
Voronoi Diagram Encoded Hashing

Yang Xu and Kai Ming Ting (�)

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing
210023, China

xuyang@lamda.nju.edu.cn, tingkm@nju.edu.cn

Abstract. The goal of learning to hash (L2H) is to derive data-dependent
hash functions from a given data distribution in order to map data
from the input space to a binary coding space. Despite the success of
L2H, two observations have cast doubt on the source of the power of
L2H, i.e., learning. First, a recent study shows that even using a ver-
sion of locality sensitive hashing functions without learning achieves bi-
nary representations that have comparable accuracy as those of L2H,
but with less time cost. Second, existing L2H methods are constrained
to three types of hash functions: thresholding, hyperspheres, and hy-
perplanes only. In this paper, we unveil the potential of Voronoi di-
agrams in hashing. Voronoi diagram is a suitable candidate because
of its three properties. This discovery has led us to propose a simple
and efficient no-learning binary hashing method, called Voronoi Dia-
gram Encoded Hashing (VDeH), which constructs a set of hash func-
tions through a data-dependent similarity measure and produces inde-
pendent binary bits through encoded hashing. We demonstrate through
experiments on several benchmark datasets that VDeH achieves superior
performance and lower computational cost compared to existing state-
of-the-art methods under the same bit length. Our code is available at:
https://github.com/Phantom-Det/VDeH/tree/main.

Keywords: Learning to hash · Binary representation · Voronoi diagram

1 Introduction

For decades, hashing techniques have been one of the most effective tools com-
monly used to compress data for fast access, analysis, and learning [5, 6, 36].
Hashing techniques are popular for their simplicity and offer significant advan-
tages in data processing and security [2, 16]. Their primary strength lies in the
ability to efficiently map arbitrary-sized input data to fixed-size embeddings,
known as hash values. This process is deterministic, meaning the same input
always yields the same output, ensuring data consistency. These attributes fa-
cilitate a wide range of applications, including data integrity verification, data
indexing, blockchain technology, and distributed systems [3, 25, 26, 29].

Learning to hash (L2H) [22, 31, 35], a prominent subfield within hashing tech-
niques, aims to map data from the input space to a binary coding space, in which
the Hamming distance well approximates the distance (e.g., ℓp norm) in input

2 Y.Xu and K.M.Ting

space. Then, efficient retrieval and learning can be performed in the binary
coding space. The general problem in L2H is to learn long binary codes that
approximate the input distance1.

Given input data of size N with dimensionality d, the core task of L2H
is to construct binary hash functions that map the data into L-bit binary
codes. Broadly, existing L2H methods can be categorized into three classes:
thresholding [9, 10, 32, 34, 35], hyperspheres [15], and hyperplanes [4, 17, 22, 37].
Thresholding-based methods initiate the process by transforming distance or
similarity relationships from the input space into a new matrix of size N ˆ L
through metric learning [32, 35] or PCA-based methods [9, 10, 34]. Then, matrix
values are binarized based on a given threshold. Hypersphere and hyperplane-
based methods construct hash functions by partitioning the input space. Points
falling within the same partition are mapped to identical binary code values.
Due to randomness in the partitioning process, these methods typically improve
binary codes performance by learning the partitioning strategy to achieve a uni-
form distribution of points across distinct partitions [15, 22].

Despite the success of L2H, the following two observations cast doubt on the
source of the power of methods, i.e., learning:

1. Existing L2H methods all claim that their learning process (in optimizing
some defined objective) plays a crucial role in obtaining effective binary
codes. Yet, a recent study [4] shows that even using brLSH, a version of
locality-sensitive hashing [5] without learning, achieves binary codes that
have comparable performance as those of L2H methods, but with less com-
putation cost.

2. They are constrained to three types of hash functions. Learning is required
in order to ensure that these functions satisfy three key properties for ef-
fective binary codes [10, 15, 17, 22, 32, 34], i.e., (a) full space coverage: each
hash function covers the entire space; (b) entropy maximization: each hash
function covers approximate the same number of points from the input data,
such that the total set of hash functions maximizes information entropy; and
(c) bit independence: all hash functions have mutually independent hash bits.
Their importance will be discussed in detail in Section 3.

