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Abstract. Knowledge graphs have become an indispensable technology
for organizing and processing vast amounts of information, with applica-
tions spanning intelligent robotics, risk management, recommender sys-
tems, and healthcare analytics. However, the effectiveness of knowledge
graphs in downstream tasks is often limited by inherent structural incom-
pleteness. To address this issue, we propose TS-TKGC (Two-Stage Tem-
poral Knowledge Graph Completion), a novel reinforcement learning-
based method. Our TS-TKGC method consists of two key stages: clue
search and temporal reasoning. In the first stage, reinforcement learn-
ing is employed to identify informative clues. In the second stage, the
method integrates Gated Recurrent Units (GRU) for temporal reason-
ing, alongside a multi-dimensional reward mechanism to optimize the
training strategy. Finally, experimental results validate the feasibility and
effectiveness of the proposed key technique, demonstrating the model’s
capability to enhance temporal knowledge graph completion.

Keywords: Temporal Knowledge Graphs · Two-Stage Knowledge Com-
pletion · Reinforcement Learning · Clue Search · Gated Recurrent Units.

1 Introduction

In the digital era, the information explosion has provided abundant data re-
sources for intelligent services. However, such data are often characterized by
high redundancy, structural heterogeneity, and low utilization efficiency, necessi-
tating the construction of domain-specific knowledge bases with refined man-
agement. As an extension of traditional knowledge graphs, temporal knowl-
edge graphs incorporate timestamps to evolve fact representations from static
triples (h, r, t) to dynamic quadruples (h, r, t, τ). By not only modeling entity-
relationship structures but also capturing their temporal dynamics, temporal
knowledge graphs enable advanced capabilities such as trend analysis, temporal
querying, and event prediction. These enhancements significantly empower ap-
plications in decision support, risk assessment, and cybersecurity, among other
domains.

Temporal knowledge graph completion enhances dynamic knowledge repre-
sentation by modeling facts as timestamped quadruples (h, r, t, τ). This approach
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captures both explicit event occurrences and implicit temporal patterns, enabling
sophisticated temporal reasoning capabilities. Despite its practical value, current
temporal knowledge graph completion approaches exhibit significant limitations:
rule-based methods are hindered by poor scalability from rule explosion and in-
effective temporal modeling; GNN-based techniques struggle with frequent en-
tity/relation changes and long-term dependency capture; while reinforcement
learning frameworks face challenges in reward mechanism design and suffer from
sparse feedback-induced learning inefficiency. Crucially, existing methods fail to
effectively bridge temporal evolution with structural semantics, creating a dis-
connect between dynamic patterns and graph topology. Although reinforcement
learning offers interpretable temporal reasoning, fundamental challenges remain
unresolved, particularly the joint modeling of temporal dynamics and semantic
relationships, coupled with severe training inefficiencies stemming from inade-
quate reward signals in sparse environments.

In this paper, we propose a temporal knowledge graph completion model
that incorporates reinforcement learning to address these challenges. The main
contributions of this paper include: (1) We propose a novel temporal knowledge
graph completion framework integrating clue searching and temporal reason-
ing to jointly model temporal information and structural characteristics; (2) We
propose an interpretable reinforcement learning mechanism for enhanced per-
formance in complex temporal reasoning; (3) We design a collaborative training
mechanism that synchronizes clue searching and temporal reasoning, allowing
adaptive optimization under varying temporal constraints; (4) Extensive ex-
periments on multiple benchmark datasets validate the model’s effectiveness,
achieving better performance on temporal knowledge graph completion tasks.

2 Related Work

In this section, we review related work on temporal knowledge graph completion
and highlight our technical contributions. Existing temporal knowledge graph
completion approaches fall into three main categories: rule-based approaches,
graph neural network (GNN)-based approaches, and reinforcement learning-
based approaches.

2.1 Rule-based Temporal Knowledge Graph Completion

In static environments, rule-based temporal knowledge graph completion demon-
strates strong interpretability and reliability. Early approaches relied on manu-
ally defined temporal logic rules for reasoning. For instance, the approach pro-
posed in [1] achieved 89.6% prediction precision in biomedical event forecasting
by designing 14 temporal clause rules through multi-path dependency analy-
sis. Subsequent work by Bai et al. [2] enhanced this framework using Bayesian
pruning strategies, maintaining temporal confidence scores above 0.85. Recent
advances have focused on automated rule extraction. For example, the ALREIR
model [3] leverages temporal attention mechanisms to autonomously discover
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logical patterns, achieving a 23.7% improvement in F1-score over manual rule-
engineering methods while preserving model interpretability.

