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Abstract. Temporal knowledge graph reasoning aims to predict miss-
ing entities at future time steps, and as a critical task, it has attracted
widespread attention in recent years due to its impressive ability to cap-
ture historical correlations and forecast future events. Although existing
approaches, such as graph learning and logic rules, have partially ad-
dressed this problem, they still face limitations in modeling the uncer-
tainty of future events—especially when predicting rare or unseen facts.
To address these challenges, we propose a diffusion model based on a
selective attention mechanism (DMSA) for temporal knowledge graph
reasoning. In our method, the encoder incorporates selective attention to
emphasize key information, while the diffusion module introduces noise
to enhance the model’s capability to predict unseen events. By integrat-
ing selective attention with the diffusion module, our model improves
both its memory and its ability to predict future, unseen events. Exper-
imental results on five public datasets demonstrate that our proposed
model achieves state-of-the-art performance across multiple evaluation
metrics.

Keywords: Temporal knowledge graph · Temporal knowledge graph
reasoning · Diffusion model· Selective attention.

1 Introduction

Knowledge graphs (KGs) record facts about the real world as triples (s, r, o),
where entities serve as nodes and relations as edges, forming a graph structure.
However, traditional knowledge graphs only capture static facts and cannot re-
flect the dynamic evolution of events over time. For example, a fact such as
(China, visit,USA) may convey significantly different information at different
time points. To address this limitation, researchers have gradually incorporated
temporal information to construct temporal knowledge graphs (TKGs), which
are represented as quadruples (s, r, o, t), where s denotes the subject, r the rela-
tion, o the object, and t the timestamp. For instance, (China, visit,USA, 2023-11-15)
indicates that China visited the USA on November 15, 2023. TKGs not only
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Fig. 1. One example for TKG reasoning.

maintain the simplicity and accuracy of traditional knowledge graphs but also
dynamically capture the time-varying nature of facts, thereby playing an im-
portant role in various downstream natural language processing tasks, such as
recommendation systems [1], question answering [2], and information retrieval
[3].

Due to the inherent incompleteness of TKGs, researchers have been actively
developing efficient reasoning methods to fill in missing information. TKG rea-
soning can typically be categorized into interpolation and extrapolation. In-
terpolation reasoning aims to predict missing facts within the observed time
span—that is, given snapshots from time 0 to t, it predicts events that occurred
within that period. In contrast, extrapolation reasoning leverages historical facts
to forecast new events at future time steps (where ti > t), as illustrated in
Figure 1. Each snapshot corresponds to the facts occurring at a specific times-
tamp, and a TKG is composed of many such snapshots. This paper primarily
focuses on extrapolation reasoning, which, compared with interpolation, not only
poses greater challenges but also offers more practical value by completing future
knowledge graphs and predicting emerging events [4].

Current TKG reasoning methods primarily rely on historical information
to predict missing entities at future time steps, as illustrated in Figure 1. For
example, many approaches use GNNs to learn the structural information from
historical TKG snapshots and RNNs to capture temporal evolution patterns.
Since past events often tend to reoccur, these methods have been widely adopted
and studied. However, this reliance on historical data makes them less effective
at predicting events that have never been observed before. Moreover, using the
same historical information for all queries prevents the model from focusing on
the most relevant details, as its attention gets dispersed by irrelevant data.

Based on this analysis, we propose DMSA, a diffusion model with selective
attention for TKG reasoning, which is built on an encoder–decoder framework.
By incorporating Gaussian noise through a diffusion process, DMSA enhances
the model’s ability to predict unseen events. In addition, a selective attention
mechanism is introduced in the encoder to allow the model to autonomously
choose the most pertinent information. Specifically, we employ CompGCN [10]
as the encoder and integrate Relative Attention to select relation information
that is closely linked to the current event. By converting entities, relations, and
timestamps into a sequence prediction task based on historical snapshots—and
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by injecting Gaussian noise into the sequence to introduce uncertainty—we im-
prove the probability of accurately predicting unseen events. Finally, predictions
are generated using Time-aware ConvTransE as the decoder. Extensive experi-
ments on five public TKG datasets demonstrate that DMSA significantly out-
performs state-of-the-art methods across multiple evaluation metrics.

In summary, the main contributions of this paper are as follows:

– We propose a novel approach that introduces the diffusion process into
knowledge graph reasoning to increase the uncertainty in event represen-
tations, thereby enhancing the model’s ability to predict unseen events.

– We incorporate a selective attention mechanism in the encoder, which en-
ables the model to process information in a targeted manner within each
snapshot.

– Extensive experiments on five public datasets show that DMSA significantly
outperforms existing methods across multiple evaluation metrics.

2 Related work

Knowledge graph reasoning can be broadly categorized into static knowledge
graph reasoning and temporal knowledge graph reasoning. Below, we briefly dis-
cuss some representative methods in each category. Next, we introduce research
applications of diffusion models.

2.1 Static Knowledge Graph Reasoning

Static knowledge graph reasoning methods for temporal knowledge graphs gen-
erally ignore timestamps and directly process triples, mainly modeling the struc-
tural and semantic information of entities. TransE [5] treats relations as trans-
lation transformations when projecting entity embeddings into a latent space.
They use distance functions (such as L1 and L2 norms) to score factual triples.
DistMult [6] and ComplEx [7] represent knowledge graphs as three-dimensional
tensors and decompose them into low-dimensional vectors to learn embeddings
for entities and relations. Methods like ConvE [8] utilize transformations, bi-
linear objectives, complex embeddings, and convolutional operations to capture
relational semantics. Graph Convolutional Networks (GCNs) are representative
methods characterized by their ability to learn structural features of knowledge
graphs. R-GCN [9] is a typical graph neural network model that integrates rela-
tional information through specialized message passing and aggregation mecha-
nisms, enabling effective capture of complex patterns and dependencies in graph-
structured data. CompGCN [10] generalizes several multi-relational GCN meth-
ods and employs various composition operations to handle multi-relational graph
data.

2.2 Temporal Knowledge Graph Reasoning

Temporal Knowledge Graph (TKG) reasoning models the dynamic evolution
of entities and relations over time. Early methods such as TA-DistMult [11]
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incorporate time embeddings, while TeMP [12] leverages GNNs and RNNs to
mitigate temporal sparsity via message passing. Building on these, RE-NET
[13] uses an encoder-aggregator structure for fixed-length historical subgraphs,
and CyGNet [14] employs a replication-based mechanism to capture repetitive
patterns. EvoKG [15], RE-GCN [16], and TiRGN [17] further model dynamic
and long-term dependencies through subgraph evolution, temporal gating, and
time embeddings. Other approaches, including HGLS [18], SMiFY [19], CENET
[20], PLEASING [21], LSEN [22], and HIP [23], enhance reasoning by construct-
ing global graphs, simplifying architectures, or mining both short- and long-term
patterns. PPT [24] converts temporal knowledge graph completion into a masked
prediction task on pre-trained language models by designing dedicated prompts
for entities, relations, and time intervals, enabling explicit modeling of tempo-
ral and relational semantics. LLM-DA [25] leverages large language models to
extract interpretable temporal logical rules from historical data and dynami-
cally updates these rules with recent events, enabling accurate and adaptive
temporal knowledge graph reasoning without fine-tuning the LLMs. Yuan et
al. [26] introduces the first explainable temporal reasoning task, accompanied
by the ExplainTemp instruction-tuning dataset and the TimeLlaMA model se-
ries, enabling large language models to predict future events with step-by-step
explanations derived from temporal knowledge graphs.

2.3 Diffusion Models on Discrete Data

Diffusion models were first introduced by [27] and have since been widely ap-
plied in generative tasks such as image generation [28] and audio generation
[29], where they have demonstrated excellent performance. Diffusion-LM [30]
applied diffusion models to text processing tasks, while DiffuSeq [31] introduces
partial noise during the forward diffusion process. In the field of named en-
tity recognition, DiffusionNER [32] uses diffusion models by treating the entity
recognition task as a boundary denoising process. DiffCLR [33] brings diffusion
models into knowledge graph reasoning by leveraging its multi-step generation
process to inject uncertainty and generate distributions, thus better capturing
the multi-dimensional semantic information in queries. The DiffTGK [34] model
redefines temporal knowledge graph reasoning as a sequence prediction task by
encoding historical events as conditional inputs and gradually adding Gaussian
noise to target facts in the forward process to simulate the uncertainty of future
events, followed by restoring the target facts through a reverse denoising process.
Although many researchers have started exploring the application of diffusion
models in the field of knowledge graphs, effectively integrating diffusion models
with historical information remains an important area of study.

3 Preliminaries

3.1 Diffusion Models on Discrete Data

Diffusion models are a type of probabilistic model composed of a forward process
and a reverse process. The core idea is to represent the input data x0 as a Markov
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chain {xT ,xT−1, . . . ,x0}, where each state lies in the real space R and xT follows
a Gaussian distribution.

In the forward diffusion process, we first convert w into a continuous embed-
ding x0 ∈ Rd. This is expressed as:

x0 =
√
β0 Embed(w) +

√
1− β0 ϵ, (1)

where Embed(·) denotes the embedding operation, β0 controls the amount of
noise added in the initial step, and ϵ ∼ N (0, 1) is a random noise drawn from a
Gaussian distribution. Then, Gaussian noise is gradually added to the original
data x0 until at diffusion step T the generated sample xT approximately follows
a Gaussian distribution. Each transition from xt−1 to xt in the forward process
is given by:

q (xt | xt−1) = N
(
xt;

√
1− βt xt−1, βt I

)
=

√
βt xt−1 +

√
1− βt ϵ, t ∈ {1, · · · , T}.

(2)

In the reverse process, the model starts from the initial state xT and uses a
neural network to reconstruct the original data x0. This is expressed as:

pθ (xt−1 | xt) = N
(
xt−1; µθ(xt, t), Σθ(xt, t)

)
, (3)

where µθ and Σθ represent the mean and variance parameters computed by a
neural network.

Since the parameterization of the forward process q (xt | xt−1) does not in-
clude any trainable parameters, a training objective is needed to allow the model
to learn how to reverse this process using the noise data generated in the for-
ward process, thereby reconstructing the original data. The training objective
of the diffusion model is to maximize a variational lower bound on the marginal
likelihood log pθ(x0), which can be expressed as:

Lvlb(x0) = Eq(x1:T |x0)

[
log

q(xT | x0)

pθ(xT )
+

T∑
t=2

log
q(xt−1 | x0,xt)

pθ(xt−1 | xt)
− log pθ(x0 | x1)

]
.

(4)
However, in practice, this objective is often unstable, and various optimiza-

tion techniques are required for convergence. Therefore, Ho et al. [35] proposed a
simplified alternative objective by expanding and reweighting the KL divergence
terms in Lvlb, which is eventually transformed into a mean squared error (MSE)
loss:

Lsimple(x0) =

T∑
t=1

Eq(xt|x0)

∥∥∥µθ(xt, t)− µ̂(xt,x0)
∥∥∥2, (5)

where µ̂(xt,x0) is the mean of the posterior q(xt−1 | x0,xt), and µθ(xt, t) is the
mean of pθ(xt−1 | xt). To better suit the task of TKG reasoning, Cai et al. [34]
extend this simplified MSE loss to the case where the continuous values of x0 are
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approximated or mapped to discrete representations. The objective is expressed
as:

Le2e
simple (x0) = Eqϕ(x0:T |x0)

[
T∑

t=2

∥x0 − fθ (xt, t)∥2
]

+Eqϕ(x0:1|x0)

[
∥x0 − fθ (x1, 1)∥2 − log pθ (w | x0)

]
,

(6)

where the first expectation term is used to train the prediction model fθ(xt, t) to
accurately recover x0 from steps 2 to T , effectively reducing errors in practice;
the second expectation term contains two parts: the first part ensures that the
predicted x0 is close to the embedding Embed(w), while the second part focuses
on accurately mapping x0 back to the discrete text w.

3.2 Task Definition

Temporal knowledge graph extrapolation aims to predict entities at future times-
tamps. Given a query q = (s, r, ?, t), where q ∈ Qt, and the event at timestamp
t is unknown, the task is formally defined as computing the conditional proba-
bility of the missing object o given the known subject s, relation r, timestamp
t, and historical information Gt0:ti before t:p(o|s, r, t, Gt0:ti) where ti < t.

In this paper, we represent a temporal knowledge graph as G = {E ,R, T ,F},
where E , R, T , and F denote the entity types, relation types, timestamp types,
and fact set, respectively. Additionally, a TKG can be viewed as a series of
snapshots {G0, G1, . . . , Gt, . . .}, where Gt contains all quadruples occurring at
timestamp t. The query set is denoted as Q, and a TKG consists of quadruples of
the form (s, r, o, t), where s, o ∈ E , r ∈ R, and t ∈ T . The embedding dimension
is denoted as d.

4 Methodology

In this section, we provide a detailed description of our DMSA architecture,
shown in Figure 2. It mainly consists of three modules: the Selective Attention
with CompGCN module, the diffusion module, and the decoding module. The
Selective Attention with CompGCN module uses CompGCN and an attention
extraction mechanism to capture information from historical snapshots, with
a focus on information that is relevant to the current snapshot. The diffusion
module comprises two processes: the forward noise propagation process and the
reverse denoising process. The decoder employs Time-aware ConvTransE. In the
following, we describe each module in detail.

4.1 Selective Attention with CompGCN

Relying solely on static entity representations in TKG reasoning may cause sig-
nificant temporal information loss. Inspired by [36], we integrate static and dy-
namic components using timestamp information. Given a sequence of l temporal
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Fig. 2. Overall architecture of DMSA for temporal knowledge graph reasoning. From
the input TKG, we first extract the most recent n snapshots as short-term context.
Each snapshot is encoded by CompGCN, and Selective Attention filters out irrelevant
information. The filtered representations are then combined by the Selective Attention
with CompGCN to produce entity and relation embeddings. In parallel, the Diffusion
module applies forward noise injection and reverse denoising to model uncertainty in
the target entity embedding. Finally, the diffusion-based prediction is concatenated
with the Time-aware ConvTransE output, and the fused vector is used for the final
fact prediction.

snapshots with query timestamp t, the static embedding est captures invariant
features of entity s, while the dynamic embedding edt models temporal variations:

edt = We
1t+ sin(2πWe

2t), (7)

where We
1 ∈ R1×d and We

2 ∈ R1×d are learnable parameters capturing linear
changes and periodic fluctuations, respectively.

The final entity representation is obtained by concatenating the static and
dynamic embeddings and transforming them:

et = We
3(e

s
t ⊕ edt ), (8)

with We
3 ∈ Rd×2d adjusting the balance between the two.

To capture evolution, we process l consecutive snapshots using CompGCN:

xt = CompGCN(et, r), (9)

yielding node representations {Xt−l, . . . ,Xt} that reflect changes in entities and
relations. A GRU then encodes the temporal sequence to capture hidden depen-
dencies:

vt = GRU(xt,vt−1), (10)

where vt is the updated representation of entity s at timestamp t.
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Since not all adjacent snapshots are relevant, we need to filter useful informa-
tion. First, mean pooling is applied to the relation embeddings associated with
entity e at time t to form a reference vector:

rm =
1

|R(et)|
∑

r∈R(et)

r. (11)

Then rm is then combined with embeddings from the past l timestamps and
passed through a feedforward layer to produce attention weights:

Bj = softmax (Wb (vt−j + rm)) , j ∈ [0, l], (12)

where Wb ∈ Rd×d and B0 is initialized to zero. Finally, a weighted sum of the
current and past embeddings is computed:

ve
t = B0vt +

l∑
j=1

Bjvt−j . (13)

Selective attention with CompGCN effectively combines recent interactions
with periodic patterns to refine the entity representation over time.

4.2 Diffusion Module

The diffusion process consists of a forward process and a reverse process. We
treat the historical information as input to predict the current missing en-
tity. The representations of entities in the historical snapshots are denoted as
ve
0:l−1 ∈ R(l−1)×d, and the representation of the target object is denoted as

ve
l ∈ R1×d. To better capture the time information, we use relative time repre-

sentations by calculating the time interval between each snapshot in Q0:l−1 =
{(ve

0, r0, t0), · · · , (ve
l−1, rl−1, tl−1)} and the current snapshot, and encoding these

intervals with an embedding function.

Forward Process Following the method in [34], after obtaining the embedding
ve,0 of the object sequence, we gradually add randomness to the target object
ve,0
l during the forward process. Specifically, the forward process is constructed

as a Markov chain with Gaussian transitions. For each object ve,0
i , we define:

q
(
ve,m
i | ve,0

i

)
=

{
ve,0
i , if i < l,√
β̄m ve,0

i +
√

1− β̄m ϵ, if i = l,
(14)

β̄m = 1− δ · (βmin +
m− 1

M − 1
(βmax − βmin)), (15)

where ϵ ∼ N (0, 1) is a random Gaussian noise,δ ∈ [0, 1] controls the noise scale,
and β̄m is the cumulative product that controls the noise level at each diffusion
step. The diffusion process is performed for m ∈ {1, 2, · · · ,M}, where M is the
maximum number of forward steps. βmin and βmax denote the lower and upper
bounds of the noise, respectively, with βmin < βmax ∈ (0, 1).
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Reverse Process In the reverse process, we denoise the noisy representation
while using the time and relation information from historical snapshots as con-
ditions. Specifically, we incorporate the encoded information of the relations r
and the time intervals ∆t into the denoising process, as expressed by:

pθ
(
v̂m−1 | v̂m, r, t, m

)
= N (v̂m−1;µθ(v̂

m, r, t, m), Σθ(v̂
m, r, t, m)), (16)

where v̂m−1 = vm
0:n−1⊕v̂m−1

n . In the first step of the reverse process, we set v̂m =
vm. At this stage, we use a Transformer architecture to compute µθ(v̂

m, r, t, m)
and Σθ(v̂

m, r, t, m). This is represented as:

fθ(v̂
m, r, t, m) = v̂0,

v̄m = v̂m + r+ t+m,
(17)

where fθ denotes the Transformer, and m represents the step embedding used
to adjust the impact of different noise levels [31]. Finally, the final prediction is
generated through a fully connected layer:

Pdiff = softmax((MLP(vt ⊕ r⊕ v̄m))V⊤ +Hhistory), (18)

where V⊤ represents the evolving representations of all entities output by the
selective attention with CompGCN at each moments, Hhistory is an embedding
representation that records the frequency of entity and relation occurrences in
the historical data. We assign a value of λ to the subject and relation pairs
with a frequency greater than 0, and λ to the subject and relation pairs with
a frequency less than 0. This operation is similar to previous methods [20] [21]
[22].

4.3 Time-aware ConvTransE

Prior work has shown that Time-aware ConvTransE is effective as a temporal
knowledge graph decoder [17]. We thus adopt it as our decoder backbone. Time-
aware ConvTransE takes three inputs: entity embeddings, relation embeddings,
and timestamp embeddings. Since the entity and relation embeddings come from
previous modules, we next introduce the timestamp embedding.

Timestamp Embedding We represent timestamps by considering both rela-
tive and absolute aspects. Specifically, we use a sine function for periodic (rel-
ative) changes and a linear function for non-periodic (absolute) changes. These
features are fused via element-wise addition:

ht = hp
t + hnp

t , (19)

hp
t = sin(W1,ωt+ bp), (20)

hnp
t = W2,ωt+ bnp, (21)

where W1,ωRd×d and bp are learnable parameters for periodic features, and
W2,ωR1×d and bnp are for non-periodic features. The resulting ht is used as the
timestamp embedding.
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Prediction We feed the entity embedding vt, relation embedding rt, and times-
tamp embedding ht into Time-aware ConvTransE to get:

Pd = softmax(f(vt, rm,ht)), (22)

where f(·) is the mapping function of Time-aware ConvTransE.
To balance the diffusion module and the Time-aware ConvTransE, we fuse

their outputs as follows:

P = γPd + (1− γ)Pdiff, (23)

where γ is a hyperparameter, and Pdiff is the prediction from the diffusion.

4.4 Model Training

The main training goal is to minimize a combined loss:

L = αL1 + (1− α)L2, (24)

where α ∈ [0, 1] balances the losses from the Selective Attention with CompGCN
module and the Time-aware ConvTransE. The Selective Attention with CompGCN
module minimizes the cross-entropy loss:

L1 = −
|Q(t)|∑
i=1

yi log (Pdiff) , (25)

where |Q(t)| as the number of queries at timestamp t, yi the true label for the
i-th query, and Pdiff the predicted probability.

Similarly, the Time-aware ConvTransE minimizes a cross-entropy loss:

L2 = −
|Q(t)|∑
i=1

yi log (Pd) , (26)

where Pd as the predicted probability for the target entity. Jointly optimizing
these losses allows the model to capture both historical information and unseen
events information, enhancing reasoning on temporal knowledge graphs.

5 Experiments

In this section, we present a series of experiments to evaluate the performance of
DMSA. We compare DMSA with various state-of-the-art TKG models. Then we
conduct an ablation study to evaluate the effectiveness of different components
of the model. Lastly, we explore the impact of hyperparameters on the overall
model performance.
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Table 1. Statistics of the datasets.

Dataset Entities Relations Training Validation Test Time gap Snapshots

ICEWS14 12,498 260 323,895 - 341,409 1 day 365
ICEWS18 23,033 256 373,018 45,995 49,545 1 day 304
GDELT 7,691 240 1,734,399 238,765 305,241 15 mins 2,976
YAGO 10,623 10 161,540 19,523 20,026 1 year 189
WIKI 12,554 24 539,286 67,538 63,110 1 year 232

5.1 Setup

Datasets We utilize three real-world event-driven temporal knowledge graph
datasets—ICEWS14[11], ICEWS18 [4], and GDELT[37]. Meanwhile, we utilize
two widely used public knowledge graph datasets, YAGO [38] and WIKI[39].
ICEWS14 and ICEWS18 are derived from the Integrated Crisis Early Warning
System (ICEWS), capturing a wide range of international political events across
different periods. GDELT is a dataset sourced from global news media, recording
human societal behaviors, while YAGO and WIKI are subsets of YAGO3 and
Wikipedia, respectively.

To ensure fair comparisons with baseline models, we follow the dataset parti-
tioning strategies employed in previous studies. For all datasets except ICEWS14,
we divide the data into training, validation, and test sets with an 8:1:1 ratio.
Since the original ICEWS14 dataset does not provide a validation set, we split
it into training and test sets only. The detailed statistics for each dataset are
presented in Table 1.

Evaluation Metrics We employ Mean Reciprocal Rank (MRR) and Hits@N
as the evaluation metrics, which are standard indicators used to assess the per-
formance of temporal knowledge graph models. In order to maintain consistency
with baseline methods, we adopt the same evaluation standards. MRR calculates
the mean reciprocal of the rank of the correct answer, while Hits@N measures
the proportion of correct predictions ranked within the top N positions. A higher
ranking of the correct entity leads to higher MRR and Hits@N values.

Baselines We compare DMSA with several recent approaches, which fall into
two main categories: static knowledge graph reasoning methods and tempo-
ral knowledge graph reasoning methods. The static reasoning methods include
TransE [5], DistMult [6], ComplEx [7], ConvE [8], R-GCN [9], and CompGCN
[40]. Temporal knowledge graph extrapolation methods include RE-NET [13],
xERTE [41], EvoKG [15], CyGNet [14], HIP [23], RE-GCN [16], TiRGN [17],
HGLS [18], CENET [20], LSEN [22], SiMFy [19], and PLEASING [21].

Implementation Details For all experiments, we employ the Adam optimizer
with a learning rate of 0.001, a batch size of 1024, and an embedding dimen-
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sion of 200. A dropout rate of 0.2 is applied uniformly across all modules to
mitigate overfitting, while the number of GNN layers is chosen from {1, 2, 3, 4}
based on validation performance. In line with prior work [20], we constrain the
hyperparameter λ to values in {2, 3, 4} and set the hyperparameter α to 0.1,
and the length of historical information l is set to match the number of diffusion
steps M , chosen from {1, 2, 4}. All experiments are conducted on an NVIDIA
Tesla A100 GPU (40GB) using PyTorch, with 128GB of memory and 100GB of
storage. Required environments, codes, and details of commands are available
at https://github.com/AAristotle/DMSA.

Table 2. Model performance comparison on five TKG datasets. All values are in
percentage (%). The best results are in bold, and the second-best are underlined.

Model ICEWS14 ICEWS18 GDELT YAGO WIKI

MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3

TransE 18.65 1.12 31.34 17.56 2.48 26.95 16.05 0.00 26.10 48.97 46.23 62.45 46.68 36.19 49.71
DistMult 19.06 10.09 22.00 22.16 12.13 26.00 18.71 11.59 20.05 59.47 52.97 60.91 46.12 37.24 49.81
ComplEx 24.47 16.13 27.49 30.09 21.88 34.15 22.77 15.77 24.05 61.29 54.88 62.28 47.84 38.15 50.08
ConvE 40.73 33.20 43.92 36.67 28.51 39.80 35.99 27.05 39.32 62.32 56.19 63.97 47.57 38.76 50.10
R-GCN 26.31 18.23 30.43 23.19 16.36 25.34 23.31 17.24 24.96 41.30 32.56 44.44 37.57 28.15 39.66
CompGCN 26.46 18.38 30.64 23.31 16.52 25.37 23.46 16.65 25.54 41.42 32.63 44.59 37.64 28.33 39.87

EvoKG 18.30 6.30 19.43 29.67 12.92 33.08 11.29 2.93 10.84 55.11 54.37 81.38 50.66 12.21 63.84
xERTE 32.92 26.44 36.58 36.95 30.71 40.38 » 1 day 58.75 58.46 58.85 » 1 day
RE-NET 45.71 38.42 49.06 42.93 36.19 45.47 40.2 32.43 43.40 65.16 63.29 65.63 51.97 48.01 52.07
CyGNet 48.63 41.77 52.50 46.69 40.58 49.82 50.29 44.53 54.69 63.47 64.26 65.71 45.50 50.48 50.79
RE-GCN 41.61 33.81 44.76 37.92 28.90 41.44 28.66 21.52 30.50 65.69 59.98 68.70 44.86 39.82 46.75
TiRGN 45.13 37.03 48.80 39.58 30.41 43.41 31.58 23.78 33.69 - - - - - -
HGLS 40.63 31.97 43.90 39.22 28.96 43.34 » 1 day 59.02 48.17 65.73 49.63 39.62 55.17
HIP 50.57 45.73 54.28 48.37 43.51 51.32 52.76 46.35 55.31 67.55 66.32 68.49 54.71 53.82 54.73
CENET 53.35 49.61 54.07 51.06 47.10 51.92 58.48 55.99 58.63 84.13 84.03 84.23 68.39 68.33 68.36
LSEN 54.82 51.15 55.53 52.12 48.37 52.95 59.47 57.44 59.38 88.07 86.70 88.61 76.13 74.01 76.82
SiMFy 54.81 47.99 58.54 46.87 39.29 51.00 47.40 40.17 50.81 - - - - - -
PLEASING 55.82 51.50 56.99 54.98 50.09 56.66 59.12 55.96 59.85 84.36 84.27 84.38 68.13 67.97 68.28

DMSA 58.41 53.54 59.62 57.08 51.40 58.95 62.49 58.29 63.44 89.20 88.10 89.50 79.32 77.31 80.08

5.2 Results

Table 2 presents the entity prediction results on five TKG datasets, where DMSA
outperforms most baselines. Static reasoning methods perform poorly because
they cannot effectively model temporal dynamics. Although xERTE offers in-
terpretability, it struggles with computational efficiency on large datasets like
GDELT. SiMFy, despite its simple structure and fast convergence, delivers sub-
optimal overall results. LSEN focuses solely on historical data and thus misses
future trends, even though it performs well on GDELT where historical correla-
tions are strong. Notably, DMSA improves MRR by 3.02% on GDELT compared
to LSEN. Both CENET and PLEASING achieve excellent results through con-
trastive learning, but their two-stage training leads to high computational over-
head. Compared with PLEASING, DMSA boosts MRR by 2.59% on ICEWS14
and by 2.1% on ICEWS18. On two public TKG datasets (YAGO and WIKI),
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DMSA achieves the best performance, while CENET and PLEASING show simi-
lar results. The YAGO and WIKI datasets rely less on historical snapshots, which
poses a challenge for models that depend solely on past data. For example, the
low frequency of relevant facts in the WIKI dataset makes it difficult for many
models to correctly infer subject entities.

Table 3. Performance comparison on ICEWS14, ICEWS18, YAGO, and WIKI
datasets. All values are in percentage. The best score is in bold. w/o denotes without.
SA denotes Selective Attention with CompGCN. TC denotes Time-aware ConvTransE.

Model ICEWS14 ICEWS18 YAGO WIKI

MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3

DMSA 58.41 53.54 59.62 57.08 51.40 58.95 88.14 86.80 88.59 79.32 77.31 80.04
-w/o SA 54.22 50.44 54.98 51.61 47.00 53.20 80.66 78.82 81.59 69.04 68.58 69.13
-w/o Diffusion 57.67 52.58 59.02 55.77 49.93 57.71 85.58 84.77 85.49 78.32 76.23 79.13
-w/o TC 50.96 47.95 50.77 45.14 42.48 44.83 84.47 84.21 84.38 68.78 68.39 68.57

5.3 Ablation

Table 3 shows the ablation study results on four datasets. ICEWS18 and ICEWS14
are event-based knowledge graphs, while YAGO and WIKI are public knowledge
graphs, each with its own characteristics. We systematically removed key mod-
ules from DMSA to assess their contributions, and overall, the removal of any
module led to a drop in performance.

Removing the Selective Attention with CompGCN reduced the model’s abil-
ity to capture recent historical details, which negatively affected its performance
in modeling recent events. This module’s removal caused the largest drop in
performance, highlighting the critical role of historical data in TKG reasoning.
Similarly, removing the Diffusion module resulted in only a small overall de-
crease in MRR; however, its impact was more noticeable on the YAGO and
WIKI datasets than on ICEWS14 and ICEWS18. This difference reflects the
varying data characteristics of the datasets and supports our design goal of in-
troducing uncertainty to improve the recognition of unseen entities. In addition,
removing the Time-aware ConvTransE module significantly hurt DMSA’s pre-
diction performance, further confirming its effectiveness.

5.4 Sensitivity Analysis

To explore the importance of historical facts on prediction performance, we con-
ducted a sensitivity analysis. First, we examined the impact of historical infor-
mation length on model performance (as shown in Figure 3). The results indicate
that, in the YAGO and WIKI datasets, the model’s performance significantly
declines as the length of historical information increases, while in the ICEWS
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Fig. 3. Performance of DMSA under different length of history length l in terms of
MRR and Hits@3 (%).
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Fig. 4. Performance of DMSA under different length of CompGCN layers in terms of
MRR Hits@1 and Hits@10 (%).

datasets, performance remains relatively stable with no obvious decline. This
suggests that historical information plays a vital role in temporal knowledge
graph reasoning.

Next, we analyze the impact of the number of CompGCN layers on model
performance, as shown in Figure 4. As the number of layers increases, the per-
formance of DMSA decreases. This is due to the problem of over-smoothing
caused by too many CompGCN layers. On the YAGO dataset, the model per-
formance declines significantly as the number of CompGCN layers increases. In
ICEWS18, the performance decreases more slowly. The WIKI dataset requires
multiple CompGCN layers to extract features, and as the number of layers in-
creases, performance improves. By adjusting the number of CompGCN layers
on the validation set, DMSA can achieve the best performance.

6 Conclusion

In this paper, we propose DMSA, a novel model for temporal knowledge graph
reasoning. DMSA leverages historical information and introduces noise to en-
hance the model’s ability to predict unseen facts in knowledge graphs. By incor-
porating a selective attention mechanism, the model can focus on the historical
information that is most relevant to the current query. Entities are predicted
through decoding using Time-aware ConvTransE. Experimental results show
that DMSA significantly outperforms existing methods, highlighting its promise
for advancing temporal knowledge graph reasoning. In future work, we will focus
on addressing the uncertainty in entity representations within temporal graphs
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to better capture event evolution and improve the modeling of unseen events.
Additionally, we plan to explore the use of pre-trained language models to further
enhance the semantic representation of entities.
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