In this work, we provide the insight that Voronoi diagram is a suitable alter-
native to L2H, attributed to its three properties: first, a Voronoi diagram natu-
rally covers the entire input space; second, for a given dataset, every Voronoi cell
1Note that another related area called deep hashing [24, 28] conducts a similar task but
with a totally different goal: generating short compact binary codes, where proximate
or identical binary codes represent semantic (categorical) similarity between instances,
while distant binary codes represent semantic dissimilarity. However, deep hashing is
specifically designed for datasets with explicit categorical information, notably image
data [11, 14, 33], and is incompatible with datasets lacking this information, including
extensive text and tabular data. Besides, these short binary codes do not adequately
approximate the input distance. Existing studies demonstrate that achieving an effec-
tive approximation of the input distance through binary codes requires a code length
of Opdq, where d is the input dimensionality [9, 22, 34, 35].

Voronoi Diagram Encoded Hashing 3

Fig. 1: An illustrative comparison of VDeH using Voronoi diagram and three
existing types of hash functions (thresholding, hyperspheres and hyperplanes).
The parameters N “ 5, d “ 5, L “ 4, and w “ 2 are used in this example.

in a Voronoi diagram covers approximately the same number of points [7]; third,
it is feasible to transform a Voronoi diagram into a set of hash functions, which
generates mutually independent bits (hash values). Unlike existing L2H meth-
ods, all these properties are obtained in Voronoi diagrams without any extra
learning process.

Voronoi diagrams facilitate the generation of data-dependent hash functions,
as these hash functions are derived by samples from a given dataset and are
dependent on the distribution of the data. Specifically, they yield small Voronoi
cells in areas of high densities, while large Voronoi cells are produced in areas of
low densities [7, 30]. This discovery has led us to propose a simple and effective
no-learning approach called Voronoi Diagram Encoded Hashing (VDeH), which
is the first data-dependent binary hashing scheme based on Voronoi diagram
already used in a kernel. Figure 1 shows an illustrative comparison of VDeH
using Voronoi diagram and three existing types of hash functions.

Our main contributions are summarized as follows:

– Providing the insight that Voronoi diagram can be leveraged to realize a
family of data-dependent hash functions, without learning.

– Creating a new definition of hashing scheme derived directly from a kernel
based on Voronoi diagrams.

– Proposing VDeH, which creates the first kernel-based implementation of a
data-dependent binary hashing scheme, and formulating a binary distance
function intrinsic to VDeH. We have theoretically proved that VDeH is ca-
pable of generating mutually independent binary bits.

– Conducting comprehensive empirical comparisons and analyses between VDeH
and existing state-of-the-art L2H methods to demonstrate the effectiveness
and efficiency of VDeH.

4 Y.Xu and K.M.Ting

2 Background and Related Work

With the emergence of large-scale data, numerous learning to hash (L2H) meth-
ods have been developed [12, 22, 31]. The generic binary hashing problem is
the following. Given N data points X “ rx1, . . . ,xN s P RdˆN , generate L
hash functions to map a data point x into a L-bit binary hash code Bpxq “

rh1pxq, h2pxq, . . . , hLpxqs where hlpxq P t0, 1u is the l-th hash function.
For the linear binary projection-based hashing [9, 22, 35]:

hlpxq “ sgnpF pRlx ` tlqq,

where Rl P RLˆd is the projection matrix, sgnp¨q is a binary map, and tl is the
intercept. Different hashing methods aim at finding different F , Rl and tl with
respect to different objective functions.

Existing L2H methods seek to ensure that the Hamming distance of gener-
ated binary codes closely approximates the input distance by imposing specific
constraints on these codes. For example, given bi P t0, 1uL, Spectral Hashing
(SH) [32] aims to minimize the average Hamming distance between similar neigh-
bors, represented by

ř

ijWij ||bi´bj ||
2, whereWij is the similarity between points

i and j as measured by Gaussian kernel, and ||bi´bj ||
2 is the Hamming distance

between binary codes bi and bj . SH uses two constraints: (i)
ř

i bi “ 1
2 to ensure

entropy maximization, and (ii) 1
n

ř

i bib
T
i “ I to guarantee bit independence. In

addition, Spherical Hashing (SpH) [15] generates hash functions by partitioning
the input space using hyperspheres. SpH achieves bit independence by ensur-
ing that each hashing function has an equal probability of output 0 and 1. To
achieve entropy maximization, it requires each hypersphere to contain an ap-
proximately equal number of points. Since hyperspheres do not cover the entire
input space, SpH increases the radius of the hyperspheres to cover at least all
training data, thus ensuring full space coverage. It is worth noting that most ex-
isting methods explicitly or implicitly ensure the three key properties: full space
coverage, entropy maximization, and bit independence by constructing similar
constraints. Methods operated on spatial partitioning necessitate that the hash
functions provide complete coverage of the input space [4, 15, 17, 22, 37]. Besides,
existing methods ensure entropy maximization by explicitly constraining each
bit to have a half probability of being 0 or 1, while maintaining the independence
of each bit’s output [9, 10, 15, 17, 22, 32, 34, 35, 37]. The detailed explanations of
how these methods guarantee these properties and their categorizations can be
found in comprehensive survey papers [24, 31].

