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Abstract. Multi-modal RGB and Depth (RGBD) data are predominant in many
domains such as robotics, autonomous driving and remote sensing. The combina-
tion of these multi-modal data enhances environmental perception by providing
3D spatial context, which is absent in standard RGB images. Although RGBD
multi-modal data can be available to train computer vision models, accessing
all sensor modalities during the inference stage may be infeasible due to sen-
sor failures or resource constraints, leading to a mismatch between data modal-
ities available during training and inference. Traditional Cross-Modal Knowl-
edge Distillation (CMKD) frameworks, developed to address this task, are typ-
ically based on a teacher/student paradigm, where a multi-modal teacher dis-
tills knowledge into a single-modality student model. However, these approaches
face challenges in teacher architecture choices and distillation process selection,
thus limiting their adoption in real-world scenarios. To overcome these issues,
we introduce CroDiNo-KD (Cross-Modal Disentanglement: a New Outlook on
Knowledge Distillation), a novel cross-modal knowledge distillation framework
for RGBD semantic segmentation. Our approach simultaneously learns single-
modality RGB and Depth models by exploiting disentanglement representation,
contrastive learning and decoupled data augmentation with the aim to structure
the internal manifolds of neural network models through interaction and collab-
oration. We evaluated CroDiNo-KD on three RGBD datasets across diverse do-
mains, considering recent CMKD frameworks as competitors. Our findings illus-
trate the quality of CroDiNo-KD, and they suggest reconsidering the conventional
teacher/student paradigm to distill information from multi-modal data to single-
modality neural networks. Source code is available here.

Keywords: Knowledge Distillation · Cross-modal · Disentanglement Learning ·
RGBD · Semantic Segmentation

1 Introduction

Multi-modal information, such as RGB and Depth (RGBD) imagery, is becoming pre-
dominant in a plethora of diverse domains including robotics, autonomous driving, aug-
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mented reality, healthcare and remote sensing. The combination of these complemen-
tary sources of information significantly enhances environmental perception by enrich-
ing traditional 2D images with 3D spatial context provided by the Depth modality.

Despite the advantages of multi-modal learning, real-world deployment faces prac-
tical challenges. While multi-modal data may be available during training, operational
constraints often limit modality availability at inference time due to sensor failures or
budget restrictions. This can result in a mismatch between training and testing data,
which can impede the practical deployment of an RGBD multi-modal model. To ad-
dress this challenge, it is essential to design frameworks that are resilient to missing
modalities at test time, transferring multi-modal knowledge available during training
into single-modality models that operate solely on either RGB or Depth information at
inference time. To this purpose, Cross-Modal Knowledge Distillation (CMKD) frame-
works have been introduced [1]. Conversely to traditional knowledge distillation tech-
niques, which typically transfers knowledge from a large model to a smaller one using
the same input data [2], CMKD enables the transfer of information across modalities.
Existing CMKD frameworks typically adopt a teacher/student paradigm, transferring
knowledge from a multi-modal teacher to a single-modality student. However, these
methods are sensitive to design choices such as teacher architecture, fusion mecha-
nisms and knowledge distillation techniques. Moreover, they require substantial com-
putational resources associated with the training of multiple neural network models: a
multi-modal teacher and separate single-modality students, one for each target modal-
ity.

With the aim to advance cross-modal knowledge distillation for RGB and Depth im-
agery, we introduce CroDiNo-KD (Cross-Modal Disentanglement: a New Outlook on
Knowledge Distillation), a novel framework that goes beyond conventional teacher/student
paradigm, dominant in the CMKD field. Rather than relying on a multi-modal teacher
model to guide single-modality RGB or Depth models, CroDiNo-KD relaxes the need
for a teacher model through a collaborative training strategy where single-modality
models interact with each other via carefully designed loss functions. Our approach re-
moves design decisions related to the teacher architecture and fusion mechanism and
teacher/student knowledge distillation techniques. Furthermore, CroDiNo-KD reduces
training resources in terms of computational time and parameter size while achieving
superior results to recent approaches based on the common teacher/student paradigm.

Specifically, CroDiNo-KD jointly trains two single-modality neural networks us-
ing disentangled representation and contrastive learning. This process structures each
model’s internal manifold into modality-invariant and modality-specific features, cap-
turing both shared and unique information from RGB and Depth modalities. Finally,
the training process enables a flexible data augmentation strategy, eliminating the con-
straints of conventional CMKD framework that require paired augmentation techniques
between modalities.

In summary, our contributions are threefold:

(i) We introduce a novel framework for cross-modal knowledge distillation based solely
on the joint training of two single-modality models, offering an alternative to the
traditional multi-modal teacher/student paradigm;
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(ii) We are the first to explore disentanglement representation learning jointly with
contrastive learning for RGBD cross-modal knowledge distillation, demonstrating
the benefits of structuring internal models manifold into modality-invariant and
modality-specific information;

(iii) We provide insights and discussion on the advantages of our framework beyond
classification results, analyzing resource efficiency in terms of both computational
training time and model size (parameters count).

We validate the effectiveness of CroDiNo-KD on three RGBD benchmarks for se-
mantic segmentation across different application domains, demonstrating superior per-
formance compared to recent state-of-the-art methods especially designed for semantic
segmentation under cross-modal knowledge distillation.

2 Related Work

Knowledge Distillation (KD) is the process of transferring information from a large
model (teacher) to a smaller one (student). Originally envisioned in [2] for classifica-
tion tasks with the aim to provide a compact, smaller and faster model, yet perform-
ing comparably to the wider teacher model, it has been further refined and formalized
by [3], where KD has been commonly implemented via a Kullback-Leibler (KL) diver-
gence between teacher and student predictions. The KD framework can be formulated
as follows:

L = αLtask + (1− α)LKD (1)

where Ltask is the task-specific loss and LKD the KL divergence between student and
teacher predictions. By changing the way the KD loss is used, one could distill different
kinds of knowledge: response-based [4], feature-based [5] or relation-based [6].

Beyond traditional approaches, KD has also been successfully applied to multi-
modal learning [1]. Taking inspiration from the the standard KD process, one can distill
the knowledge from a multi-modal teacher to single-modality students [7], or from a
single-modality teacher to a student working on a different modality [8]. Considering
semantic segmentation, cross-modal KD has been proven to be effective over different
applications [9]. For example, studies such as [10–16] explored RGBD segmentation
with standard KD frameworks, while [17,18] performed similar experiments on RGBT
(RGB+Thermal) dataset. Following works extended the standard cross-modal knowl-
edge distillation approach by adding a generative task [19], via prototype learning [20]
or by decomposing the KD loss function into magnitude and angular terms [21].

Differently from standard learning processes, disentanglement representation learn-
ing aims to explicitly decompose the feature representation into semantic factors carry-
ing explainable and meaningful information [22]. Leveraged also in multi-modal sce-
narios (e.g., [23, 24]) it can be used to learn modality-specific and modality-invariant
features for the downstream task [25–27]. In particular, in [28] the authors success-
fully exploited disentanglement —together with adversarial learning— for cross-modal
knowledge distillation in the context of scene classification. Inspired by this pioneering
work, we further extended this research path onto dense classification, more precisely
semantic segmentation.
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Fig. 1: Overview of the CroDiNo-KD architecture, composed by two encoder-decoder
models, for both RGB and Depth modalities. In addition an auxiliary decoder and a set
of loss functions are adopted to enforce the desired disentanglement properties between
modalities, i.e., modality-invariant and modality-specific features for both RGB and
Depth information.

3 Method

With the objective to overcome the limitations of current teacher/student paradigm, here
we introduce CroDiNo-KD, a new cross-modal knowledge distillation framework that
combines disentanglement representation learning, contrastive learning and decoupled
data augmentation. Our approach simultaneously trains two single-modality models –
one for RGB and another for Depth imagery – by exploiting modality interaction and
collaboration during the training stage.

3.1 Proposed framework

The overall framework, depicted in Figure 1, consists of: i) two separate encoder-
decoder models and ii) an auxiliary decoder, all trained with a set of carefully designed
loss functions to structure the internal manifold representation of the single-modality
models into modality-invariant and modality-specific features.

Given a batch of RGB images XRGB and the corresponding Depth images XD,
with XRGB ∈ RB×H×W×3 and XD ∈ RB×H×W×1, we first encode them, via convo-
lutional neural networks, into embedding representations ZRGB and ZD, respectively.
Denoting generically Zm ∈ RB×h×w×F with m ∈ {RGB,D} we have:

Zm = Encm(Xm) (2)

where B is the batch size, H×W the spatial dimension of the RGB and Depth images,
h × w the spatial dimension of the embedding representations and F the number of
output channels.

For each modality, once the encoded representation Zm is obtained, we divide it
into two separate embeddings Zinv

m and Zspc
m , with Zinv

m , Zspc
m ∈ RB×h×w×F/2. Dur-

ing training, we then encourage Zinv
m (resp. Zspc

m ) to encode modality-invariant (resp.
modality-specific) information.
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To generate segmentation outputs, the decoder takes as input the concatenated rep-
resentation [Zinv

m : Zspc
m ], where [:] denotes concatenation along the feature dimension.

The auxiliary decoder, used only during training, follows a similar architecture but takes
only half the channel dimension as input. While the decoder included in the main model
relies on [Zinv

m : Zspc
m ] as input, the auxiliary one works separately on Zinv

RGB , Zspc
RGB ,

Zinv
D and Zspc

D to enforce every individual embedding representation to encode relevant
information for the segmentation task.

With the aim to encourage invariant representation across modalities, we introduce
a feature mixup strategy [29]. Precisely, we blended the RGB and Depth invariant em-
beddings, following the equations below, with λ ∈ [0, 1]:

Z̃inv
RGB = λZinv

D + (1− λ)Zinv
RGB

Z̃inv
D = λZinv

RGB + (1− λ)Zinv
D (3)

The augmented images Z̃inv
m are then processed by the main decoder and contribute to

the final loss computation together with the original ones.

Losses: To enhance the performance of single-modality models through mutual in-
teraction and collaboration, we design a set of loss functions that shape the models’
internal manifold. The first term is a task-specific segmentation loss, modeled through
Cross Entropy. More formally, we have:

Lm
seg = CE

(
Decm([Zinv

m : Zspc
m ]), Y

)
(4)

where CE denotes the pixel-wise cross-entropy loss, Y ∈ {1, . . . , C}B×H×W is the
ground-truth segmentation map over C classes and Decm the decoder for the modality
m ∈ {RGB,D}.

Then, to explicitly constrain embeddings to encode complementary information
(i.e., modality-invariant and modality-specific) we enforced orthogonality between the
modality-invariant and modality-specific embeddings of the same modality m ∈ {RGB,D}
as follows:

Lm
⊥ =

1

B

B∑
b=1

h∑
i=1

w∑
j=1

sim(Zinv
m [b, i, j, :], Zspc

m [b, i, j, :]) (5)

where Zm[b, i, j, :] ∈ RF/2 is the feature vector at spatial location ij in the feature map
corresponding to the b-th sample in the batch and sim(u, v) = u·v

||u||2||v||2 denotes the
cosine similarity between vectors u and v.

Furthermore, we introduce a contrastive term to bring Zinv
RGB and Zinv

D closer to-
gether, to force the representation to be invariant with respect to the modality. To this
end, we relied on the InfoNCE loss [30] with a negative Euclidean distance, contrast-
ing a positive example (i.e., an RGB-Depth pair of the same instance) with in-batch
negatives (i.e., all the remaining invariant embeddings inside the batch, both RGB and
Depth). Let p(b)m ∈ RF/2 be the L2 normalized feature vector of the b-th instance ob-
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tained via spatial average pooling from Zinv
m , that is:

p(b)m =
ρ
(b)
m

∥ρ(b)m ∥2
, with ρ(b)m =

1

hw

h∑
i=1

w∑
j=1

Zinv
m [b, i, j, :], (6)

the contrastive loss is then formulated as:

LRGB
con = − 1

B

B∑
i=1

log
exp(−∥p(i)RGB − p

(i)
D ∥2/τ)∑

m∈{RGB,D}
∑

j ̸=i exp(−∥p(i)RGB − p
(j)
m ∥2/τ)

LD
con = − 1

B

B∑
i=1

log
exp(−∥p(i)D − p

(i)
RGB∥2/τ)∑

m∈{RGB,D}
∑

j ̸=i exp(−∥p(i)D − p
(j)
m ∥2/τ)

(7)

where τ is the temperature parameter. In the first equation, the RGB modality serves
as the anchor, while in the second equation, the Depth modality takes this role. In both
cases, the numerator represents the positive pair, which corresponds to the embeddings
of the same instance across different modalities. The denominator contains the negative
samples, comprising all other invariant embeddings from both modalities within the
batch, excluding the anchor itself.

To ensure that the embeddings independently encode relevant information for the
segmentation task, we added an auxiliary segmentation loss that processes each embed-
ding individually:

Lm
aux = CE

(
DecAux(Z

inv
m ), Y

)
+ CE (DecAux(Z

spc
m ), Y ) (8)

with DecAux the auxiliary decoder.
Finally, the loss optimized by CroDiNo-KD is an unweighted combination of all the

loss terms previously introduced:

Ltot =
∑

m∈{RGB,D}

Lm
con + Lm

seg + Lm
⊥ + Lm

aux (9)

Training procedure: The training process, outlined in Algorithm 1, runs over a pre-
defined number of epochs (Nep). For each batch in an epoch, it starts by augmenting
the RGB and Depth images, as commonly done in prior works [10,31].However, unlike
conventional CMKD frameworks, which enforce paired transformations for both RGB
and Depth images, our approach relaxes this constraint by allowing independent per-
modality augmentations, a strategy we term as decoupled augmentation (lines 3–4).
Since RGB and Depth losses are computed separately, this strategy enables greater
augmentation flexibility compared to approaches based on the standard teacher/student
paradigm, where augmentation consistency across modalities is required.

Next, we extract both domain-invariant and domain-specific embeddings for RGB
and Depth images using their respective encoders (lines 5–6). To enhance domain-
invariant representations, we leverage feature mixup (line 9), which blends RGB and
Depth features, enriching the decoder’s training samples (lines 10–12). Additionally, an
auxiliary decoder is used to enforce task discrimination for both modality-invariant and
modality-specific feature representations, independently (lines 13–15).
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To accommodate disentanglement representation learning properties, we use an or-
thogonality constraint between domain-invariant and domain-specific embeddings (line
16) and we rely on a contrastive loss (line 17) to encourage the RGB and Depth repre-
sentations of the same instance to be closer to each other while ensuring separation from
other instances within the same batch, regardless of the modality. Finally, the total loss
is computed as an unweighted sum of all the previously computed losses across RGB
and Depth modalities (line 19), back propagating the signal and updating the framework
components accordingly.

Algorithm 1: CroDiNo-KD training procedure

input: RGB-Depth labeled dataset D = {(XRGB , XD, Y )(i)}Ni=1

1 for epoch ∈ {1, . . . , Nep} do
2 forall batches (XRGB , XD, Y ) ∈ D do

// Decoupled Augmentations
3 XRGB = Aug(XRGB);
4 XD = Aug(XD);

// Encoder

5 Zinv
RGB , Z

spc
RGB ← EncRGB(XRGB);

6 Zinv
D , Zspc

D ← EncD(XD);
7 for m ∈ {RGB,D} do

// Define complementary modality
8 m=D if m=RGB else m=RGB

// Feature mixup

9 Z̃inv
m ← λZinv

m + (1− λ)Zinv
m ;

// Main Semantic Segmentation task

10 Sm ← Decm([Zinv
m : Zspc

m ]);
11 S̃m ← Decm([Z̃inv

m : Z̃spc
m ]);

12 Compute Lm
seg using (Sm, S̃m, Y ) with eq. (4);

// Auxiliary Semantic Segmentation task

13 Ainv
m ← DecAux(Z

inv
m );

14 Aspc
m ← DecAux(Z

spc
m );

15 Compute Lm
aux using (Ainv

m , Aspc
m , Y ) with eq. (8);

// Disentanglement contrainsts

16 Compute Lm
⊥ using (Zinv

m , Zspc
m ) with eq. (5);

17 Compute Lm
con using (Zinv

m , Zinv
m ) with eqs. (6)-(7);

18 end
19 Ltot =

∑
m∈{RGB,D} L

m
seg + Lm

⊥ + Lm
con + Lm

aux

20 Update weights of (EncRGB , EncD, DecRGB , DecD, DecAux) by
back-propagating Ltot

21 end
22 end
23 return (EncRGB , EncD, DecRGB , DecD)
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4 Experiment

To assess the behavior of our framework, CroDiNo-KD, we conducted a comprehen-
sive experimental evaluation using three RGBD benchmarks, comparing our approach
against recent competitors in Cross-Modal Knowledge Distillation for semantic seg-
mentation. Furthermore, we performed an ablation study to examine the contributions
of individual CroDiNo-KD components and a sensitivity analysis on the hyperparame-
ter λ, which controls the feature mixup strategy across modalities. Finally, we analyze
and discuss the computational requirements of competing methods in terms of both
training time and model size (parameter counts), emphasizing the advantages provided
by CroDiNo-KD over competitors based on the conventional teacher-student paradigm.

Benchmarks: We selected three RGBD semantic segmentation datasets spanning di-
verse domains to ensure a broad evaluation: indoor scene segmentation, aerial imagery
and synthetic drone flight data. Specifically, we considered the following benchmarks:

– NYU Depth v2 [32]: dataset consisting of 1,449 pairs of indoor RGB and Depth
images, labeled with 40 semantic classes. Each image has a resolution of 480×640
and is captured using Microsoft’s Kinect. Following prior works [10, 31, 33], we
split the dataset into 795 training pairs and 654 test pairs;

– Potsdam [34]: a remote sensing dataset comprising 38 scenes of true orthophotos
with a ground resolution of 5 cm, annotated with 6 semantic classes. The dataset in-
cludes four-channel visual images (R-G-B-IR) and corresponding Digital Surface
Models (DSM). For our experiments, we used IR-G-B images and the provided
normalized DSMs. Each high-resolution 6,000 × 6,000 scene was divided into
500 × 500 crops with stride 1 and further resized to 256 × 256 due to computa-
tional constraints. This resulted in a total of 5,472 images. We followed the same
training/test split as described in [35];

– Mid-Air [36]: a synthetically generated dataset designed for low-altitude drone
flight segmentation, containing 79 minutes of flight data across different weather
and seasonal conditions. It includes RGB images and stereo disparity depth maps
annotated with 13 semantic classes. Given the large dataset size (over 400k frames)
and computational limitations, we selected only a subset of images generated using
Unreal Engine’s PLE plugin during the spring season. We further subsampled the
dataset by selecting one frame every 8 and downscaling the resolution from 1,024
× 1,024 to 256× 256. This resulted in 6,859 images, which were split into training
and test sets following the original benchmark.

Competing methods: We compare our approach against several baselines and state-of-
the-art CMKD methods for semantic segmentation. Specifically, we evaluate:

– Single-modality, either RGB or Depth, models which do not receive any distillation
supervision (referred to as single-modality);

– A full multimodal architecture, corresponding to the teacher model (referred to as
multimodal);

– Two standard knowledge distillation (KD) baselines [1] (referred to as KDv1 and
KDv2);
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– Four state-of-the-art CMKD frameworks, especially tailored for semantic segmen-
tation in multi-modal scenario.

For KD baselines, we adopt the approaches proposed in [1]. These follow a stan-
dard KD framework (Equation 1), where α controls the balance between task-specific
loss and knowledge distillation. In particular, KDv1 sets α = 0, meaning the student
model learns exclusively from the teacher’s soft labels, whereas KDv2 uses α = 0.5,
combining both the original ground-truth labels and the teacher’s soft labels equally.

Regarding state-of-the-art CMKD competing frameworks, we consider the follow-
ing approaches from the recent literature:

– KD-Net [9]: originally designed for medical imaging, KD-Net transfers knowl-
edge from a multimodal teacher network to a single-modal student to handle miss-
ing modalities. It employs a generalized KD framework [37], utilizing both the
teacher’s soft labels and bottleneck logits alongside a task-specific loss (binary
cross-entropy and Dice loss).

– Masked Generative Distillation (Masked Dist.) [19]: introduces a generative dis-
tillation task where the student learns to reconstruct a corrupted feature map using
the teacher’s features as a reference. The final loss consists of a task-specific seg-
mentation loss and a generative distillation term. For the experimental evaluation,
we use the encoder’s output as feature map to reconstruct.

– ProtoKD [20]: combines prototype learning with traditional knowledge distillation
and segmentation loss. This method captures semantic correlations across the entire
dataset by modeling intra- and inter-class feature variations, transferring similarity
maps from the teacher to the student. For the experimental evaluation, we consider
the features of the decoder just before the logits computation.

– Layer-wise Angular Distillation (LAD) [21] and Channel-wise Angular Distilla-
tion (CAD) [21]: these methods extend conventional KD approaches by incorpo-
rating angular constraints on features. Similar to KD-Net, they perform distillation
on both bottleneck features and logits. However, LAD applies layer-wise angular
constraints, while CAD operates on channel-wise angular representations.

Experimental Settings: We adopted a consistent training setup across all methods and
experiments, with 140 training epochs and batch size of 8. Optimization was performed
using the AdamW optimizer with a staring learning rate of 10−8 and a learning rate
schedule with 10 linear warmup epochs, reaching a target learning rate of 10−4, fol-
lowed by polynomial decay with power 0.9. Regarding CroDiNo-KD, the temperature
τ and the feature mixup λ hyperparameters were set to 0.07 and 0.35, respectively. For
data augmentation, we use random flipping, scaling, and cropping for both RGB and
Depth images and color jittering only for RGB images, following common practices
from previous research [10, 31]. Model performance on the test set has been evaluated
using the mean Intersection over Union (mIoU) metric. All experiments were conducted
on a single NVIDIA A40 GPU with 48 GB of memory.

Implementation details: To ensure a fair comparison, all the competing approaches
share the same architecture, which follows a convolutional encoder-decoder design. For
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each modality, the encoder is based on a ResNet-50 network with dilated convolutions5

and initialized with ImageNet-pretrained weights. In the Depth single-modality model,
the first-layer weights are initialized by averaging the three-channel pretrained weights
into a single-channel representation.

Segmentation outputs are generated using the DeepLabV3+ model [38], which inte-
grates Atrous Spatial Pyramid Pooling (ASPP) and a skip connection linking the second
convolutional layer of the ResNet backbone to the decoder.

The teacher model follows the ACNet [10] architecture, a commonly adopted multi-
modal semantic segmentation framework for RGBD data. It consists of two ResNet-
50 branches dedicated to RGB and Depth modalities, alongside a third ResNet-50
branch for fusing per-modality features. The fusion process is further refined through
an Attention Complementary Module (ACM), which applies attention pooling, a 1× 1
convolution followed by a sigmoid activation function, as introduced in ACNet. The
DeepLabV3+ decoder then processes the fused representation. Figure 2 provides an
overview of the teacher model architecture.

Fig. 2: Teacher model architecture used for the competing methods. It consists of
ResNet50 branches for i) RGB ii) Depth and iii) fused representation encoding with an
Attention Complementary Module (ACM) as proposed in ACNet [10]. A DeepLabV3+
decoder is added to generate semantic segmentation predictions.

4.1 Results

We present in Table 1 a comparison between the performances achieved by CroDiNo-
KD and the competing methods described in the previous section, in terms of mIoU
score. Specifically, we include the multi-modal teacher, single-modality models, stan-
dard KD baselines (Equation 1) and state-of-the-art competitors. We highlight models
that outperform the single-modality baseline with a green arrow and those that under-
perform the same baseline with a red arrow. To ensure a comprehensive evaluation, we

5 The final pooling operation is removed and replaced with a conv1×1 projection, followed by
batch normalization and a ReLU activation, reducing the feature dimensionality from 2048 to
1024.
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assess each benchmark in two cross-modal distillation scenarios, transferring knowl-
edge from multi-modal RGBD data to either the RGB or Depth modality.

We observe that CroDiNo-KD consistently outperforms all competitors across all
benchmarks in both RGB and Depth cross-modal distillation scenarios. For the NYUDepth
and Mid-Air datasets, the single-modality models are outperformed by the multimodal
teacher. However, in the Postdam benchmark, both CroDiNo-KD and Masked Dist. pro-
duce RGB-based models that surpass the multimodal approach, achieving mIoU scores
of 76.13 and 76.09, respectively, compared to the 74.98 mIoU achieved by the mul-
timodal teacher. Notably, our framework stands out as the only one that consistently
demonstrates improvements (green arrows) over the single-modality baselines across
all cross-modal scenarios, delivering results that surpass the state-of-the-art methods in
Cross-Modal Knowledge Distillation for the considered RGBD benchmarks.

Model NYUDepth Potsdam Mid-Air
RGB Depth RGB Depth RGB Depth

multimodal 46.92 74.98 51.21
single-modality 42.64 36.01 75.73 42.47 47.84 47.07
KDv1 [39] 43.43 (↑) 36.44 (↑) 66.32 (↓) 39.20 (↓) 47.36 (↓) 45.80 (↓)
KDv2 [39] 43.86 (↑) 36.91 (↑) 66.24 (↓) 39.38 (↓) 47.62 (↓) 45.88 (↓)
KD-Net [9] 42.78 (↑) 36.36 (↑) 73.82 (↓) 41.85 (↓) 48.32 (↑) 46.22 (↓)
Masked Dist. [19] 40.97 (↓) 34.93 (↓) 76.09 (↑) 42.43 (↓) 47.60 (↓) 47.40 (↑)
ProtoKD [20] 43.82 (↑) 37.28 (↑) 66.64 (↓) 39.27 (↓) 47.11 (↓) 45.45 (↓)
LAD [21] 43.62 (↑) 36.86 (↑) 66.80 (↓) 39.31 (↓) 48.01 (↑) 46.98 (↓)
CAD [21] 43.48 (↑) 37.16 (↑) 66.43 (↓) 38.89 (↓) 48.21 (↑) 47.09 (↑)
CroDiNo-KD 44.85 (↑) 37.60 (↑) 76.13 (↑) 42.78 (↑) 48.37 (↑) 47.91 (↑)

Table 1: Mean Intersection over Union (mIoU) performances over the three considered
benchmarks, comparing our model with the multi-modal teacher and single-modality
models, as well as state-of-the-art competitors for CMKD semantic segmentation; green
and red arrows indicate, respectively, improvement or reduction of scores with respect
to the single-modality model.

Ablation Table 2 presents the results of our ablation study, examining the contribution
of individual components and loss terms in CroDiNo-KD. Our analysis reveals that the
most significant performance drops occur when removing the auxiliary loss (Laux) and
the contrastive loss (Lcon), indicating their crucial role in the framework. The impact of
other components and loss terms remains comparable, with variations depending on the
dataset. Overall, the highest performance is consistently achieved when all components
are included, highlighting the rationale behind CroDiNo-KD.

Sensitivity Analysis We explored the impact of varying the mixup hyperparameter λ
(Equation 3) from 0.05 to 0.5, adjusting the degree of feature mixup between domain-
invariant RGB and Depth features. As shown in Table 3, performance remains relatively
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NYUDepth Potsdam Mid-Air Avg
RGB Depth RGB Depth RGB Depth

w/o L⊥ 43.98 37.24 75.88 42.48 48.15 47.58 49.22
w/o Lcon 43.10 37.96 75.53 42.31 48.46 47.26 49.11
w/o Laux 44.84 37.62 75.55 42.99 47.08 46.44 49.09
w/o mixup 44.82 37.48 75.52 42.36 48.19 47.47 49.31
w/o dec. aug. 43.62 37.49 75.92 42.37 48.31 47.30 49.17
Original 44.85 37.60 76.13 42.78 48.37 47.91 49.61

Table 2: Analysis of the contributions of all the components of CroDiNo-KD in terms
of mIoU.

stable across this range, with no significant variation as highlighted by the standard
deviation.

Segmentation examples Some qualitative segmentation examples on the Potsdam dataset
are presented in Figure 3. Here, we compare our method with best performing com-
petitors (KD-Net and Masked Dist.) and the single-modality baseline. The analysis fo-
cuses on the RGB modality, as it provides greater visual detail. The results clearly show
that all the CMKD frameworks provide a more precise and reliable segmentation mask
compared to the one produced by the single-modality baseline. Among the different ap-
proaches, we can observe that the quality of segmentation examples is consistent with
the quantitative results we have reported above.

λ
NYUDepth Potsdam Mid-Air
RGB Depth RGB Depth RGB Depth

0.05 44.55 37.66 75.90 42.66 48.16 46.82
0.1 44.67 37.72 76.09 42.71 47.95 46.96
0.2 44.64 37.82 76.06 42.59 48.17 47.04
0.35 44.85 37.60 76.13 42.78 48.37 47.91
0.5 44.53 37.50 75.99 42.39 48.13 47.41

std 0.13 0.12 0.09 0.15 0.15 0.44
Table 3: Sensitivity analysis on the feature mixup hyperparameter λ.

To further inspect the behavior of our model, in Figure 4 we depict the output of each
per-modality branch, separately, on a few samples coming from the MidAir dataset. It
could be noted that the input features may provide complementary information for the
segmentation task, for example, in the second row the road is perfectly detected via the
RGB sensor, while in the third row the Depth map provides useful information given
the lack of visibility, due to fog, on the RGB image.

Training time and model size To further emphasize the advantages of CroDiNo-KD,
we compare models performance in terms of total training time and model size (param-
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RGB single-modality KD-Net Masked Dist. CroDiNo-KD Ground Truth

Fig. 3: Example of qualitative results from Potsdam dataset.

eters count). Table 4 presents the complete training time for all competing methods on
the MidAir dataset for training both RGB and Depth single-modality models. We report
the training time6 for the distillation process (referred as Main), the one for the teacher
training (referred as Teacher) and the total one (referred as Tot.) CroDiNo-KD exhibits
the shortest training time for the distillation process, completing both RGB and Depth
single-modality models training in less than twenty-one hours. Furthermore, unlike our
approach, all CMKD methods require pre-training a teacher model, adding an extra 14
hours overhead to the total training time. Such analysis clearly demonstrates the advan-
tage, in terms of training time, of CroDiNo-KD over standard teacher/student CMKD
frameworks.

Table 5 compares the number of parameters required by competing frameworks
during training. We categorize the parameters into: those required for the main archi-
tecture (Main), those used for auxiliary tasks which are discarded during inference
such as the generative decoder in the Masked Dist. model (Aux), the parameters of the
teacher model (Teacher) and the total per framework parameters (Tot.). CroDiNo-KD
has fewer parameters in its main architecture compared to competing models, due to the
practical choice to reduce the encoder’s extracted features to accommodate the disen-
tanglement representation process. The auxiliary parameters in CroDiNo-KD, associ-
ated with the auxiliary decoder, remain negligible compared to the overall model size.
Furthermore, by eliminating the need for a computationally demanding multi-modal
teacher, our approach requires less than half the parameters of the second smallest
CMKD framework, thus highlighting the parameter-efficient design of CroDiNo-KD.

6 Training times are reported in GPU hours, meaning the equivalent training duration without
parallelization.
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Model GPU hours
Main Teacher Tot.

Single-Modality 14h 52m - 14h 52m
KDv1 / KDv2 22h 14h 36h
KD-Net 22h 46m 14h 36h 46m
Masked Dist. 47h 22m 14h 61h 22m
ProtoKD 25h 02m 14h 39h 02m
LAD 22h 26m 14h 36h 26m
CAD 38h 24m 14h 52h 24m
CroDiNo-KD 20h 30m - 20h 30m
Table 4: Training time in GPU hours.

Model Num. of Params.
Main Aux Teacher Tot.

Single-Modality 80M - - 80M
KDv1 / KDv2 80M - 98M 178M
KD-Net 80M - 98M 178M
Masked Dist. 80M 150M 98M 328M
ProtoKD 80M - 98M 178M
LAD/CAD 80M - 98M 178M
CroDiNo-KD 68M 5M - 73M
Table 5: Models’ size in terms of pa-
rameters counts at training time.

RGB Depth RGB branch Depth branch Ground Truth

Fig. 4: Example of qualitative results from CroDiNo-KD predictions over the MidAir
dataset.

5 Conclusion

In this paper, we propose CroDiNo-KD, a novel framework for RGBD Cross-Modal
Knowledge Distillation (CMKD). Unlike conventional teacher/student approaches, our
framework facilitates knowledge transfer between single-modality models without re-
quiring a multi-modal teacher. This is achieved by leveraging disentanglement rep-
resentation learning, contrastive learning and decoupled data augmentation. Through
carefully designed loss functions, our method structures the internal manifolds of the
single-modality models to account for both modality-invariant and modality-specific
features. This approach harnesses the synergy between RGB and Depth modalities
to enhance semantic segmentation performance in scenarios where mismatches ex-
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ist between the data modalities accessible during training and inference. Our eval-
uation demonstrates the quality of CroDiNo-KD over baselines and state-of-the-art
CMKD frameworks, considering both classification performance and computational ef-
ficiency during training. Furthermore, our findings invite reconsidering the traditional
teacher/student paradigm for distilling information from multi-modal data to single-
modality neural networks in the context of semantic segmentation.

References

1. Z. Xue, Z. Gao, S. Ren, and H. Zhao, “The modality focusing hypothesis: Towards under-
standing crossmodal knowledge distillation,” in ICLR, 2022.

2. C. Bucila, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in KDD, 2006.
3. G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” ArXiv,

vol. abs/1503.02531, 2015.
4. Y. Jin, J. Wang, and D. Lin, “Multi-level logit distillation,” CVPR, pp. 24276–24285, 2023.
5. Z. Guo, H. Yan, H. Li, and X.L. Lin, “Class attention transfer based knowledge distillation,”

CVPR, pp. 11868–11877, 2023.
6. T. Huang, S. You, F. Wang, C. Qian, and C. Xu, “Knowledge distillation from a stronger

teacher,” ArXiv, vol. abs/2205.10536, 2022.
7. B. Liu, T. Zheng, P. Zheng, D. Liu, X. Qu, J. Gao, J. Dong, and X. Wang, “Lite-mkd: A

multi-modal knowledge distillation framework for lightweight few-shot action recognition,”
ACM Multimedia, 2023.

8. F. M. Hafner, A. H. Bhuyian, J. F. P. Kooij, and E. Granger, “Cross-modal distillation for rgb-
depth person re-identification,” Comput. Vis. Image Underst., vol. 216, pp. 103352, 2018.

9. M. Hu, M. Maillard, Y. Zhang, T. Ciceri, G. La Barbera, I. Bloch, and P. Gori, “Knowl-
edge distillation from multi-modal to mono-modal segmentation networks,” ArXiv, vol.
abs/2106.09564, 2020.

10. X. Hu, K. Yang, L. Fei, and K. Wang, “Acnet: Attention based network to exploit comple-
mentary features for rgbd semantic segmentation,” ICIP, pp. 1440–1444, 2019.

11. X. Xu, L. Kong, H. Shuai, and Q. Liu, “Frnet: Frustum-range networks for scalable lidar
segmentation,” ArXiv, vol. abs/2312.04484, 2023.

12. C. Hazirbas, L. Ma, C. Domokos, and D. Cremers, “Fusenet: Incorporating depth into se-
mantic segmentation via fusion-based cnn architecture,” in ACCV, 2016.

13. C. Couprie, C. Farabet, L. Najman, and Y. LeCun, “Indoor semantic segmentation using
depth information,” arXiv, 2013.

14. J. Yang, L. Bai, Y. Sun, C. Tian, M. Mao, and G. Wang, “Pixel difference convolutional
network for rgb-d semantic segmentation,” IEEE Trans. on Circ. and Sys. for Video Tech.,
vol. 34, pp. 1481–1492, 2023.

15. S. Lee, S.J. Park, and K. S. Hong, “Rdfnet: Rgb-d multi-level residual feature fusion for
indoor semantic segmentation,” ICCV, pp. 4990–4999, 2017.

16. J. Jiang, L. Zheng, F. Luo, and Z. Zhang, “Rednet: Residual encoder-decoder network for
indoor rgb-d semantic segmentation,” ArXiv, vol. abs/1806.01054, 2018.

17. Y. Lv, Z. Liu, and G. Li, “Context-aware interaction network for rgb-t semantic segmenta-
tion,” IEEE Transactions on Multimedia, vol. 26, pp. 6348–6360, 2024.

18. Y. Sun, W. Zuo, P. Yun, H. Wang, and M. Liu, “Fuseseg: Semantic segmentation of urban
scenes based on rgb and thermal data fusion,” IEEE Trans. on Autom. Sci. and Eng., vol. 18,
no. 3, pp. 1000–1011, 2021.

19. Z. Yang, Z. Li, M. Shao, D. Shi, Z. Yuan, and C. Yuan, “Masked generative distillation,” in
ECCV, 2022.



16 R. Ferrod et al.

20. S. Wang, Z. Yan, D. Zhang, H. Wei, Z. Li, and R. Li, “Prototype knowledge distillation for
medical segmentation with missing modality,” in ICASSP, 2023.

21. T. Liu, C. Chen, X. Yang, and W. Tan, “Rethinking knowledge distillation with raw features
for semantic segmentation,” WACV, pp. 1144–1153, 2024.

22. Xin Wang, Hong Chen, Zihao Wu, Wenwu Zhu, et al., “Disentangled representation learn-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

23. Y.H. H. Tsai, P. Pu Liang, A. Zadeh, L.P. Morency, and R. Salakhutdinov, “Learning factor-
ized multimodal representations,” ArXiv, vol. abs/1806.06176, 2018.

24. Y. Zhang, Y. Zhang, W. Guo, X. Cai, and X. Yuan, “Learning disentangled representation
for multimodal cross-domain sentiment analysis,” IEEE Trans. on Neural Net. and Learning
Sys., vol. 34, no. 10, pp. 7956–7966, 2023.

25. Z. Xu, T. Lin, H. Tang, F. Li, D. He, N. Sebe, R. Timofte, L. Van Gool, and E. Ding, “Pre-
dict, prevent, and evaluate: Disentangled text-driven image manipulation empowered by pre-
trained vision-language model,” CVPR, pp. 18208–18217, 2021.

26. Y. Yu, F. Zhan, R. Wu, J. Zhang, S. Lu, M. Cui, X. Xie, X.-S. Hua, and C. Miao, “Towards
counterfactual image manipulation via clip,” in ACM Multimedia, 2022.
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