e1, e2, · · · , et}, it follows that

F (πs) =
∑

t∈[k−1]

F (πs[t+1])− F (πs[t]) =
∑

t∈[k−1]

∑
j∈{t+1,··· ,k}

fj(et+1 | πs[t])

≥ (1− c)
∑

t∈[k−1]

∑
j∈{t+1,··· ,k}

fj(et+1)

≥ (1− c)
∑

t∈[k−1]

∑
j∈{t+1,··· ,k}

ERt,−et+1

[
fj(et+1 | Rt,−et+1)

]
= (1− c)

∑
t∈[k−1]

(
EΠt+1,et+1

[
F (Πt+1,et+1)

]
− EΠt,−et+1

[
F (Πt,−et+1)

])
= (1− c)

∑
t∈[k−1]

∆(et+1, t)

where Rt,−et+1
denotes a random set of size t that excludes item et+1. The first

inequality is by the curvature of ft and fact that et+1 /∈ πs
[t] for all t ∈ [t − 1],

and the second inequality is by the assumption that ft is submodular for all
t ∈ {1, 2, · · · , k}.

Recall that ∆(i, t) = EΠt+1,i

[
F (Πt+1,i)

]
− EΠt,−i

[
F (Πt,−i)

]
and ∆̃(i, t) =

avg(Φt+1,i) − avg(Φt,−i) is an estimation of ∆(i, t). In the appendix (Lemma
3), we show that with a sufficiently large polynomial number of samples, the

estimation ∆̃(i, t) is n2-close to ∆(i, t) for all i ∈ Ω and t ∈ [k − 1], with high
probability, i.e.,

∆(i, t) +
δ

n2
≥ ∆̃(i, t) ≥ ∆(i, t)− δ

n2
. (4)

where δ = maxπ:|π|≤k ϕ(π) denotes the maximum realized value of any sequence
with a length of at most k. Recall that in the example of product sequencing,
ϕ(π) = 1 indicates a purchase, while ϕ(π) = 0 indicates a non-purchase. There-
fore, in this example, δ = 1.

This, together with the previous inequality, implies that

F (πs) ≥ (1− c)
∑

t∈[k−1]

∆(et+1, t) ≥ (1− c)
∑

t∈[k−1]

∆̃(et+1, t)−
δ

n
. (5)

Recall that πs = {e1, e2, · · · , ek} is the sequence corresponding to the optimal
solution of P.1, we have∑

t∈[k−1]

∆̃(et+1, t) ≥
∑

t∈[k−1]

∆̃(e∗t+1, t) ≥
∑

t∈[k−1]

∆(e∗t+1, t)−
δ

n
. (6)

Here the second inequality is derived using inequality (4).
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In addition, observe that∑
t∈[k−1]

∆(e∗t+1, t)

=
∑

t∈[k−1]

(
EΠt+1,e∗

t+1

[
F (Πt+1,e∗t+1

)
]
− EΠt,−e∗

t+1

[
F (Πt,−e∗t+1

)
])

=
∑

t∈[k−1]

∑
j∈{t+1,··· ,k}

ERt,−e∗
t+1

[
fj(e

∗
t+1 | Rt,−e∗t+1

)
]

≥
∑

t∈[k−1]

∑
j∈{t+1,··· ,k}

ERt,−e∗
t+1

[
(1− c)fj(e

∗
t+1)

]
= (1− c)

∑
t∈[k−1]

∑
j∈{t+1,··· ,k}

fj(e
∗
t+1) ≥ (1− c)F (π∗)

where the first inequality is by the curvature of ft and fact that e∗t+1 /∈ Rt,−e∗t+1

for all t ∈ [k − 1], and the second inequality is by the assumption that ft is
submodular for all t ∈ {1, 2, · · · , k} .

This, together with inequality (6), implies that∑
t∈[k−1]

∆̃(et+1, t) ≥
∑

t∈[k−1]

∆(e∗t+1, t)−
δ

n
≥ (1− c)F (π∗)− δ

n
. (7)

Inequalities (5) and (7) imply that

F (πs) ≥
(
(1− c)2 − o(1)

)
F (π∗). (8)

□
We proceed to providing the second technical lemma.

Lemma 2. Assume ft is a monotone submodular function with curvature c for
all t ∈ {1, 2, · · · , k}, for the case when (1− c)2 < α · 1−c

1+c−c2 , we have that, with
a sufficiently large polynomial number of samples,

F (π⋄) ≥ α · ( 1− c

1 + c− c2
− o(1))F (π∗) (9)

where α = n−k
n · n−k−1

n−1 · . . . · n−2k+1
n−k+1 .

Proof: Let us define a function F (π ⊎ π∗) for a sequence π of length k and an
optimal solution π∗ as follows:

F (π ⊎ π∗) =
∑
t∈[k]

ft(π[t] ∪ π∗
[t]) (10)

Here, π[t] (and π∗
[t]) represent all items from π (and π∗) respectively, that are

placed up to position t. That is, π ⊎ π∗ can be envisioned as a virtual sequence
where both πt and π

∗
t are placed at position t for all t ∈ {1, 2, · · · , k}.
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Let Π ′ denote a random sequence of length k that is sampled over items from
Ω \ π∗, and Π ′

[t] denotes the first t items from Π ′, observe that,

EΠ′
[
F (Π ′ ⊎ π∗)− F (π∗)

]
= EΠ′

[ ∑
t∈{1,2,··· ,k}

ft(Π
′
[t] ∪ π∗

[t])−
∑

t∈{1,2,··· ,k}

ft(π
∗
[t])

]
= EΠ′

[ ∑
t∈{1,2,··· ,k}

(ft(Π
′
[t] ∪ π∗

[t])− ft(π∗
[t]))

]
= EΠ′

[ ∑
t∈{1,2,··· ,k}

ft(Π
′
[t] | π∗

[t])
]

=
∑

t∈{1,2,··· ,k}

EΠ′
[
ft(Π

′
[t] | π∗

[t])
]
≥

∑
t∈{1,2,··· ,k}

(1− c)EΠ′ [ft(Π
′
[t])]

≥ (1− c)EΠ′ [
∑

t∈{1,2,··· ,k}

ft(Π
′
[t])] = (1− c)EΠ′ [F (Π ′)].

To establish the first inequality, we utilize the fact that Π ′
[t] is a random set

of size t and Π ′
[t] ⊆ Ω \ π∗

[t]. Consequently, this inequality can be derived by

substituting R = Π ′
[t] and S = π∗

[t] into Lemma 4 which is presented in the
appendix.

In addition, observe that

F (π∗) + EΠ′ [F (Π ′ ⊎ π∗)]− F (π∗)

= EΠ′ [F (Π ′)] + EΠ′ [F (Π ′ ⊎ π∗)]− EΠ′ [F (Π ′)]

and
∑

t∈[k−1]∆(e∗t+1, t) ≥ α ·EΠ′
[
F (Π ′ ⊎π∗)−F (Π ′)

]
where α = n−k

n · n−k−1
n−1 ·

. . . · n−2k+1
n−k+1 (by Lemma 5 in the appendix). We have

F (π∗) + EΠ′ [F (Π ′ ⊎ π∗)]− F (π∗) ≤ EΠ′ [F (Π ′)] +
1

α

∑
t∈[k−1]

∆(e∗t+1, t).