The three properties have been demonstrated to be crucial for effective binary
codes in existing methods. However, these methods invariably require a learning
process to gain these properties, as their employed hash functions, including
those based on thresholding, hyperspheres, and hyperplanes, do not naturally
possess these properties.

Voronoi Diagram Encoded Hashing 5

Table 1: Key notations used.
Notation Definition

X Input dataset with N points in Rd

D A set of ψ points randomly sampled from X to generate a Voronoi diagram
B L-bit binary codes correspond to all points in X
H A set of hash functions derived from a Voronoi Daigram
κ kernel κpx, yq, where x, y P Rd

S A similarity function defined in Rd

w The number of bits generated by encoded hashing over a Voronoi diagram
H A hashing scheme consisting of a family of hash functions.
PH Distribution over a family of hash functions H

3 Insight: Voronoi Diagram is a Suitable Candidate for
Binary Hashing

The key notations used in this paper are provided in Table 1.
Given a point x P Rd, a hashing scheme of a family H of hash functions

h P H, where hpxq P t0, 1u, must have the following three properties: full space
coverage, entropy maximization, and bit independence.

Full space coverage. All h P H cover the entire Rd, i.e., @x P Rd, Dh P

H s.t. hpxq “ 1. The failure to achieve this coverage can severely impair retrieval
effectiveness. Two possible current treatments of this shortcoming are unsatis-
factory: (a) All points outside the covered regions have no binary code repre-
sentations, rendering them irretrievable. (b) Using a common binary mapping
to all points outside the covered regions risks conflating vastly distant points in
the input space with a same binary code. This issue is particularly pronounced
when adopting hypersphere-based hashing strategies [15]. Therefore, ensuring
that hash functions cover the entire space is a critical aspect of maintaining
high retrieval accuracy in binary hashing-based information retrieval systems.
This coverage guarantees that every point x P Rd can be effectively indexed
and retrieved, thereby maximizing the utility of binary hashing in real-world
applications.

Entropy maximization. For a given dataset X Ă Rd with N points, every
hash function h P H shall cover approximately the same number of points x P X ,
i.e., uniformly distributed over all hash functions:

@h P H,
ˇ

ˇ

ˇ
|hpX q| ´ N

|H|

ˇ

ˇ

ˇ
ď ε,

where |H| denotes the total number of hash functions in H and ε is a predefined
non-negative small number indicating the tolerance level for the approximation.
This is to ensure that there are no under-utilized hash functions. This uniform
coverage can be understood as maximizing the information entropy of the re-
sulting binary codes [21], where high information entropy is indicative of a rich,
diverse representation of the dataset. It avoids the scenario where a large pro-
portion of the dataset is lumped in a few binary codes only.

6 Y.Xu and K.M.Ting

Bit independence. All hash functions in H are mutually independent. This
means that for any pair of distinct hash functions hi ‰ hj P H, and for any
point x P Rd, the outputs hipxq and hjpxq are statistically independent. It has
been proven to be indispensable for optimizing performance [13, 15, 18, 32]. This
independence ensures that each hash function contributes uniquely to the hash-
ing process, thereby eliminating potential redundancy in the generated binary
bits. When hash functions are not mutually independent, the resulting binary
representations suffer from information redundancy, which in turn, dilutes the
effectiveness of the binary hashing scheme, leading to poor retrieval efficiency.
Such redundancy also inflates the storage requirements unnecessarily.

It is interesting to note that none of the existing hash functions (i.e., thresh-
olding, hyperspheres and hyperplanes) have the three properties naturally. That
is the reason why learning has been employed to ensure that the final hash
functions satisfy the three properties.

Here we have the insight that Voronoi diagrams is a suitable candidate for
hash functions because they have the following properties, without learning:

1. A Voronoi diagram naturally covers the entire input space.
2. For a given dataset, every Voronoi cell in a Voronoi diagram covers approx-

imately the same number of points. This occurs when a set of points, that
represents the data distribution, is used to construct the Vonoroi diagram.
And it can be easily achieved through a random Voronoi partition created by
a set of points drawn independently and randomly from the dataset [7].