2.2 GNN-based Temporal Knowledge Graph Completion

GNN-based approaches have significantly advanced temporal knowledge graph
completion by jointly learning structural and temporal entity representations.
RENET [4] pioneered this direction with multi-relational graph aggregation for
structural feature extraction. Subsequent innovations in variants of GNN-based
approaches have further enhanced temporal modeling. For example, the method
proposed in [5] incorporates GRU gates conditioned on event frequency to cap-
ture temporally inactive dependencies. REGCN [6] employs autoregressive GRU
networks to model temporal event dynamics. DACHA [7] introduces architec-
tural innovation through dual-graph convolutional networks, synchronizing infor-
mation flow between primal graphs and their edge-graph counterparts. Notably,
Zhu et al. [8] propose an advanced framework with implicit knowledge propaga-
tion, enabling concurrent future event prediction via three synergistic modules:
entity vocabulary pattern recognition, temporal transaction recurrence detec-
tion, and known fact reference mechanisms.

2.3 Reinforcement Learning-based Temporal Knowledge Graph
Completion

Recent advances in reinforcement learning for temporal knowledge graph comple-
tion have highlighted the critical importance of sophisticated reward design [9],
where early binary reward mechanisms [10] established performance baselines
while subsequent innovations progressively addressed reward sparsity through
temporal pattern encoding and exploration optimization. Notable developments
include path diversity rewards [11] for multi-pattern exploration, Dirichlet tem-
poral allocation [12] for time-aware reward distribution, and LSTM-enhanced
beam rewards [13] for sequential decision optimization.

Compared with the above models, our proposed TS-TKGC model makes
three significant advances: first, it adopts a unified framework integrating clue
searching with temporal reasoning to jointly capture semantic dependencies and
temporal evolution patterns; second, it utilizes a two-stage collaborative learning
mechanism that effectively mitigates the persistent challenge of reward sparsity
in reinforcement learning; third, it implements dynamic temporal constraint-
aware path adjustment to simultaneously enhance exploration efficiency and
task performance in complex scenarios.

3 Problem Definition

This section mainly introduces the concepts involved in temporal knowledge
graph completion and then formally defines the problem of temporal knowledge
graph completion.
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Definition 1 (Quadruple). A quadruple (h, r, t, timestamp) consists of four
parts: head entity, relation, tail entity, and timestamp. The quadruple represents
a fact triplet with temporal information, indicating that at time t, the triplet
(h, r, t) holds.

Definition 2 (Temporal Knowledge Graph). A temporal knowledge graph
is an extension of traditional knowledge graph in the temporal dimension, aiming
to record the relationships and evolution processes of things over time.

In temporal knowledge graphs, each fact is represented by a quadruple consisting
of a head entity, a relation, a tail entity, and a timestamp associated with the fact.
By incorporating temporal attributes, temporal knowledge graphs can reflect the
states and changes of things at different time points.

Temporal knowledge graph uses entities as nodes, relationships to represent
connections between entities, and timestamps to indicate the temporal attributes
of current facts. They can be represented by the quadruple G = (E,R, T, F ),
where E denotes the set of entities (e.g., Xiaomi Company, Li Auto, China,
Physics), R denotes the set of relationships between entities (e.g., father-son,
bordering, possession), T denotes the set of timestamps (e.g., 2021, March 2nd, 8
a.m.), and F denotes the set of quadruples (e.g., (COVID-19, outbreak, Wuhan,
Hubei Province, December 2019), (Alibaba Group, acquires, Ele.me, April 2,
2018), (Tencent stock price, is, 400 yuan, April 30, 2023)).

Definition 3 (Temporal Knowledge Graph Completion). Temporal knowl-
edge graph completion refers to the process of using algorithms and technical
means to complete or supplement missing entities, relationships, or quadruples
in temporal knowledge graph with temporal labels.

Temporal knowledge graph completion addresses evolving entity-relationship
dynamics by inferring valid missing facts. For example, in a corporate leadership
knowledge graph tracking directors’ positions across time intervals, temporal
gaps may exist in role transition records. Temporal knowledge graph completion
predicts such missing position changes and their precise timestamps by leverag-
ing existing temporal patterns.

Fig. 1: Model Overview
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It is to infer the missing components of quadruples in a given temporal
knowledge graph G, based on the existing fact quadruples {(eh, r, et, t) ∈ F}.
Specifically, it aims to predict the missing tail entity in quadruples of the form
(eh, r, ?, t), the missing head entity in quadruples of the form (?, r, et, t), or the
missing relation in quadruples of the form (eh, ?, et, t).

The proposed model operates in two stages: 1) clue searching: identifies tem-
porally constrained clue paths relevant to the query, capturing rich semantic
information for reasoning. 2) temporal reasoning: processes clue paths and can-
didate entities to capture temporal dependencies and generate final predictions.
This integrated approach maintains information accuracy while handling tem-
poral dynamics, improving prediction precision (Fig. 1).