This, together with the previous observation that EΠ′ [F (Π ′⊎π∗)−F (π∗)] ≥
(1 − c)EΠ′ [F (Π ′)], implies that F (π∗) + (1 − c)EΠ′ [F (Π ′)] ≤ EΠ′ [F (Π ′)] +
1
α

∑
t∈[k−1]∆(e∗t+1, t). It follows that∑

t∈[k−1]

∆(e∗t+1, t) ≥ α

(
1− c

EΠ′ [F (Π ′)]

F (π∗)

)
F (π∗). (11)

This, together with inequality (7), implies that

(1− c)
∑

t∈[k−1]

∆̃(et+1, t) ≥ (1− o(1))(1− c)
∑

t∈[k−1]

∆(e∗t+1, t)

≥ (1− o(1))(1− c)α
(
1− cEΠ

′ [F (Π ′)]

F (π∗)

)
F (π∗). (12)

According to Line 4 of Algorithm 1 and inequality (5), when (1 − c)2 <
α· 1−c

1+c−c2 , π
⋄ achieves an utility of at least max{(1−o(1))EΠ [F (Π)], (1−o(1))(1−

c)
∑

t∈[k−1] ∆̃(et+1, t)} where Π denotes a random sequence of length k that is
sampled over items from Ω. Hence, the approximation ratio of our algorithm
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is at least max{(1 − o(1))EΠ [F (Π)]
F (π∗) , (1 − o(1))

(1−c)
∑

t∈[k−1] ∆̃(et+1,t)

F (π∗) }. According

to inequality (12),
(1−c)

∑
t∈[k−1] ∆̃(et+1,t)

F (π∗) ≥ (1 − o(1))α(1 − c)(1 − cEΠ′ [F (Π′)]
F (π∗) ).

It follows that the approximation ratio of our algorithm is at least max{(1 −
o(1))EΠ [F (Π)]

F (π∗) , (1−o(1))α(1−c)(1−cEΠ′ [F (Π′)]
F (π∗) )} = (1−o(1))max{EΠ [F (Π)]

F (π∗) , α(1−
c)(1 − cEΠ′ [F (Π′)]

F (π∗) )} ≥ (1 − o(1))max{αEΠ′ [F (Π′)]
F (π∗) , α(1 − c)(1 − cEΠ′ [F (Π′)]

F (π∗) )} =

(1 − o(1))αmax{EΠ′ [F (Π′)]
F (π∗) , (1 − c)(1 − cEΠ′ [F (Π′)]

F (π∗) )} where the inequality is by

the observation that the probability that Π is sampled from Ω\π∗ is at least α =
n−k
n · n−k−1

n−1 · . . . · n−2k+1
n−k+1 . Observe that max{EΠ′ [F (Π′)]

F (π∗) , (1− c)(1− cEΠ′ [F (Π′)]
F (π∗) )}

is at least 1−c
1+c−c2 , hence, the approximation of π⋄ is at least α · 1−c

1+c−c2 − o(1). □
Combining Lemma 1 and Lemma 2, we have the following theorem.

Theorem 1. Let π⋄ be the sequence returned from Algorithm 1, assuming ft is
a monotone submodular function with curvature c for all t ∈ {1, 2, · · · , k}, we
have that, with a sufficiently large polynomial number of samples,

F (π⋄) ≥ max{(1− c)2 − o(1), α · 1− c
1 + c− c2 − o(1)}F (π∗) (13)

where α = n−k
n · n−k−1

n−1 · . . . · n−2k+1
n−k+1 .

5.1 Remark

While our study builds on the work of [6] by extending the “learning-from-
samples” approach from set functions to sequence functions, there is a potential
gap in their original analysis. Specifically, their proof of Lemma 1 relies on the
assumption that f(R | S⋆) ≥ (1 − c)f(R), where S⋆ is an optimal set solution,
R is a uniformly random set of size k − 1 (with k being the size constraint
of the final solution) and c is the curvature of function f . This assumption is,
unfortunately, not generally valid; according to the definition of the curvature
c, this assumption holds only if R ∩ S⋆ = ∅. Our study addresses this issue by
introducing the notion of α and further extends their research to a more complex
sequence function.

6 Performance Evaluation

We evaluate the performance of the proposed sequential submodular maximiza-
tion algorithm in the context of assortment optimization, where a sequence of
items are selected for display to the users with the goal of maximizing the pur-
chase probability. Given the dynamic nature of user purchase behavior, there is
always a challenge to accurately capture the probability of a user purchasing one
product from the sequence that is displayed to her. In this case, it is essential
to relax the assumption that there is a known function that captures the pur-
chase behavior of each individual user type. To obtain a high quality sequence of
items for display, our algorithms merely require a small collection of samples each
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Fig. 1. SeqSamp achieves superior approximation ratio under normal distributed user
preferences.

comprises a random sequence of displayed items and its corresponding realized
outcome (purchase or no purchase). Our results demonstrate the superiority of
our algorithm that lies in its comparable performance to the upper bound. The
performance is evaluated in terms of the expected utility with respect to changes
in number of samples, user patience level, and item preference distribution.

Experimental Setup.We exploit the widely used Multinomial Logit (MNL)
model [1] to capture the underlying user behavior. Our individual function is de-
fined as ft(π[t]) = λt ∗ (

∑
i∈[t] vu,i)/(1 +

∑
i∈[t] vu,i), where vu,i denotes the user

u’s preference towards item i. Given a sequence π, ft(π[t]) captures the purchase
probability of a user with a specific patience level t who is willing to browse
the first t items π[t]. Note that our algorithms do not have direct access to this
model, which is only used as an underlying model for generating samples and
calculating the utility of a solution.

Algorithms.We compare our proposed Sequencing-from-Samples algorithm
(labeled as SeqSamp) against two benchmarks, namely, GKF and BestSamp, un-
der various parameter settings. GKF has access to the underlying choice model
and operates greedily, iteratively selecting the item with the largest marginal
gain with respect to F (π) in each iteration. BestSamp is a sampling-based algo-
rithm that selects the single best sample with the largest utility. Like SeqSamp,
BestSamp does not have access to the choice model, when multiple samples with
the same largest value exist, it randomly picks one to break the tie. We use
the solution returned by GKF as an upper bound. We obtain the approxima-
tion ratio of the expected utility of the sampling-based algorithms to the upper
bound.

Parameter Settings. Note that choice models can vary among individu-
als. We test different user preference distributions to capture this phenomena.
Specifically, we follow a normal distribution N (µ, σ2) to sample the values for
λt. We explore the impact of user preference distribution on the performance of
the algorithms by varying the value of µ and σ. We also evaluate the impact of
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Fig. 2. SeqSamp achieves superior expected utility with respect to varying user pa-
tience levels.

user type (patience level t) distribution. Our experiments are run on AMD Ryzen
Threadripper PRO Processor with 128GB RAM. We run each set of experiments
100 rounds and the average results are reported below. Complete source code is
provided in supplementary materials.

Experimental Results. In the first set of experiments, we measure the
performance of the algorithms in terms of their approximation ratio to the upper
bound with respect to various sizes of samples. For each item i, we set vu,i,
users’ preference towards i, to follow a normal distribution with µ ranging from
0.01 to 0.5 with σ = 0.1 and 0.2, respectively. We vary the value of σ to test
the reliability of our algorithm when different users’ have diverse preferences
towards the same item. A larger σ indicates more diverse opinions. We set the
number of items to be n = 104 and number of user types to be k = 20. The
average user’s patience is set to be 15. As shown in Figure 1(a), for the case of
σ = 0.1, we observe that with 3.5 × 106 samples, SeqSamp already achieves a
80% approximation ratio to the upper bound. With 7 × 106 samples, SeqSamp
achieves a 88.6% approximation ratio. As shown in Figure 1(b), when users’
preferences are more diverse, SeqSamp achieves a 91.95% approximation ratio
with 7× 106 samples. All of our experiments have the solutions returned within
one minute. Note that for our main theoretical result to hold (i.e., Lemma 3),
a sample size on the order of n8 (i.e., 1032) is required. This highlights that,
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in practice, our approach requires significantly fewer samples than our analysis
suggests.

In the second set of experiments, we measure the performance of the algo-
rithms in terms of their expected utility with respect to various user patience
levels, ranging from 5 to 16. We follow the parameter settings as above. Fig-
ure 2 shows the results for SepSamp and BestSamp based on 7 × 106 samples,
compared to the upper bound (GKF). We observe that as users are willing to
browse more items on the average, the expected utility tends to increase with a
diminishing marginal gain. SeqSamp achieves a comparable performance to the
upper bound and significantly outperforms BestSamp, both for σ = 0.1 (Figure
2(a)) and σ = 0.2 (Figure 2(b)). This again demonstrates the superiority of our
sequencing-from-sampling approach that it yields an outstanding utility with a
small collection of samples and is reliable under various user purchase behaviors.

7 Conclusion

In this paper, we build on the framework of “optimization from samples” by
extending the focus from optimizing set functions to sequence-dependent func-
tions. Our objective is to determine an optimal ordering of items that maximizes
an unknown utility function, given only a set of i.i.d. samples drawn from a spe-
cific distribution. We propose an approximation algorithm, with its performance
guarantee depending on the curvature of the underlying functions. In future
work, we aim to apply our findings to other real-world applications and further
extend our results to encompass broader classes of sample distributions.
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9 Appendix

Lemma 3. With a sufficiently large polynomial number of samples, the esti-
mation ∆̃(i, t) is n2-close to ∆(i, t) for all i ∈ Ω and t ∈ [k − 1], with high

probability, i.e., ∆(i, t) + δ
n2 ≥ ∆̃(i, t) ≥ ∆(i, t)− δ

n2 where δ = maxπ:|π|≤k ϕ(π)
denotes the maximum realized value of any sequence with a length of at most k.

Proof: Our proof is inspired by the one presented in [6] (Appendix A) and extends
their analysis from set functions to sequence functions. Consider an arbitrary pair
of i ∈ Ω and t ∈ [k − 1].

Observation 1: The probability of sampling a sequence of length t is no less
than 1/k, whose value is at least 1/n. Note that the case when t = 0 is trivial
because the value of an empty sequence is known to be zero. Furthermore, given
that the sampled sequence has a length of t, the probability of it not containing
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item i is at least 1 − t/n ≥ 1/n. Hence, the probability of sampling a sequence
of length t without i is at least 1/n2.

Observation 2: The probability of sampling a sequence of length t + 1 is no
less than 1/k, where 1/k is at least 1/n. Additionally, given that the sampled
sequence has a length of t+ 1, the likelihood of the last item being i is at least
1/n. Consequently, the probability of sampling a sequence of length t+1 with i
at position t+ 1 is at least 1/n2.

The above two observations, together with Chernoff bounds, imply that gath-
ering a minimum of n5 samples of length t that do not contain i, and at least n5

samples of length t+ 1 wherein i resides at position t+ 1, can be accomplished
with high probability by obtaining n8 samples.

By Hoeffding’s inequality and the fact that δ is the largest possible value
observed from any sequence of size at most k, we have

Pr[|avg(πt,−i)− EΠt,−i
[F (Πt,−i)]| ≥

δ

2n2
] ≤ 2e−2n5(δ/2n2)2/δ2 ≤ 2e−n/2,

and

Pr[|avg(πt+1,i)− EΠt+1,i
[F (Πt+1,i)]| ≥

δ

2n2
] ≤ 2e−n/2.

Given that ∆(i, t) = EΠt+1,i
[F (Πt+1,i)] − EΠt,−i

[F (Πt,−i)] and ∆̃(i, t) =
avg(πt+1,i) − avg(πt,−i), we can deduce that, with a sample size of n8, the
following inequalities hold for all i ∈ Ω and t ∈ [k − 1], with high probability:

∆(i, t) + δ
n2 ≥ ∆̃(i, t) ≥ ∆(i, t)− δ

n2 . □

Lemma 4. Let f : 2Ω → R≥0 be a monotone and submodular function, given
any subset of items S ⊆ Ω such that |S| ≤ k, let R be a set of size t that is
randomly sampled from Ω \ S, for any t ≤ min{k, |Ω \ S|}, ER[f(R | S)] ≥
(1− c)ER[f(R)].

Proof: Assuming R is obtained by sequentially sampling t items without
replacement, let R = {r1, · · · , rt}, where rj represents the j-th sampled item.
Let R[j] = {r1, · · · , rj} denote the first j sampled items,

ER[f(R | S)] =
∑

j∈[t−1]

ER[f(rj+1 | R[j] ∪ S)]. (14)

Consider any given sample R, because rj+1 /∈ R[j] and rj+1 /∈ S (by the
assumption that R ⊆ Ω \ S), then by the curvature of f , f(rj+1 | R[j] ∪
S) ≥ (1 − c)f(rj+1). It follows that ER[f(R | S)] = ER[

∑
j∈[t−1] f(rj+1 |

R[j] ∪ S)] =
∑

j∈[t−1] ER[f(rj+1 | R[j] ∪ S)] ≥
∑

j∈[t−1](1 − c)ER[f(rj+1)] =

(1 − c)ER[
∑

j∈[t−1] f(rj+1)] ≥ (1 − c)ER[f(R)] where the first inequality is by

the observation that f(rj+1 | R[j] ∪ S) ≥ (1 − c)f(rj+1) for any R and the last
inequality is by the assumption that f is a submodular function. □

Lemma 5. Let Π ′ denote a random sequence of length k that is sampled over
items from Ω \π∗ where π∗ = {e∗1, · · · , e∗k} denotes the optimal solution, we have∑

t∈[k−1]∆(e∗t+1, t) ≥ α ·EΠ′ [F (Π ′ ⊎ π∗)− F (Π ′)] where α = n−k
n · n−k−1

n−1 · . . . ·
n−2k+1
n−k+1 .
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Proof: Let Π denote a random sequence of length k that is sampled over items
from Ω. Hence, the probability that the first t items Π[t] is sampled from Ω \π∗

is at least α = n−k
n · n−k−1

n−1 · . . . · n−2k+1
n−k+1 for any t ∈ {1, · · · , k}. Recall that Π ′

denotes a random sequence of length k that is sampled over items from Ω \ π∗.
It follows that EΠ [ft(i | Π[t])] ≥ αEΠ′ [ft(i | Π ′

[t])] for all t ∈ {1, · · · , k} and any
item i ∈ Ω.

Observe that
∑

t∈[k−1]∆(e∗t+1, t)

=
∑

t∈[k−1]

EΠt+1,e∗
t+1

[F (Πt+1,e∗t+1
)]− EΠt,−e∗

t+1
[F (Πt,−e∗t+1

)]

=
∑

t∈[k−1]

EΠt,−e∗
t+1

[
∑

z∈{t+1,··· ,k}

fz(e
∗
t+1 | Πt,−e∗t+1

)]

≥
∑

t∈[k−1]

EΠ [
∑

z∈{t+1,··· ,k}

fz(e
∗
t+1 | Π[t])]

≥
∑

t∈[k−1]

EΠ [
∑

z∈{t+1,··· ,k}

fz(e
∗
t+1 | Π[z])]

=
∑

t∈[k−1]

∑
z∈{t+1,··· ,k}

EΠ [fz(e
∗
t+1 | Π[z])]

≥
∑

t∈[k−1]

∑
z∈{t+1,··· ,k}

αEΠ′ [fz(e
∗
t+1 | Π ′

[z])]

= αEΠ′ [
∑

t∈[k−1]

∑
z∈{t+1,··· ,k}

fz(e
∗
t+1 | Π ′

[z])]

≥ αEΠ′ [F (Π ′ ⊎ π∗)− F (Π ′)]

where the forth inequality is by the previous observation that EΠ [ft(i | Π[t])] ≥
αEΠ′ [ft(i | Π ′

[t])] for all t ∈ {1, · · · , k}. □
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