3. It is feasible to transform a Voronoi diagram into a set of mutually indepen-
dent hash functions (see the analysis in Section 4.3).

This insight has led us to propose a no-learning data-dependent hashing
scheme based on Voronoi diagrams, described in the next section.

4 Proposed Approach

Here we give the formal definition of our proposed binary hashing method called
Voronoi Diagram Encoded Hashing (VDeH), which is the first binary hashing
scheme based on a data-dependent similarity using Voronoi diagram partitioning.

4.1 A New Definition of Hashing

A kernel based on Voronoi diagrams called Isolation Kernel [30] is defined as:

κpx,y|HpX qq “ EH„HpX qr1px,y P θ | θ P Hqs,

where each Voronoi diagram H has cells θ, and 1p¨q is an indicator function.
By re-writing each cell θ as a hash function h, it can be re-expressed as:

κpx,y|HpX qq “ EH„HpX qr1phpxq “ hpyq “ 1 | h P Hqs.

The above revelation, together with the three properties of Voronoi diagram
(stated in Section 3), prompt us to propose a new definition of hashing. Given
a dataset X Ă RdˆN , the proposed VDeH scheme is defined as follows:

Voronoi Diagram Encoded Hashing 7

Definition 1. The VDeH scheme is a family HpX q of hash functions created by
Voronoi diagrams associated with a distribution PH over HpX q generated from
a dataset X such that it satisfies

PrhPHPHpX qrhpxq “ hpyq “ 1s “ κpx,y|HpX qq, (1)

where κpx,y|HpX qq is derived from Voronoi diagrams generated from X ; and H
is a set of all hash functions h derived from a Voronoi diagram.

This definition makes the implementation of VDeH extremely simple because
the hashing functions can be obtained with a simple additional encoding from
the Voronoi diagrams already used in Isolation Kernel. Unlike existing hashing
methods, VDeH needs no special design or learning of hash functions to gain the
three properties mentioned in Section 3.

4.2 Implementation Details of VDeH

Given a subset D “ ts1, . . . , sψu Ă X with ψ randomly selected points. A Voronoi
diagram H, created by D, partitions the Rd space into ψ Voronoi cells, where
si is at the center of Voronoi cell i. Let a set of hash functions created by D be
H “ th1, h2, . . . , hψu. For any x P Rd, hipxq is defined as:

hipxq “

#

0 if distpx, siq ą distpx,Dq

1 if distpx, siq “ distpx,Dq,
(2)

where distpx, siq “∥ x ´ si ∥ denotes the ℓ2 distance between x and si; and
distpx,Dq “ minyPD{txu ∥ x ´ y ∥. When a point is located on a boundary, it is
randomly assigned to any one of the cells sharing that boundary.

Given a fixed length of binary bits, existing studies have established that
ensuring independence among generated binary bits is key to effective binary
hashing. However, directly converting Voronoi cells into hash functions results
in dependencies between them, due to the fact:

@h P H,@x P Rd,
ÿ

iPr1,ψs

1rhipxq “ 1s “ 1. (3)

This dependency arises because if x belongs to the i-th Voronoi cell, indicat-
ing hipxq “ 1, then x can not fall into other regions, hence hpxq “ 0 for those.
As a result, any hpxq is influenced by other hash functions.

To address this issue, we have adopted a simple encoded hashing mechanism
to generate mutually independent binary bits. Let ψ “ 2w, and as 2w Voronoi
cells can be encoded with a binary code of w mutually independent bits, a L-
bit code of the VDeH scheme represents L{w ˆ 2w hash functions (the proof is
presented in the Section 4.3).

The process for generating a binary code corresponding to a point x P Rd
via VDeH is outlined as follows:

8 Y.Xu and K.M.Ting

1. Given a dataset X , we randomly sample ψ points to form a set D, and generate
the set of Voronoi diagram hash functions H “ th1, h2, . . . , hψu. According
to Eq.(3), there is one and only one hipxq “ 1 for any point x, and @u ‰

i, hupxq “ 0.
2. The above ‘raw’ ψ-bit vector rh1pxq, h2pxq, . . . , hψpxqs can then be encoded

as w-bit vector bpxq “ re1pxq, e2pxq, . . . , ewpxqs, where ψ ď 2w, through the
following encoded hashing function:

ejpxq “

#

0 if t
argiPr1,ψs hipxq“1

2j´1 u mod 2 “ 0

1 if t
argiPr1,ψs hipxq“1

2j´1 u mod 2 ‰ 0,
(4)

where j “ 1, 2, . . . , w.
3. After repeating the above two steps L{w times, we concatenate all w-bit

vectors bpxq to formulate a L-bit code Bpxq “ rb1pxq, . . . , bL{wpxqs for any
point x.

It is interesting to note that this simple encoding is not applicable to existing
L2H methods where a L-bit code could represent L hash functions only. In short,
the VDeH scheme represents p

ψ
w ´ 1qL more hash functions than existing L2H

methods when both have codes of the same number of L bits. This is a key
to VDeH’s better performance over existing L2H methods. Also note that the
Voronoi diagram does not necessarily have to have 2w Voronoi cells. It is simply
a convenience for a binary encoded hashing with mutually independent bits.

The time complexity of VDeH. VDeH has a linear time complexity with
respect to the size of the dataset, denoted as N , and the dimensionality of
the data, denoted as d. A detailed analysis of the time complexity of VDeH
is presented as follows: to convert a dataset X of N points of d dimensions,
VDeH first finds the nearest neighbor of each point in X from the set D of ψ
points (or Voronoi cells), resulting in a complexity of OpψNdq. This process
is repeated L{w times, leading to a total complexity of Op

ψLNd
w q. VDeH then

uses the encoded hash functions h to generate L-bit binary codes for all N
points, resulting in a complexity of OpLNq. Thus, the overall time complexity
for VDeH’s ‘training’ process is Op

ψLNd
w q, which is linear to the dataset size N

and the input dimensionality d.

4.3 Distance Measure for VDeH Codes

Hamming distance, renowned for its simplicity and efficiency, is predominantly
employed in the comparison of binary codes due to its methodological advantage
of merely counting the differing bits between two codes, thereby circumventing
the necessity for intricate arithmetic operations such as multiplication and square
root calculations. This stands in stark contrast to the computationally more
demanding Euclidean distance.

For VDeH, the measurement of similarity between any two points is con-
ducted by calculating the probability that both points fall into the same regions
across all generated Voronoi cells. To fully utilize the three properties of the

Voronoi Diagram Encoded Hashing 9

Voronoi diagram hashing functions, we propose the following distance metric,
VDeH distance (dV pBi,Bjq), between two binary codes Bi and Bj generated by
VDeH:

dV pBi,Bjq “
w

L

L{w
ÿ

k“1

1pbki ‰ bkj q, (5)

where Bi “ rb1i , . . . , b
L{w
i s and Bj “ rb1j , . . . , b

L{w
j s. Then, for any given query

point q, after computing its binary code Bpqq through VDeH and its distance to
every point in the dataset can be calculated using Eq.(5), the retrieval process
returns a point in the dataset having the shortest distance to the query point q.

4.4 Independence among VDeH Bits

The importance of independence among hash bits are mentioned in existing
studies [32, 13, 18]. It can be defined as follows:

Definition 2. (Independence among hash bits.) Given a family of hash
functions th1, h2, . . . , hLu, for any x P Rd, h1pxq, h2pxq, . . . , hLpxq are said to
be mutually independent for @x if for any set of values v1, v2, . . . , vL P t0, 1u, it
holds that:

Prph1pxq “ v1, h2pxq “ v2, . . . , hLpxq “ vLq “

Prph1pxq “ v1q ¨ Prph2pxq “ v2q ¨ ¨ ¨ ¨ ¨ PrphLpxq “ vLq.

This means that the value of one hash bit does not influence the value of
another hash bit. Although directly converting regions generated by Voronoi
diagrams into hash functions results in dependencies between them based on
the Eq.(3), we prove that the encoded hashing enables the achievement of such
independence among hash bits. VDeH generates mutually independent binary
bits through encoded hashing, as demonstrated by the following theorem.

Lemma 1 Let D “ ts1, s2, . . . , sψu ∼ Gψ be a dataset, where every si is i.i.d
drawn from an unknown probability distribution G on the input space Ω. Let D
forms its Voronoi cells Vi Ă Ω, the probability that si is the nearest neighbor of
any x P Ω in D is given as: Prpx P Viq “ 1{ψ, for every i “ 1, 2, . . . , ψ.

Proof. Let Rpxq “ ty P Ω | distpx,yq ď ru be r-neighborhood region of x, and
∆Rpxq “ ty P Ω | r ď distpx,yq ď r ` ∆ru be ∆r incremental r-neighborhood
region of x. Let ρG be the probability density ofG, for∆r ą 0, f “

ş

Rpxq
ρGpyqdy

and ