
Graph Neural Network leveraging Higher-order Class
Label Connectivity for Heterophilous Graphs

Takuto Takahashi�, Itsuki Nakayama, Takahiro Mitani, Ryosuke Kikuchi, Yuya
Sasaki, and Makoto Onizuka

The University of Osaka, 1-5 Yamadaoka, Suita, Osaka, Japan {takahashi.takuto,
nakayama.itsuki, mitani.takashiro, kikuchi.ryosuke, sasaki,

onizuka}@ist.osaka-u.ac.jp

Abstract. Node classification in graph neural networks (GNNs) has been widely
applied in various fields of graph analysis. GNNs achieve high-accuracy node
classification in homophilous graphs, where nodes with the same class label tend
to be connected. However, their performance remains limited in heterophilous
graphs, where nodes with different class labels are more likely to be connected.
In particular, current GNNs derived from graph convolutional networks cannot
capture higher-order class label connectivity, which is frequently observed in
real-world heterophilous graphs. To address this issue, we propose a novel classi-
fier, Label Context Classifier (LCC), designed to capture higher-order class label
connectivity in directed graphs. LCC estimates the class label of a target node
by leveraging label context embeddings that are generated through four distinct
types of walks. In addition, our approach allows the integration of LCC and any
GNN by adaptively learning their importance. Experimental results demonstrate
that GNNs integrated with LCC outperform SOTA methods and the label con-
text embeddings improve the node classification performance in heterophilous
directed graphs.

Keywords: Graph neural networks · Node classification · Heterophilous graphs

1 Introduction

Node classification in graphs is one of the important tasks in graph analysis, aiming to
predict the class labels of nodes. This task has a wide range of applications, including
the analysis of social networks and biological networks, such as genes and proteins [3,
16,17,25]. A representative approach for node classification is Graph Neural Networks
(GNNs) [1, 4, 6, 7, 9, 11, 18, 21–23, 28]. Traditional GNNs such as Graph Convolutional
Network (GCN) [7] are designed for homophilous graphs, where nodes with the same
class labels/features are more likely to be connected. However, their effectiveness is
limited for heterophilous graphs, where nodes with different class labels/features tend to
be connected [26,27]. To improve the performance in heterophilous graphs, GNNs that
capture the characteristics of heterophilous graphs have been actively proposed [1,8–10,
22, 26, 28]. Nevertheless, there are still cases where the accuracy of these GNNs does
not surpass that of multilayer perceptrons (MLPs), which rely only on node features
without using edges. This result indicates that these GNNs do not fully leverage the
structural information of graphs [10].

2 T. Takahashi et al.

����������������

�������������
��������������
	�������������������
���������������

(a) Graph visualization

��
���

�
���

���� ��
��

���
���
��
��

��

���

��

������

�������

����

����������

�����

��
��

� � �� 	� ��

� � � � �

� � � �	 ��

� � �� �� �

�� � �� �� �
�

��

��

��

��

(b) 1st-order connectivity

���
���

�
���

���� ���
��

��
���
��
��
	��

���

�

	�������������

	�������������

	�����������

	������
���������

	������	�����

��
��

� � � �� �

� � � � �

� � �� �� ��

� � � � �

� � � � �

�

�

��

��

��

��

��

��

��

(c) 2nd-order connectivity: we only show
five rows of Course→* paths out of 25 rows

Fig. 1: The class label connectivity in the Texas dataset. (a) visualization with five class labels. (b)
1st-order connectivity (#edges) from class label in y-axis to class label in x-axis. (c) 2nd-order
connectivity from class label path (e.g., Course→Student) in y-axis to class label in x-axis.

Motivation. An interesting observation we found on the weakness of current GNNs
derived from GCN is that they fail to capture the higher-order class label connectivity
in graphs, that is, how class labels are connected through multiple hops using directed
edges. This weakness is caused by the fact that GCN transforms the node classifica-
tion problem into a simple classification problem using graph convolution operation:
after applying the graph convolution operations, GCN trains the model from embed-
ding space to class label space, so it ignores the class label connectivity among nodes,
particularly appeared in the training sets. This limitation also applies to more advanced
methods such as [24,26]. While they utilize a class compatibility matrix corresponding
to 1st-order class label connectivity, they do not capture higher-order class connectivity.

Strong higher-order class label connectivity often appears in real-world graphs. Fig-
ure 1 illustrates such examples in the heterophilous directed graph of the Texas dataset.
Figure 1 (a) visualizes the graph with five class labels (i.e., Student, Faculty, Staff,
Department, and Course). Figure 1 (b) shows the 1st-order connectivity, depicting the
number of directed edges from the class label on the y-axis to the one on the x-axis.
We observe that there is strong connectivity from Student nodes to Department nodes,
whereas there is no connectivity to Faculty nodes. Similarly, Figure 1 (c) also reveals
strong/weak 2nd-order class label connectivity. For example, the connectivity from
Course→Staff class label path to Department nodes is strong, whereas no connectiv-
ity to Faculty nodes.
Contribution. In order to capture such higher-order class label connectivity, we pro-
pose a novel classifier, Label Context Classifier (LCC), which trains the model using
label walks, which are sequences of class labels on walks. First, we extract four funda-
mental types of label walks from a target node: forward walk, backward walk, sibling
walk, and guardian walk. They are mutually exclusive, and each walk type captures a
different aspect of class label connectivity. We generate label context embeddings that
capture the label context by training a model using the label walks, an idea inspired
by word2vec [13]. Then, we train LCC using the concatenation of node features and
the label context embeddings obtained from different types of label walks. Since LCC
complements the capability of GNNs, we integrate LCC and any GNN by adaptively
learning their importance using validation loss without additional model training.

GNN leveraging Higher-order Class Label Connectivity 3

The contributions of this paper are as follows:

– We propose the Label Context Classifier (LCC), which estimates the class label of
a target node by capturing the higher-order class label connectivity across directed
graphs. LCC estimates the class label using the label context embeddings generated
from four types of label walks.

– We can integrate LCC and any GNN by adaptively learning their importance weights
without additional model training.

– Experimental results confirm that our proposal outperforms SOTA methods and
the label context embeddings actually enhance node classification performance in
heterophilous directed graphs.

The structure of this paper is as follows. Section 2 describes related work, and then
Section 3 explains preliminary knowledge. Sections 4 and 5 present the details of the
Label Context Classifier and how to integrate it and any GNN, respectively. Section
6 conducts experiments to demonstrate the effectiveness of the proposed method for
heterophilous directed graphs. Finally, Section 7 concludes this paper.

2 Related Work

Traditional GNNs Since Graph Convolutional Network (GCN) [7] has emerged, nu-
merous methods have been proposed for node classification using graph convolution.
The graph convolution ensures 1st-order node proximity, which makes the adjacent
node representations similar. Therefore, a family of GCN is suitable for homophily
graphs but not for heterophilous graphs.

Graph Attention Networks (GAT) [18] improve accuracy by employing a self-attention
mechanism that learns relative weights between connected node pairs. JK-Net [21] is a
method that aggregates outputs from multiple layers of a GNN to integrate information
at different layer levels. APPNP [4] first transforms the initial node features using an
MLP and then applies a personalized PageRank-based iterative propagation mechanism
to distribute information among nodes. In addition, sampling-based GNNs [6, 23] are
scalable methods that compute node representations using subgraphs extracted from
the input graph. GraphSAGE [6] samples a fixed number of neighbors uniformly for
each node. GraphSAINT [23] samples subgraphs and learns graph representations by
combining information from multiple subgraphs.

GNNs for Heterophilous Graphs Real-world graphs sometimes exhibit heterophily,
where nodes of different attributes/classes are more likely to be connected. There have
been several GNNs designed for heterophilous graphs [1, 8, 9, 12, 22, 28]. However,
these methods also suffer from the same limitation as the GNNs derived from GCN in
the sense that they also transform the node classification problem into a simple classi-
fication problem by training the model from embedding space to class label space, so
they ignore the class label connectivity.

H2GCN [28], a representative GNN designed for heterophilous graphs, separates
the processing of a node’s own features from those of its neighbors, utilizes high-order

4 T. Takahashi et al.

neighborhood information, and employs an appropriate aggregation function to cap-
ture complex relationships between nodes. LINKX [9] independently processes node
features and adjacency matrix information, learning both in parallel to effectively lever-
age multiple sources of information. GloGNN [8] combines local node features with
global features that capture relationships between distant but structurally similar nodes.
Recent studies have further advanced this area. CAGNNs [1] introduce a novel metric
based on the distinguishability of neighboring nodes, decomposing node features into
representation and aggregation components. A mixer module is then used to adaptively
evaluate neighboring information for each node. Adaptive Channel Mixing (ACM) [10]
is a GNN framework designed to address heterophily by adaptively combining aggre-
gation, diversification, and identity channels at the node level. ACM allows nodes to
learn different weights for each channel, effectively capturing local heterophily with-
out requiring high-order filters or increased computational resources. LG-GNN [22]
achieves high-accuracy node classification for heterophilous graphs by adaptively in-
tegrating global structural similarity and local feature similarity between nodes. This
design effectively considers node relationships during the information aggregation and
propagation process.

Other related work There are methods [24, 26] that utilize the class compatibility
matrix, which corresponds to 1st-order class label connectivity. As a specific example,
CPGNN [26] trains the class compatibility matrix using training sets and a prior belief
estimator. However, it has a weakness in that it does not capture higher-order class
connectivity.

A meta-path is a predefined sequence of node and edge types in order to capture
higher-order connectivity and semantic relationships between different entities in het-
erogeneous information networks (HIN). For example, MetaPath2Vec [2] generates
constrained random walks for learning embeddings, while HAN [20] employs attention
mechanisms to aggregate multiple meta-paths. Recent studies [19] focus on automatic
meta-path discovery to enhance model generalization. These methods assume that all
nodes and edges are typed, and meta-paths are defined based on those types. In contrast,
our approach is applicable to graphs without predefined types, and we define four types
of direction-aware fundamental walks.

node2vec [5] is a method to generate node embedding in order to capture homophily
and structural equivalence. Our proposal and node2vec share some common character-
istics, such as generating walks and using word2vec. However, there are two major
differences. First, node2vec does not use class labels as input and is not designed for
directed graphs. Second, the type of walk is limited to only a single type, and the pa-
rameters that determine the balance between breadth-first and depth-first search must
be manually set by the user. In contrast, in order to capture class connectivity, we de-
fine four types of direction-aware class label walks, and their importance is learned
automatically without manual intervention.

GNN leveraging Higher-order Class Label Connectivity 5

3 Preliminary

Graph We consider a directed graph G = (V,E), which consists of a node set V with
n nodes and a directed edge set E with m edges. The adjacency matrix A ∈ {0, 1}n×n

is defined such that aij = 1 if (vi, vj) ∈ E, and aij = 0 otherwise. Additionally, we
define the feature matrix X ∈ Rn×d, where each node is assigned a d-dimensional fea-
ture vector. Each node v has a unique class label yv ∈ {1, . . . , C} (number of classes:
C), and the class label vector is denoted as y. For clarity in explanations, we refer
to the starting node of a directed edge as the parent node and the ending node as the
child node. Additionally, we use the terms, sibling nodes and guardian nodes, which are
naturally defined based on the parent-child relationship between nodes.

We define heterophilous graphs after defining edge homophily [28]. The edge ho-
mophily [28] is calculated as follows.

H(G) =
∑

0≤i,j<n aijδ(yvi
,yvj

)

m , (1)

where δ(yvi , yvj) returns one if yvi = yvj otherwise zero. We define graphs with low
H(G) as heterophilous graphs. A lower edge homophily indicates a stronger tendency
toward heterophily.

Problem Definition (Node classification) We split a node set V into a training set
Vtrain, validation set Vval, and test set Vtest. Given adjacency matrix A, feature matrix
X , and node class labels in Vtrain and Vval, we predict the labels of the nodes in Vtest.

4 Label Context Classifier

GNNs fail to capture the higher-order class label connectivity, which often appears in
real-world graphs, as we described in Section 1. This weakness is caused by the fact that
GNNs transform the node classification problem into a simple classification problem:
GNNs train the model from embedding space to class label space, so they ignore the
class label connectivity among nodes, particularly appeared in the training sets.

To this end, we propose a novel classifier, Label Context Classifier (LCC), which
trains the model using various types of label walks in order to capture higher-order
class label connectivity. Our method consists of the following steps as illustrated in
Figure 2: (1) extract four types of fundamental label walks: a simple walk (forward
walk, backward walk) and a mixture of forward and backward walks (sibling walk,
guardian walk). They are mutually exclusive and each walk type captures a different
aspect of class label connectivity, (2) generate embeddings that capture the label context
by training a model using the label walks, and (3) train LCC using the concatenation of
node attributes and the label context embeddings obtained from different types of label
walks. This enables the model to appropriately select suitable embeddings for node
classification.

6 T. Takahashi et al.

Output layer
1. Label Walk Extraction

Forward Walk Backward Walk Sibling Walk

[C→D→E] [C→B→A] [C→C→C]

2. Label Context Embedding Generation

０

０

…

1
０…

０

One-hot vector of
target node

Win

Label Context
Embeddings Wout

Wout

One-hot vector of context
nodesʼ class label

Hidden layerInput layer

0
0
0
1
0

3. Training Classifier

[Target node → Context node → Context node →…]

...A

...B

...C

...D

...E

0
0
0
0
1

...A

...B

...C

...D

...E

A

B C

C D

ED

C
D

A

B C

C D

ED

C D
A

B C
C D

ED

C
D

A

B C
C D

ED

C
D

[D→D→D]

Node feature

Label Context
Embedding

Concat
MLP

Guardian Walk
Target node Target node Target node

Target node Input

Fig. 2: The framework of Label Context Classifier (LCC). LCC consists of three steps: 1) extrac-
tion of four types of label walks, 2) generation of label context embeddings, and 3) training a
classifier using the label context embeddings.

Table 1: Summary of label walk types and their characteristics.
Walk type Description Traverse Class label connectivity

edge direction order (#hops)
Forward Depth-first search-based walk forward only walk length
Backward Inverse of forward walk backward only walk length
Sibling Walk on sibling nodes backward + forward 2
Guardian Inverse of sibling walk forward + backward 2

4.1 Label Walk Extraction

A label walk is defined as a walk obtained from a graph where the nodes in the walk
are replaced with their labels in the training set. We refer to the first label in the walk as
the target label and the remaining labels as context labels. If a node in the walk is not in
the training dataset, we use the null label in the label walk, and it is ignored in the label
context embedding step.

Table 1 presents a summary of the characteristics of the four label walk types, in-
dicating they are mutually exclusive and each walk type captures a different aspect of
higher-order class label connectivity. Step 1 in Figure 2 shows examples of label walk
types: forward walk (C,D,E), backward walk (C,B,A), sibling walk (C,C,C), and
guardian walk (D,D,D). The details are described in the following sections.

Forward Walk The forward walk aims to capture the higher-order class label con-
nectivity directed from a target label down to neighboring context labels. We extract
forward walks using the depth-first search that follows the forward direction of directed
edges. For the given target node v0 and the length w of label walk, a forward walk (FW)
is formulated as follows:

FW (v0) = (yv0 , yv1 , . . . , yvw), s.t.(vi, vi+1) ∈ E, i ∈ {0, 1, . . . , w − 1}. (2)

The order of class label connectivity is walk length. For example, it is 1st-order if the
walk length is 1 (i.e., 1 hop).

Figure 1 shows an example: the Student nodes are more likely to connect to the
Department nodes (1st order connectivity), and those Department nodes are more likely
to connect to the Staff nodes (2nd order connectivity).

GNN leveraging Higher-order Class Label Connectivity 7

Backward Walk The backward walk is the inverse notion of the forward walk. The
reason why we introduce the backward walk in addition to the forward walk is that the
edge direction is user-defined, so both directions are useful. Also, the backward walk is
useful for the sink nodes (i.e., nodes without outgoing edges), because they cannot uti-
lize forward walks. We extract backward walks using the depth-first search that follows
the reverse direction of directed edges. Similar to the forward walk, a backward walk
(BW) is defined as follows:

BW (v0) = (yv0 , yv1 , . . . , yvw), s.t.(vi+1, vi) ∈ E, i ∈ {0, 1, . . . , w − 1}. (3)

Figure 1 shows an example: the Department nodes are more likely to be connected
from the Student nodes (1st order connectivity), and those Student nodes are more likely
to be connected from the Course nodes (2nd order connectivity).

Sibling Walk In addition to the simple forward/backward walks, we introduce the
sibling walk, our new idea which is a mixture of forward and backward walks. The
motivation for introducing sibling walks is that sibling nodes (the child nodes connected
to the same parent node) often share the same class label for certain target nodes. We
extract sibling walks by 1) traversing backward to a parent node of the target node v0,
and then 2) repeatedly traversing forward to its child nodes until reaching the desired
label walk length w. A sibling walk (SW)1 is formulated as follows:

SW (v0) = (yv0 , yv1 , . . . , yvw)

s.t. ∃p ∈ parents(v0), v1, . . . , vw ∈ children(p) \ {v0}.
(4)

where parents(v) and children(v) are parent nodes and child nodes of v, respectively.
The order of class label connectivity is 2 regardless of the walk length, because the
target node and the sibling nodes are 2-hops apart.

Figure 1 shows an example: the sibling walk captures the connectivity between the
nodes labeled as Student whose parent nodes are labeled as Course.

Guardian Walk The guardian walk is the inverse notion of the sibling walk. Similarly
to the sibling walk, the motivation for introducing guardian walks is that guardian nodes
often share the same class label for certain target nodes. Compared to the general walks
based on depth-first or breadth-first search, the sibling walk and guardian walk extract
only siblings and guardians, which mitigates the noisy effect on the downstream classi-
fier. Indeed, our experiments in Section 6 verify that the sibling walk and guardian walk
significantly improve the accuracy. We extract guardian walks by 1) traversing forward
to a child node of the target node v0, and then 2) repeatedly traversing backward to its
parent nodes until reaching the desired label walk length w. A guardian walk (GW) is
defined as follows:

GW (v0) = (yv0 , yv1 , . . . , yvw)

s.t. ∃c ∈ children(v0), v1, . . . , vw ∈ parents(c) \ {v0}.
(5)

1 Since a sibling walk traverses multiple sibling nodes without edges, it does not strictly follow
the “walk” definition in the graph theory.

8 T. Takahashi et al.

Algorithm 1 Label context embedding matrix generation

Input: adjacency matrix A, class label y, embedding dimension d′, label walk length w,
number of label walk k, epoch T

Output: label context embedding matrix Z ∈ Rn×d′

1: ### Initialize ###
2: Initialize the label context embedding zv ∈ Rd′ of node v ∈ V to a random value
3: Create an one-hot vector ℓv of class label for node v from y
4: ### Extract label walks ###
5: for v ∈ V do
6: if label walk is forward / backward walk then
7: for i = 1, . . . , k do
8: Extract label walks (forward, backward walks) for v
9: end for

10: else if label walk is sibling / guardian walk then
11: Extract a label walk (sibling, guardian walk) for v
12: end if
13: end for
14: ### Train the model for label context embedding ###
15: for t = 1, . . . , T do
16: for each label walk do
17: Calculate output embedding ℓ̂v = z⊤v Wout

18: Calculate cross entropy as loss L =
∑

ℓu∈contexts(v) LCE(ℓ̂v, ℓu)
19: Update zv , ŷv and Wout to minimize L
20: end for
21: end for
22: ### Output label context embedding matrix ###
23: return Z = [zv]v∈V

Figure 1 shows an example: the guardian walk captures the connectivity between the
nodes labeled as Student whose child nodes are labeled as Department.

4.2 Label Context Embeddings

We generate embeddings that capture the label context using the label walks. Our pur-
pose is to verify the effectiveness of leveraging label walks for capturing higher-order
class label connectivity, so we use a simple two-layer MLP to train the model to predict
the context labels using the target node as input. The idea is inspired by the Skip-gram
model of word2vec [13]. Extending our framework to use more advanced techniques,
such as transformers, is part of future work. Specifically, the target node is represented
as a one-hot node vector in the input layer, and the context labels are represented as
a one-hot label vector in the output layer. The model is trained to minimize the loss
between the estimated output and the ground-truth context labels, ensuring that the in-
ternal layer represents the embedding for a given input node.

Step 2 in Figure 2 shows an overview of generating label context embeddings. Let
Z ∈ Rn×d′

be the label context embedding matrix obtained in the hidden layer for
each node where d′ represents the dimension of the embedding vector. The output layer

GNN leveraging Higher-order Class Label Connectivity 9

LCC

GNN

＋ Node
Classification

×"!""

×"#$$

Fig. 3: Integration of LCC and any GNN. The final prediction is computed by average outputs
from LCC and GNN weighted by their importance.

embedding ℓ̂v is obtained by multiplying the label context embedding zv of the target
node v by a weight matrix Wout ∈ Rd′×C .

ℓ̂v = z⊤v Wout (6)

Then, the cross-entropy loss LCE is computed with respect to the one-hot vector ℓu of
the ground-truth context label. The total loss L over all pairs of ℓ̂v of target node v and
its context label ℓu is formulated as follows:

L =
∑

ℓu∈contexts(v)

LCE(ℓ̂v, ℓu), (7)

where contexts(v) are context labels in the label walk starting from the target node v.
Finally, the model is trained to update Z and Wout to minimize the loss L. Remember
that the context label is null if its corresponding node is not in the training set. We
ignore the null label in the model training. In addition, when the context node is the
same as the target node in a label walk, we exclude it from the loss computation to
prevent information leaks. Algorithm 1 presents the details for generating label context
embeddings.

4.3 Training Classifier using Label Context Embeddings

To perform node classification, we finally train a node classifier (LCC) that predicts the
class label of the target node using its label context embeddings. Since different types
of label walks capture different aspects of class label connectivity, we train the MLP
classifier using the concatenation of node features and all label context embeddings
obtained from different types of label walks.

5 Integration of LCC and GNN

LCC captures the higher-order class label connectivity that GNNs fail to capture. There-
fore, LCC complements the capability of GNNs. Since there are several GNNs designed
for heterophilic graphs, such as H2GCN, LINKX, and GloGNN, we integrate LCC and
one of these models and adaptively learn the importance of both LCC and GNN to
achieve high accuracy. An overview of integration is illustrated in Figure 3. Since our

10 T. Takahashi et al.

Algorithm 2 Integration of LCC and any GNN
Input: Adjacency matrix A, Feature matrix X, Class label y,

Trained node classification models (LCC,GNN), Temperature T
Output: Ensemble output YGNN+LCC

1: ### Calculate model outputs ###

YLCC = LCC(A,X,y),YGNN = GNN(A,X,y).

2: ### Calculate model weights ###
3: Calculate the validation loss of each model using Equations 8 and 9.
4: Calculate temperature-adjusted model weights using Equations 10 and 11.
5: Calculate ensemble output using Equation 12.
6: return YGNN+LCC

integration does not need additional training for both LCC and GNN, it does not require
additional training costs.

Specifically, after independently training both LCC and GNN on the training set, we
determine the importance weights of LCC and GNN using validation loss. The reason
we use the validation loss is to prevent overfitting to the training data. The losses LLCC

and LGNN of each model are calculated as the cross-entropy loss LCE between the
predictions ŷLCC

v , ŷGNN
v and the ground-truth label yv in the validation set.

LLCC =
∑

v∈Vval

LCE(ŷ
LCC
v , yv), (8)

LGNN =
∑

v∈Vval

LCE(ŷ
GNN
v , yv), (9)

Since models with lower validation loss are considered more reliable for node clas-
sification, we compute the importance weights wLCC and wGNN as the reciprocal of
the validation loss as follows:

wLCC =
exp

(
1

LLCC
· 1
T

)
exp

(
1

LLCC
· 1
T

)
+ exp

(
1

LGNN
· 1
T

) , (10)

wGNN = 1− wLCC , (11)

where T is a temperature parameter to adjust the importance weights.
Finally, the prediction YGNN+LCC is computed by weighting the predictions YLCC

and YGNN of the two models with their respective importance weights.

YGNN+LCC = wLCC ·YLCC + wGNN ·YGNN (12)

In this way, we can integrate LCC and any GNN without additional training and effec-
tively complement their limitations. Algorithm 2 presents this integration algorithm.

GNN leveraging Higher-order Class Label Connectivity 11

Table 2: The statistics of datasets

dataset #nodes #edges #attributes #class edge homophily

Cornell 183 298 1,703 5 0.131
Texas 183 325 1,703 5 0.108
Wisconsin 251 515 1,703 5 0.196
Chameleon 2,277 36,101 2,325 5 0.235
Squirrel 5,201 217,073 2,089 5 0.224
Roman-Empire 22,662 44,363 300 18 0.044
Amazon-Ratings 24,492 113,276 300 5 0.382

6 Evaluation Experiments

We evaluate our proposal, the integration of GNN and LCC (GNN+LCC), to answer
the following four questions:

Q1: Does GNN+LCC contribute to improving the accuracy of existing GNN designed
for heterophilous graphs?

Q2: Are label walks effective for node classification?
Q3: Which label walk types are important for node classification?
Q4: Does the length of the label walk affect performance?

Our code can be found at https://github.com/TakahashiTakutooo/GNN_LCC.

6.1 Experimental Setup

Datasets. We use seven heterophilous directed graph datasets: Cornell, Texas, Wis-
consin, Chameleon, Squirrel, Roman-Empire, and Amazon-Ratings [14, 15]. Cornell,
Texas, and Wisconsin represent category-based connections in university web pages.
Chameleon and Squirrel are networks focused on specific topics from Wikipedia. Roman-
Empire represents word connections in Wikipedia articles about the Roman Empire,
while Amazon-Ratings represents product connections frequently purchased together
on Amazon. Table 2 shows the statistics of the datasets.
Data Splitting. We split each dataset into training, validation, and test sets using five
different split methods provided by PyG2. For each split method, we perform node
classification and compute the average accuracy. The data split ratios are as follows:
For Cornell, Texas, Wisconsin, Chameleon, and Squirrel, the train/validation/test split
is 48%/32%/20%. For Roman-Empire and Amazon-Ratings, the split is 50%/25%/25%.
Hyperparameters. For our proposed method, we perform a grid search using the vali-
dation set to determine the hyperparameters: label walk length, number of label walks,
label context embedding dimension, and temperature parameter. The search ranges for
each parameter are as follows: label walk length: {1, 2, 3}, number of label walks: {3,
5, 7}, {8, 16, 32}, temperature parameter: {0.01, 0.02, . . . , 0.09, 0.1, 0.2, . . . , 1.0}.

2 https://github.com/pyg-team/pytorch_geometric

https://github.com/TakahashiTakutooo/GNN_LCC
https://github.com/pyg-team/pytorch_geometric

12 T. Takahashi et al.

Table 3: Node classification accuracy (%) on the test data. For GNN+LCC (H2GCN+LCC,
LINKX+LCC, GloGNN+LCC), the accuracy differences (∆) from the respective GNN model
and LCC are also indicated. The highest accuracy for each dataset is highlighted in bold.

Cornell Texas Wisconsin Chameleon Squirrel Roman- Amazon-
Empire Ratings

GCN 43.24 ±4.8 56.22 ±4.6 53.33 ±4.8 62.76 ±0.50 44.36 ±2.7 47.24 ±0.84 45.92 ±0.96

GAT 46.49 ±10 53.51 ±11 48.24 ±4.4 65.22 ±2.3 42.56 ±5.9 55.34 ±1.1 44.75 ±0.97

H2GCN 74.05 ±4.3 80.54 ±7.5 80.00 ±2.8 67.46 ±2.0 55.41 ±2.0 79.09 ±0.65 45.58 ±0.13

LINKX 66.49 ±9.1 64.32 ±5.5 79.22 ±6.1 63.99 ±0.7 58.94 ±2.6 52.35 ±0.71 53.70 ±1.8

GloGNN 75.14 ±3.1 77.84 ±4.6 85.1 ±2.3 68.2 ±1.5 58.48 ±0.78 58.24 ±0.87 49.94 ±0.44

LCC 73.51 ±5.7 77.84 ±3.1 78.43 ±5.4 56.01 ±1.6 44.36 ±1.4 81.05 ±0.44 52.17 ±0.48

H2GCN+LCC 78.92 ±2.0 84.32 ±3.1 83.53 ±4.7 68.25 ±1.2 55.14 ±1.0 84.10 ±0.41 52.09 ±0.60

∆H2GCN +4.87 +3.78 +3.53 +0.79 -0.27 +5.01 +6.51
∆LCC +5.41 +6.48 +5.10 +12.24 +10.78 +3.05 -0.08

LINKX+LCC 76.76 ±6.0 77.84 ±3.9 78.82 ±3.3 66.93 ±2.0 61.56 ±1.0 81.11 ±0.15 57.03 ±0.28

∆LINKX +10.27 +13.52 -0.40 +2.94 +2.62 +28.76 +3.33
∆LCC +3.25 0.00 +0.39 +10.92 +17.20 +0.06 +4.86

GloGNN+LCC 76.76 ±3.2 81.62 ±4.6 85.1 ±2.9 69.96 ±2.1 61.31 ±1.4 80.56 ±0.3 54.42 ±0.24

∆GloGNN +1.62 +3.78 0.00 +1.76 +2.83 +22.32 +4.48
∆LCC +3.25 +3.78 +6.67 +13.95 +16.95 -0.49 +2.25

6.2 Experimental Results

Q1: Does GNN+LCC contribute to improving the accuracy of existing GNN de-
signed for heterophilous graphs? To evaluate whether LCC enhances existing GNNs
for heterophilous graphs, we integrate LCC with H2GCN, LINKX, and GloGNN (de-
noted as H2GCN+LCC, LINKX+LCC, and GloGNN+LCC) and compare their perfor-
mance. Additionally, we compare with standard GNN baselines, GCN and GAT.
Overall. Table 3 shows the experimental results. The most important observation is
that the highest node classification accuracy is achieved by one of GNN+LCC for all
datasets. In addition, integrating LCC and GNN actually improves accuracy compared
to each model alone in most cases (see ∆H2GCN, ∆LINKX, ∆GloGNN, ∆LCC).
This result confirms that 1) LCC and GNN capture different graph properties and com-
plement each other, and 2) our integration scheme effectively learns the importance
weights of both LCC and GNN.
Analysis for exceptional cases. We also observe that there are only four exceptional
cases out of 21 cases. GNN alone achieves slightly higher accuracy than GNN+LCC
in two cases, case1: H2GCN+LCC for the Squirrel dataset (H2GCN is 0.27 higher)
and case2: LINKX+LCC for the Wisconsin dataset (LINKX is 0.40 higher). Also,
LCC alone achieves slightly higher accuracy than GNN+LCC in two cases, case3:
H2GCN+LCC for the Amazon-Ratings dataset (LCC is 0.08 higher) and case4: GloGNN+
LCC for the Roman-Empire dataset (LCC is 0.49 higher). The three cases above can
be explained by investigating the importance weights between GNN and LCC: the in-
tegration does not work well when one of the model weights is extremely high. Ta-

GNN leveraging Higher-order Class Label Connectivity 13

Table 4: The importance weights of each model and temperature parameter in H2GCN+LCC,
optimized using grid search.

LCC weight H2GCN weight temperature parameter

Cornell 0.587 0.413 0.20
Texas 0.482 0.518 0.70
Wisconsin 0.632 0.368 0.30
Chameleon 0.102 0.898 0.09
Squirrel 0.084 0.916 0.08
Roman-Empire 0.502 0.498 1.00
Amazon-Rationgs 0.925 0.075 0.02

Table 5: Node classification accuracy (%) on the test data for vanilla MLP and LCC. The higher
accuracy for each dataset is highlighted in bold, and the accuracy difference between LCC and
vanilla MLP is indicated as gain.

Cornell Texas Wisconsin Chameleon Squirrel Roman- Amazon-
Empire Ratings

MLP 72.97±4.5 76.22±5.7 77.25±3.6 44.04±2.7 31.24±1.3 64.98±0.23 41.00±0.41

LCC 73.51±5.8 77.84±3.2 78.43±5.4 56.01±1.6 44.36±1.5 81.05±0.45 52.17±0.48

gain +0.54 +1.62 +1.18 +11.97 +13.12 +16.07 +11.17

ble 4 shows the learned importance weights of LCC and H2GCN. The H2GCN weight
(0.916) for the Squirrel dataset (case1) and the LCC weight (0.925) for the Amazon-
Ratings dataset (case3) are extremely high. We observe the same phenomena for the
LCC weight (0.881) for the Roman-Empire dataset (case4). This result implies that
there is room for further revision of the weight control mechanism.
Importance weights of the two models in integration. Table 4 shows the impor-
tance weights and temperature parameters for H2GCN+LCC. We omit the results for
LINKX+LCC and GloGNN+LCC due to space limitations. Overall, the importance
weights are relatively balanced across datasets, except for the Chameleon, Squirrel, and
Amazon-Ratings datasets. These results confirm the effectiveness of our weight control
mechanism for the LCC and GNN integration. As examples of imbalanced weights,
for the Chameleon and Squirrel datasets, H2GCN significantly outperforms LCC (see
Table 3), resulting in very high H2GCN weights (0.898, 0.916, respectively). Similarly,
for the Amazon-Ratings dataset, LCC significantly outperforms H2GCN, leading to a
very high LCC weight (0.925).

Q2: Are label walks effective for node classification? To verify the effectiveness of
using label context embeddings, we compare the accuracy between a vanilla MLP and
LCC. The MLP takes only node features as input whereas LCC additionally takes label
context embeddings obtained from four different label walks.

14 T. Takahashi et al.

�*-
)"'' �"3

�.

�%.
 *)

.%)

�$�
("'

"*)
�,0

%--"
'

�*(
�)��

(+%
-"

�(
�5*

)��
�/%)

#.

��/�."/

��

��

	�

�

��

��

�

��

�1
#�
��
".
/��

0-
�

4�
��

�

1�)%''�����
�����*-2�-!
������ &2�-!
�����%�'%)#
�����0�-!%�)

Fig. 4: Node classification accuracy of LCC variations using each label walk type.

Table 5 shows that LCC outperforms the vanilla MLP in all datasets. This result
confirms that the label context embeddings successfully capture class label connec-
tivity and the label walks contribute to improving the node classification accuracy. In
particular, the accuracy is improved by more than 10% for the Chameleon, Squirrel,
Roman-Empire, and Amazon-Ratings datasets. In particular, the accuracy improvement
is significant for the Roman-Empire dataset, more than 16%, which may be due to the
large number of classes and the low homophily ratio of the dataset.

Q3: Which label walk types are important for node classification? To evaluate the
importance of each of the four types of label walks, we compare LCC variations which
concatenate node features with the label context embedding generated from a single
type of label walk: LCC_Forward (using forward walks), LCC_Backward (using back-
ward walks), LCC_Sibling (using sibling walks), and LCC_Guardian (using guardian
walks). We also compare with the vanilla MLP as a baseline.

Figure 4 shows that the most important label walk varies across datasets. It is quite
interesting to observe that, for the Chameleon, Squirrel, and Amazon-Ratings datasets,
the guardian walks contribute the most to improving accuracy and the gain is quite sig-
nificant. Since the guardian walk captures class label connectivity between guardian
nodes, we conjecture that these datasets exhibit strong such connectivity. In contrast,
for the Roman-Empire dataset, the sibling walks contribute the most to improving ac-
curacy. The result confirms the significant effectiveness of using different label walks,
particularly the guardian walk and sibling walk.

Q4: Does the length of the label walk affect performance? To investigate the impact
of label walk lengths, we examine the performance of LCC_Forward, LCC_Backward,
LCC_Sibling, and LCC_Guardian by varying the label walk length to 1, 2, and 3.

Overall, the result in Figure 5 indicates that the higher-order class label connectivity
is crucial for improving the accuracy, as demonstrated by performance improvements
when we increase the walk length for forward/backward walks (the class label connec-
tivity order is walk length) or we use sibling/guardian walks (the class label connectivity
order is 2). Also, the trends vary across datasets and the type of label walks, highlighting

GNN leveraging Higher-order Class Label Connectivity 15

����
�� �
��� ��	���� ����
�
�� �����
� ����������
 �������������

1 2 3
Forward Walk length

40

50

60

70

80
Av

g.
 Te

st
 A
cc
ur
ac
y
(%

)

(a) LCC_Forward

1 2 3
Backward Walk length

40

50

60

70

80

Av
g.
 Te

st
 A
cc
ur
ac

y
(%

)

(b) LCC_Backward

1 2 3
Sibling Walk length

30

40

50

60

70

80

Av
g.
 Te

st
 A
cc
ur
ac
y
(%

)

(c) LCC_Sibling

1 2 3
Guardian Walk length

40

50

60

70

80

Av
g.
 Te

st
 A
cc
ur
ac
y
(%

)

(d) LCC_Guardian

Fig. 5: Node classification accuracy (y-axis) when we change label walk length (x-axis).

the importance of tuning the label walk length as a hyperparameter using a validation
set.

For forward walks in the Cornell dataset, the accuracy is significantly improved
when increasing the walk length from 1 to 2 and 3, while in the Texas dataset, the
accuracy is decreased significantly when the walk length is increased to 3. For back-
ward walks in the Squirrel and Amazon-Ratings datasets, the accuracy is improved
with longer walk lengths, whereas the accuracy is decreased for the Texas and Roman-
Empire datasets. For sibling walks, the accuracy of Wisconsin drops significantly when
increasing the walk length from 1 to 2 but improves again when the walk length is in-
creased to 3. For guardian walks, the accuracy improves with longer walk lengths in the
Cornell, Wisconsin, and Chameleon datasets.

7 Conclusion

In this paper, we focused on the fact that conventional GNNs are designed in a way that
does not effectively utilize structural information between class labels. The proposed
method consists of two key components: (1) the development of a node classifier, LCC,
which estimates the class label of a target node based on the neighboring class labels
that constitute directed label walks, and (2) the integration of LCC with GNN, enabling

16 T. Takahashi et al.

both models to complement each other by capturing different graph characteristics.
The experiments demonstrated that the proposed method improves node classification
accuracy across seven heterophilous graphs.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers JP20H00583
and JP25H01117 and JST ASPIRE Grant Number JPMJAP2328.

References

1. Chen, J., Chen, S., Gao, J., Huang, Z., Zhang, J., Pu, J.: Exploiting neighbor effect: Conv-
agnostic gnn framework for graphs with heterophily. IEEE Transactions on Neural Networks
and Learning Systems (2024)

2. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning for het-
erogeneous networks. In: KDD (2017)

3. Duvenaud, D.K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik,
A., Adams, R.P.: Convolutional networks on graphs for learning molecular fingerprints. In:
NeurIPS (2015)

4. Gasteiger, J., Bojchevski, A., Günnemann, S.: Combining neural networks with personalized
pagerank for classification on graphs. In: ICLR (2019)

5. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD (2016)
6. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs.

In: NeurIPS (2017)
7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.

In: ICLR (2017)
8. Li, X., Zhu, R., Cheng, Y., Shan, C., Luo, S., Li, D., Qian, W.: Finding global homophily in

graph neural networks when meeting heterophily. In: ICML (2022)
9. Lim, D., Hohne, F.M., Li, X., Huang, S.L., Gupta, V., Bhalerao, O.P., Lim, S.N.: Large

scale learning on non-homophilous graphs: New benchmarks and strong simple methods. In:
NeurIPS (2021)

10. Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S., Chang, X.W., Precup, D.: Revisiting
heterophily for graph neural networks. In: NeurIPS (2022)

11. Maekawa, S., Noda, K., Sasaki, Y., et al.: Beyond real-world benchmark datasets: An empir-
ical study of node classification with gnns. NeurIPS (2022)

12. Maekawa, S., Sasaki, Y., Onizuka, M.: A simple and scalable graph neural network for large
directed graphs. arXiv preprint arXiv:2306.08274 (2023)

13. Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word representations
in vector space. In: ICLR (2013)

14. Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-gcn: Geometric graph convolu-
tional networks. In: ICLR (2020)

15. Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., Prokhorenkova, L.: A critical look at
the evaluation of GNNs under heterophily: Are we really making progress? In: ICLR (2023)

16. Reiser, P., Neubert, M., Eberhard, A., Torresi, L., Zhou, C., Shao, C., Metni, H., van Hoesel,
C., Schopmans, H., Sommer, T., Friederich, P.: Graph neural networks for materials science
and chemistry. Communications Materials 3 (2022)

17. Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.: Learning
to simulate complex physics with graph networks. In: ICML (2020)

18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph Attention
Networks. In: ICLR (2018)

GNN leveraging Higher-order Class Label Connectivity 17

19. Wan, G., Du, B., Pan, S., Haffari, G.: Reinforcement learning based meta-path discovery in
large-scale heterogeneous information networks. In: AAAI (2020)

20. Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S.: Heterogeneous graph attention
network. In: WWW (2019)

21. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Representation learning
on graphs with jumping knowledge networks. In: ICML (2018)

22. Yu, Z., Feng, B., He, D., Wang, Z., Huang, Y., Feng, Z.: Lg-gnn: Local-global adaptive graph
neural network for modeling both homophily and heterophily. In: IJCAI (2024)

23. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graphsaint: Graph sampling
based inductive learning method. In: ICLR (2020)

24. Zhong, Z., Ivanov, S., Pang, J.: Simplifying node classification on heterophilous graphs with
compatible label propagation. Trans. Mach. Learn. Res. (2022)

25. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M.: Graph
neural networks: A review of methods and applications. AI Open 1, 57–81 (2020)

26. Zhu, J., Rossi, R.A., Rao, A., Mai, T., Lipka, N., Ahmed, N.K., Koutra, D.: Graph neural
networks with heterophily. In: AAAI (2021)

27. Zhu, J., Yan, Y., Heimann, M., Zhao, L., Akoglu, L., Koutra, D.: Heterophily and graph
neural networks: Past, present and future. IEEE Data Eng. Bull. (2023)

28. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily in graph
neural networks: Current limitations and effective designs. In: NeurIPS (2020)

A Analysis of Sibling Walk and Guardian Walk

Figure 6 illustrates the sibling and guardian class label connectivity in the heterophilous directed
graph of the Texas dataset. Figure 6 (a) shows the sibling class label connectivity. According to
this, Department nodes have strong connectivity to Department nodes, while nodes of other class
labels also show relatively strong connectivity to Department nodes. In contrast, Figure 6 (b)
shows the guardian class label connectivity, revealing that nodes with Student nodes, Department
nodes, and Course nodes have strong connectivity to the same class label nodes. This indicates
that guardian walk is crucial for the Texas dataset. Furthermore, our experimental results (Q3)
corroborate the effectiveness of guardian walk on this dataset.

Student
Facu

lty Staff

Depart
ment

Course

To

Student

Faculty

Staff

Department

Course

Fr
om

26 0 39 168 36

0 0 0 0 0

39 0 112 859 159

168 0 859 5902 1103

36 0 159 1103 182
0

1000

2000

3000

4000

5000

(a) Sibling class label connectivity

Student
Facu

lty Staff

Depart
ment

Course

To

Student

Faculty

Staff

Department

Course

Fr
om

74 1 25 29 50

1 0 3 1 7

25 3 10 7 32

29 1 7 112 32

50 7 32 32 190
0

25

50

75

100

125

150

175

(b) Guardian class label connectivity

Fig. 6: The class label connectivity in the Texas dataset. (a) sibling class label connectivity from
class label in y-axis to class label in x-axis. (b) guardian class label connectivity from class label
in y-axis to class label in x-axis.

18 T. Takahashi et al.

We also report the 1st-order connectivity and the sibling and guardian class label connectiv-
ity for other datasets, Cornell, Wisconsin, Chameleon, Squirrel, Roman-Empire, and Amazon-
Ratings in the Supplementary Material.

B The Best Hyper Parameters of GNN+LCC

For our proposed method, we perform a grid search using the validation set to determine the hy-
perparameters: label walk length, number of label walks, label context embedding dimension, and
temperature parameter. The search ranges for each parameter are as follows: label walk length:
{1, 2, 3}, number of label walks: {3, 5, 7}, {8, 16, 32}, temperature parameter: {0.01, 0.02, . . . ,
0.09, 0.1, 0.2, . . . , 1.0}. The best hyperparameters for each dataset are reported in Table 6.

Table 6: The best hyperarameters.

(a) Label Walk parameters (Forward, Backward, Sibling, Guardian) of LCC

Forward Backward Sibling Guardian

Len. Num. Dim. Len. Num. Dim. Len. Dim. Len. Dim.

Cornell 3 5 8 1 3 8 1 8 3 8
Texas 1 7 8 2 7 8 2 16 1 8
Wisconsin 3 5 32 1 5 16 1 16 1 16
Chameleon 1 5 8 2 3 8 3 8 3 16
Squirrel 1 3 8 2 7 16 1 32 2 32
Roman-Empire 1 3 32 1 3 16 2 16 2 16
Amazon-Ratings 2 5 8 2 7 8 1 16 1 8

(b) Best temperature parameters for GNN + LCC models

H2GCN + LCC LINKX + LCC GloGNN + LCC

Cornell 0.2 1.0 1.0
Texas 0.7 0.3 1.0
Wisconsin 0.3 1.0 1.0
Chameleon 0.09 0.05 0.1
Squirrel 0.08 0.1 0.2
Roman-Empire 1.0 0.09 0.2
Amazon-Ratings 0.02 0.2 0.1

	Graph Neural Network leveraging Higher-order Class Label Connectivity for Heterophilous Graphs