4 Temporal Knowledge Graph Completion Model

4.1 Model Architecture

In the first stage, the clue searching process is formulated as a Markov Decision
Process (MDP), incorporating two specialized reasoning agents: one focuses on
relationship-based inference, and the other on entity-based reasoning. First, the
relationship agent conducts preliminary reasoning on the relationships associated
with the current entity to identify potential target entities. Subsequently, based
on the candidate relationships provided by the relationship agent, the entity
agent performs a more refined reasoning process to determine the next action.
Ultimately, this process generates N informative clue paths.

The temporal reasoning stage begins by reorganizing the identified clue paths
into timestamp-ordered quadruples, which are then chronologically sorted to
construct a temporal graph sequence. The model initializes each graph struc-
ture through comprehensive integration of entities and relationships, followed
by temporal feature extraction using GRU networks to capture evolutionary
patterns. Multi-layer perceptrons then process these temporal representations
to either generate final predictions or produce stage feedback rewards that opti-
mize the clue searching process through a cross-stage reinforcement mechanism.
This integrated approach not only enhances path discovery efficiency but also
effectively mitigates reward sparsity, ultimately improving overall model perfor-
mance through coordinated temporal-structural learning.

4.2 Clue Searching Based on Reinforcement Learning

The goal of the first stage of clue searching is to find and summarize clue
paths related to the given query from historical information. For a given query
(es, rq, ?, ts), where es denotes the head entity, rq denotes the query placeholder,
? represents the unknown tail entity placeholder, and ts is the timestamp of the
query, the first stage aims to obtain several candidate entities close to the target
entity ep and their paths.

The TS-TKGC model employs a reinforcement learning system with two
agents in the first stage to reason over paths in historical knowledge. First, the
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model constructs a candidate relationship set by aggregating all relationships
associated with the current entity. Subsequently, the relationship policy network
directs the relationship agent to select the optimal next-hop relationship. Finally,
the entity policy network calculates and selects the next target entity.

This reasoning process continues until the target entity ep is reached, mark-
ing the end of the reasoning task. This dual-agent strategy enables the model
to conduct knowledge reasoning with higher accuracy and efficiency. The first
stage aims to discover and aggregate clue paths relevant to the query quadruple
(es, rq, ?, ts) from historical knowledge. Thus, developing a learnable and efficient
clue searching strategy is critical. The first stage is formulated as a sequential
decision-making problem that is solved by the reinforcement learning system.

Static quadruples are transformed into entity nodes with timestamps to con-
struct a temporal graph structure. Nodes (entity, timestamp) are connected via
bidirectional edges: forward edges retain original relations while reverse edges use
inverse relations for semantic symmetry, with an entity-to-temporal-nodes map-
ping dictionary established. Action spaces are dynamically generated for each
current entity state and query time: only strictly preceding events are accessible
when current time equals query time; otherwise, preceding or concurrent events
are permitted. State-transition actions are (relation, entity, timestamp) triples
including NO-OP (stay) and PAD (padding) actions. Reverse chronological sort-
ing is used to prioritize the latest events. Batch action spaces are standardized by
truncating earliest events when exceeding capacity, padding with PAD when un-
dersized, and disabling NO-OP at initial steps using a first-step policy, yielding
reinforcement learning tensors with consistent dimensions.

The reinforcement learning system in TS-TKGC consists of an agent and an
environment, formalized as a Markov Decision Process (MDP). This standard
RL framework models agent-environment interactions to discover N optimal clue
paths that satisfy the query constraints. Starting from the initial state, the agent
selects actions according to a policy to traverse to new entities, continuing until
reaching the maximum step length I or the target entity. Formally, the MDP is
defined by four components:

State. Each state si = (ei, ti, es, rq, ts) ∈ ST is a tuple, where ST is the
set of all available states;ei(e0 = es) is the entity visited by the agent at step
i;ti(t0 = ts) is the timestamp when the agent took the action in the previous
step.

Action. The action is represented as the set of relationships, tail entities,
and timestamps that the agent might reach at step i, including the next entity
in the quadruple. Let Ai ∈ A,A be the set of all possible actions. The action
definition is shown in Equation. 4.1:

Ai = {(r′, e′, t′)|(ei, r′, e′, t′) ∈ Gt−1} (4.1)

Among them, Gt−1 denotes the set of possible quadruples that the entity ei
may reach in the next step, r′ denotes the relation, e′ denotes the tail entity,
and t′ denotes the timestamp.



Two-Stage Temporal Knowledge Graph Completion 7

Transition. The transition function δ : ST ×A → ST , and ST is determin-
istic in the context of temporal knowledge graph, simply updating the state to
the new entity associated with the action chosen by the agent.

Reward. At the end of the search process, the agent receives a final reward
consisting of primary and secondary components. Specifically, the primary re-
ward is 1 for correct target entity ep identification in the N candidate entities
generated by the entity agent, 0 otherwise. If ep is correctly identified, the agent
also receives a secondary reward from the second stage. This reward is designed
to drive the agent to locate the target entity more accurately and promote seam-
less collaboration between the two stages.
(1) Relationship Policy Network

When constructing the relationship policy network, a Gated Recurrent Unit
(GRU) is employed to encode historical reasoning paths. This encoding process
combines historical information with the current node state to serve as the in-
put for preliminary relationship reasoning in the network. This design enables
the proposed model to fully leverage historical information, thereby enhancing
reasoning accuracy and efficiency. The detailed architecture of the relationship
policy network is shown in Fig. 2(a).

The GRU encodes historical path-searching information by taking the pre-
vious historical state encoding Ht−1, current node information es, and query
relation rq as inputs to compute the current historical state Ht. Notably, the
initial state H0 is defined as the current node es. The specific calculation is
detailed in Equation. 4.2. This strategy effectively integrates historical context,
providing a richer basis for the reasoning process.

Ht = GRU([es ⊕ rq], Ht−1) (4.2)

The historical state information Ht at the current time step t is concatenated
with the current node information es and the given query rq to form a fusion
vector. This fusion vector is then passed through a ReLU function and multiplied
with the set of candidate relationships, followed by a softmax activation function
to obtain the probability distribution of the current node es over the set of
candidate relationships. The relationship agent can select the relationship with
the highest score according to this probability distribution as the next action
for the agent. The calculation process of the relationship policy network in this
method is shown in Equation. 4.3, where Rt represents the set of candidate
relationships connected to the current entity, W1 and W2 are different weights.

πh
θ (rt|st) = softmax(RtW2ReLU(W1[Ht, es, rq])) (4.3)

After constructing the relationship policy network πh
θ , we apply a Dropout

algorithm that randomly discards a subset of candidate relationships, yielding a
filtered relationship policy network πh

θ , as shown in Equation. 4.4.

πh′

θ (rt|st) = πh
θ (rt|st)bi (4.4)
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Here, bi represents a binary variable sampled from a Bernoulli distribution.
After obtaining the final relationship policy network πh′

θ , the relationships con-
nected to the current node are probabilistically assigned to guide the relationship
agent in selecting the next relationship.
(2) Entity Policy Network

Similar to the relationship policy network, the entity policy network takes the
current node es, the given query relationship rq, the historical search encoding
Ht−1, and the relationship rt obtained from the relationship policy network as
inputs. The entities connected to the selected relationship by the relationship
agent in the current node are used as the candidate action set for the entity
policy network to construct the preliminary entity policy network πl

θ. The final
entity policy network πl

θ is obtained by randomly discarding some nodes in πl
θ

using the Dropout algorithm. The entity policy network is shown in Fig. 2(b).
The calculation process of the entity policy network in this paper is shown

in Equation. 4.5 and Equation. 4.6, where Ai represents the action set of the
current entity es, and W3 and w4 are different weights.

πl
θ(es|st) = softmax(AiW4ReLU(W3⌈Ht, es, rq, rt⌉) (4.5)

πl′

θ (es|st) = πl
θ(es|st)bi (4.6)

After successfully constructing the entity policy network πl′

θ (es|st) , the entity
agent can select the entity with the highest probability as the next action based
on this probability distribution. This process ensures that the entity agent can
make more accurate and effective entity selections based on the relationship
chosen by the relationship agent, and continuously optimize its decision-making
process through the reward mechanism.

(a) Relationship Policy Network (b) Entity Policy Network

Fig. 2: Relationship and Entity Policy Network

4.3 Temporal Reasoning Based on Gated Recurrent Units

To comprehensively model the temporal dependencies between clue facts at dif-
ferent timestamps and the structural correlations among simultaneously occur-
ring clue facts, the second stage first reorganizes all clue facts in chronological
order, then transforms them into a temporal graph sequence. Specifically, all
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clue facts are reorganized into a set of quadruples, and quadruples sharing the
same timestamp are aggregated to form multi-relational temporal graphs. Each
graph is composed of clue facts with timestamps j ∈ {0, 1, . . . , ts − 1}, where ts
denotes the query timestamp.

Fig. 3: The Basic Idea of Temporal Reasoning
After obtaining multiple reorganized graphs, we adopt this approach. We

define intra-graph interaction vectors for head entities, relations, and tail en-
tities. These vectors are computed using Graph Neural Networks (GNNs) to
integrate structural information and node semantics from the knowledge graph.
Initialization Step: For each temporal graph, the model computes initial node
and relation embeddings using GNN message passing. Iterative Update: For
each entity in the graph, the model computes three interaction vectors captur-
ing: Head entity-to-tail entity influences, Relation-to-entity influences, and Tail
entity-to-head entity influences. These vectors enable the model to capture se-
mantic dependencies between triplets and extract implicit information within the
graph. The updated entity embedding is obtained by merging these interaction
vectors with the original entity embedding, as defined in Equation. 4.7:

e′s = es + gheads + grels + gtails (4.7)
Here, e′s represents the updated embedding of entity es in the multi-relational

graph, while gheads , grels and gtails represent the influences between head entity-
level elements, relation-level elements, and tail entity-level elements, respectively.
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A secondary iterative refinement is applied to the current entity to effectively
capture and aggregate interaction features from neighboring nodes. Taking the
first-iteration updated entities as input, a second-round information aggregation
is performed via iterative message passing, enabling each entity to fully inte-
grate the semantic and structural information within its local neighborhood.
The mathematical formulation for the secondary iteration is detailed in Equa-
tion. 4.8:

e2s = e′s + (gheads )1 + (grels )1 + (gtails )1 (4.8)

Here, e2s represents the secondary embedding of entity e2s, while (gheads )1,
(gtails )1 and (gtails )1 represent the influences between head entity-level elements,
relation-level elements, and tail entity-level elements for es in the first layer,
respectively.

The embeddings are fed into the GRU to obtain the final output of the GRU,
denoted as Hj , as shown in Equation. 4.9. Hj and Wmlp are then passed into a
multi-layer perceptron (MLP) to obtain the final scores for all entities, as shown
in Equation. 4.10.

Hj = GRU([es ⊕ gj ⊕ rq], Hj−1) (4.9)

p(e|es, rq, ts) = σ(HjWmlp) (4.10)

Finally, the candidate entities are re-ranked based on the obtained scores. To
provide positive feedback for the clue paths that lead to the answer, the second
stage offers a secondary reward to the first stage, which is equal to the final score
obtained. The architecture of the temporal reasoning process is shown in Fig. 3.

4.4 Training Strategy and Multi-dimensional Rewards

In the first stage, the search strategy network is trained by maximizing the ex-
pected return for all queries in the training set. Since the first and second stages
are interrelated, they are trained jointly. Before the joint training process, the
first stage is pre-trained using binary rewards. then, the second stage is trained
while the parameters of the first stage are frozen. Finally, both stages are trained
together. The final reward function is shown in Equation. 4.11, where J(θ) rep-
resents the final reward, R(eI |es, rq, ts) represents the reward obtained when
reaching the maximum number of steps, and E(a0...aI−1) represents the action
chosen at the maximum step. The relationship policy network and entity policy
network guide the relationship agent and entity agent, respectively, in selecting
the next relationship and action. By using an interactive reward mechanism, the
interaction between these two policies is strengthened, ensuring that the agents
maximize their rewards. This approach enhances the model’s reasoning accuracy.

J(θ) = E(a0...aI−1)[R(eI |es, rq, ts)] (4.11)

Reinforcement learning is applied to the task of temporal knowledge graph
completion. To avoid performance degradation caused by sparse rewards, a new
reward mechanism is constructed to calculate reward weights from multiple di-
mensions. The rewards are mainly divided into two parts. In the first stage, an
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interactive reward function is constructed for clue searching to give timely re-
wards for the choices made by the relationship and entity agents. In the second
stage, a secondary reward is returned if the correct result is ultimately obtained

The rewards in the first stage are primarily obtained by calculating the sim-
ilarity scores between the candidate relationships or entities selected by the two
agents and the target quadruple using a scoring function score f(et, rt+1, et+1, ts).
These similarity scores are used as the reward scores for the agents’ choices, facil-
itating interaction between the relationship and entity agents. When the agents
find the target relationship or entity, a global reward is given, as Rh

g = 1 and
Rl

t = 1; if the target is not found and the maximum reasoning step length is
not reached, the similarity score calculated by the scoring function is used as
the reward for the agents’ choices. The calculation methods for the interactive
reward functions are shown in Equation. 4.12 and Equation. 4.13.

Rh
t = Rh

g + (1−Rh
g )f(et, rt+1, et+1, ts) (4.12)

Rl
t = Rl

g + (1−Rl
g)f(et, rt+1, et+1, ts) (4.13)

Here, Rh
t and Rl

t are the interactive reward functions for the relationship
agent and the entity agent, respectively, while Rh

g and Rl
g serve as the global

reward. When the relationship agent and the entity agent find the target rela-
tionship and the target entity, respectively, a reward of +1 is given; otherwise,
the reward is 0. If the reward is 0, the similarity between the choices made by the
two agents can be calculated using a scoring function based on the embedding
model, and this score is used as the reward for the agents’ choices.

In the first stage, embedding-based models provide intermediate rewards by
computing cosine similarity between candidate actions (i.e., relations and enti-
ties) and the target quadruple at each step. This mechanism offers progressive
feedback during the search process—for instance, immediately evaluating a rela-
tion’s semantic match with the target rather than delaying reward until termina-
tion. The second stage generates secondary rewards from final prediction scores,
which are fed back to the first stage as evaluation signals. Correct path veri-
fication triggers additional rewards, forming an interstage reinforcement loop:
effective clue searching improves temporal reasoning accuracy, while accurate
reasoning enhances search capability. This cross-stage reward loop dynamically
adapts the first stage’s search strategy to the second stage’s reasoning needs,
propagating global feedback for end-to-end policy optimization.

5 Temporal Knowledge Graph Completion Algorithm

This section describes the algorithm for the policy network in the TS-TKGC
model. The algorithm takes the current entity embedding es, the given query
relation rq, the set of candidate relationships Rt, and the set of candidate actions
Ai as inputs. By computing the relationship policy network and the entity policy
network, the algorithm ultimately generates clue paths, which are then outputted
as the final result. The specific calculation process is shown in Algorithm 1.
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Step 1: Obtain the candidate relationships for the current entity. First, ac-
quire the historical state information Ht of the current entity es; then obtain the
relationship policy network; filter the relationship policy network; and finally, get
the candidate relationships rt.

Step 2: Obtain the candidate entities for the current entity. First, acquire
the entity policy network for the current entity es; then filter the entity policy
network; and finally, get the candidate entities et.

Algorithm 1: Policy Network Construction Algorithm
Input: Current moment entity embedding es, given query relation rq, relation

candidate set Rt and candidate action set Ai

Output: N search paths
1 for i < N do
2 while step < I and not success do
3 Ht = GRU([es ⊕ rq], Ht−1) //Obtain the current state
4 πh

θ (rt|st) = softmax(RtW2ReLU(W1[Ht, es, rq])) //Obtain relation
strategy network

5 πl
θ(es|st) = softmax(AiW4ReLU(W3⌈Ht, es, rq, rt⌉) //Obtain entity
strategy network

6 πl′
θ (rt|st) = πl

θ(et|st)bi //Perform filtering
7 select et from πl′

θ //Obtain candidate entity
8 Obtain a candidate triple for the current entity (es, rt, et)

9 end
10 Obtain a candidate path (es, rt, et, rt+1, et+1, ..., rI , eI)

11 end

6 Experiment And Analysis

6.1 Datasets and Experimental Settings

Table 1: Statistical Summary of Temporal Knowledge Graph Datasets
Dataset ICEWS14 ICEWS05-15 ICEWS18 GDELT YAGO

entity 7128 10,488 23,033 7,691 10,623
relation 230 251 256 240 10

train triple 74,845 368,868 373,018 1,734,399 136,770
valid triple 8,514 46,302 45,995 238,765 10,000
test triple 7,371 46,159 49,545 305,241 14,770

time interval 24 hours 24 hours 24 hours 15 mins 1 year

This section introduces the five temporal KG datasets used in experiments:
GDELT (Global Database of Events, Language, and Tone [14]), ICEWS14,
ICEWS05-15, ICEWS18 (sourced from the Integrated Crisis Early Warning Sys-
tem [15]) and YAGO. Dataset statistics are provided in Table 1.

While static knowledge graph filtering effectively removes known facts from
corrupted rankings during training/validation/testing, it is unsuitable for tem-
poral knowledge graph reasoning under extrapolation. To enable more accurate
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evaluation of temporal knowledge graph completion methods, this paper adopts a
time-aware filtering approach. This method filters out only quadruples occurring
at the specific query timestamp during metric calculation, ensuring evaluation
accuracy and reliability. The hyperparameters used in the model affect both the
training process and accuracy of the final model predictions. In the experiments,
the model’s accuracy was boosted by continuously tuning the hyperparameters.
The main hyperparameter settings for the TS-TKGC model are shown in Ta-
ble 2. Note: Except for the learning rate (α) and dimension of the GRU vectors,
which may vary across the four datasets, all other parameters are the same across
the datasets.

Table 2: TS-TKGC Model Parameters
Parameter Value

I 2
α 0.5/0.5/0.4/0.3

learning rate 0.001
vector dimension 100

number of GRU layers 2
number of EI-KGC layers 2

maximum GRU sequence length 10
GRU vector dimension 100/100/100/200

We utilize Mean Reciprocal Rank (MRR), Hits@N, and Mean Absolute Error
(MAE) for evaluation. MRR and Hits@N provide complementary performance
assessment, while MAE specifically evaluates temporal sensitivity in time pre-
diction experiments.

6.2 Comparative Experiment

For entity prediction experiments, we first replace the entity in the quadruple
(eh, r, et, t) participating in the test with each element in the entity set, and then
calculate the scores of each quadruple according to the scoring function. After
obtaining all scores, arrange the quadruple in ascending order in the score order
to obtain the score table, and obtain the correct quadruple position.

Table 3: Results of Entity Prediction Experiment on ICEWS14 Dataset
Model MRR Hits@1 Hits@3 Hits@10

RE-NET 0.367 0.226 0.332 0.481
CyGNet 0.264 0.172 0.371 0.403
TiRGN 0.439 0.343 0.502 0.586

RE-GCN 0.253 0.162 0.478 0.532
TS-TKGC(ours) 0.452 0.341 0.504 0.572

We compare our model with previous classic temporal knowledge graph com-
pletion models, including RE-NET, CyGNet[16], TiRGN[17], RE-GCN, to verify
the effectiveness of the TS-TKGC model. To evaluate the performance of these
models, the TS-TKGC model conducted detailed comparative experiments on
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the ICEWS14, ICEWS05-15, ICEWS18, GDELT and YAGO dataset. MRR,
Hits@1, Hits@3 and Hits@10 are selected as evaluation indicators.

As shown in Tables Table 3 - 7: 1) On the ICEWS14 and YAGO datasets, TS-
TKGC model obtains optimal performance in the MRR, Hits@1 and Hits@3 met-
rics compared to other baseline models. 2) On the ICEWS05-15 and ICEWS18,
compared with other baseline models, the TS-TKGC model obtains the opti-
mal performance in the MRR, Hits@1, Hits@3 and Hits@10 metrics. 3) On the
GDELT dataset, compared with other baseline models, the TS-TKGC model
obtains optimal performance in the Hits@1, Hits@3 and Hits@10 indicators com-
pared with other baseline models.

Table 4: Results of Entity Prediction Experiment on ICEWS05-15 Dataset
Model MRR Hits@1 Hits@3 Hits@10

RE-NET 0.417 0.276 0.432 0.581
CyGNet 0.384 0.292 0.371 0.483
TiRGN 0.337 0.232 0.382 0.542

RE-GCN 0.351 0.312 0.478 0.539
TS-TKGC(ours) 0.443 0.342 0.525 0.584

Table 5: Results of Entity Prediction Experiment on ICEWS18 Dataset
Model MRR Hits@1 Hits@3 Hits@10

RE-NET 0.286 0.208 0.312 0.481
CyGNet 0.269 0.172 0.271 0.403
TiRGN 0.322 0.201 0.388 0.511

RE-GCN 0.251 0.162 0.288 0.432
TS-TKGC(ours) 0.325 0.211 0.395 0.561

Table 6: Results of Entity Prediction Experiment on GDELT Dataset
Model MRR Hits@1 Hits@3 Hits@10

RE-NET 0.177 0.111 0.332 0.342
CyGNet 0.154 0.102 0.271 0.331
TiRGN 0.194 0.113 0.212 0.343

RE-GCN 0.161 0.102 0.278 0.298
TS-TKGC(ours) 0.192 0.117 0.344 0.389

The five comparative experiments verify that the proposed TS-TKGC model,
with its two-stage clue search and temporal reasoning modules, effectively mines
the interplay between temporal information and entity relations in temporal
knowledge graphs, achieving superior knowledge graph completion performance.

6.3 Ablation Study

To evaluate the effects of different stages and agents in first stage of the TS-
TKGC model, an ablation study was conducted on ICEWS18 and YAGO dataset.
The variants of the TS-TKGC model are: using only relation agent in first stage,
using only entity agent in first stage, and using only first stage of the model.
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As shown in Table 8 and Table 9, the most vital impact on experimental
results was observed when the second stage was completely removed, with the
greatest decrease in all indicators. For the first stage, both agents have a certain
degree of impact on final results. Thus, experiments have proven that each part
of two stages in the TS-TKGC model has an impact on the overall model, which
validates the effectiveness of each component in the model.

Table 7: Results of Entity Prediction Experiment on YAGO Dataset
Model MRR Hits@1 Hits@3 Hits@10

RE-NET 0.177 0.111 0.332 0.342
CyGNet 0.759 0.730 0.779 0.798
TiRGN 0.871 0.113 0.212 0.343

RE-GCN 0.809 0.843 0.902 0.929
TS-TKGC(ours) 0.877 0.853 0.912 0.905

Table 8: Ablation Study Results on ICEWS18
Model MRR Hits@1 Hits@10

TS-TKGC(ours) 0.325 0.211 0.561
-First Stage (Relation Agent) 0.312 0.187 0.464
-First Stage (Entity Agent) 0.321 0.202 0.401

-Second Stage 0.302 0.182 0.352

Table 9: Ablation Study Results on YAGO
Model MRR Hits@1 Hits@10

TS-TKGC(ours) 0.877 0.853 0.905
-First Stage (Relation Agent) 0.855 0.833 0.794
-First Stage (Entity Agent) 0.861 0.829 0.783

-Second Stage 0.803 0.816 0.718

6.4 Relation Prediction Experiment

To assess the effectiveness of the TS-TKGC model in relation prediction, we
conducted a relation prediction experiment on temporal knowledge graphs. The
TITer[18], RE-GCN, and CluSTeR[19] models were selected as baseline compar-
isons. For evaluation, MRR was useed as the primary metric in this section to
ensure a focused and consistent evaluation of predictive accuracy. The detailed
results of the relation prediction experiment are visualized in Fig. 4(a).

TS-TKGC consistently outperforms baselines, exhibiting narrower perfor-
mance margins in relation prediction owing to the limited candidate relation
pool. Analysis of the GDELT dataset reveals inherent limitations: abstract con-
cepts (e.g., "government") lack contextual anchors (e.g., national affiliation),
which restricts temporal reasoning and leads to performance plateaus across
models. TS-TKGC’s two-stage temporal-graph integration architecture demon-
strates superior noise resilience to such contextual ambiguities, achieving state-
of-the-art results on both ICEWS14 and GDELT while significantly outperform-
ing structure-centric baselines such as RE-GCN. This highlights the critical role
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of joint temporal-structural modeling in learning precise relational embeddings
under incomplete contextual constraints.

6.5 Time Prediction Experiment

For the time prediction experiment, given a test quadruple (h, r, t, t′), the goal is
to predict the expected time of next occurrence of fact (h, r, t). The Mean Abso-
lute Error(MAE) between predicted time and actual time is used as evaluation
metric, measured in hours. The specific results are shown in Fig. 4(b).

(a) Relation Prediction Experiment (b) Time Prediction Experiment

Fig. 4: Results of the Relation Prediction and the Time Prediction Experiment

In contrast to RE-GCN, which employs relation-aware GCN to capture struc-
tural dependencies in knowledge graphs, TS-TKGC utilizes a two-stage tempo-
ral reasoning framework to better capture temporal dynamics. Unlike TAgent
(binary terminal rewards) and TITer (Dirichlet distribution-based temporal re-
wards), TS-TKGC adopts a multi-dimensional reward mechanism to address the
sparse reward problem and facilitate accurate temporal modeling. In the time
prediction experiment, the proposed TS-TKGC achieved state-of-the-art per-
formance, demonstrating its capability to effectively model dynamic temporal
dependencies in temporal knowledge graphs.

6.6 Sensitivity Analysis Experiment

To optimize the model effectively, this paper investigates how TS-TKGC’s per-
formance varies with different hyperparameters. We designed experiments to
analyze the impact of two key hyperparameters: the maximum reasoning stepsI
and the reward balancing factor α. MRR served as the primary evaluation met-
ric, with detailed results tabulated in Table 10 and 11.

As shown in Table 10, TS-TKGC exhibits significant performance degra-
dation when the maximum reasoning steps exceed 3, aligning with findings in
prior RL-based TKGC literature. This phenomenon can be attributed to the
accumulation of noise in multi-step reasoning: while early steps capture relevant
temporal dependencies, longer reasoning chains introduce compounding errors
that ultimately impair prediction accuracy.

Table 11 lists the optimal reward balancing factors for the four datasets: 0.5
for ICEWS14, 0.5 for ICEWS05-15, 0.4 for ICEWS18, and 0.3 for GDELT. The



Two-Stage Temporal Knowledge Graph Completion 17

ICEWS subsets prioritize semantic-level learning rewards, indicating that when
temporal KG datasets share similar temporal granularity, dataset scale shows a
positive correlation with semantic-level adaptive rewards.

Table 10: Impact of Maximum Reasoning Steps I on Model Performance
I ICEWS14 ICEWS05-15 ICEWS18 GDELT

2 0.452 0.443 0.325 0.192
3 0.442 0.431 0.320 0.187
4 0.431 0.419 0.315 0.172
5 0.413 0.402 0.295 0.163

Table 11: Impact of Reward Balancing Factor α on Model Performance
α ICEWS14 ICEWS05-15 ICEWS18 GDELT

0.2 0.435 0.426 0.298 0.182
0.3 0.442 0.431 0.307 0.192
0.4 0.448 0.439 0.325 0.179
0.5 0.452 0.443 0.318 0.176
0.6 0.439 0.440 0.312 0.168

7 Conclusion

Current temporal knowledge graph completion models over-rely on timestamp
correlations while neglecting joint modeling of temporal dynamics and semantic
relationships. To address this limitation, we propose TS-TKGC, which features
two synergistic stages: Clue Search: A reinforcement learning module identifies
temporally constrained semantic pathways; Temporal Reasoning: GRU net-
works model temporal clue evolution patterns. Joint training enables synergistic
integration of temporal and structural features. Experiments on four benchmark
datasets demonstrate that TS-TKGC consistently outperforms state-of-the-art
baselines. For future research, we suggest integrating large language models for
temporal information extraction or developing more efficient mining strategies
to address current limitations in existing approaches.
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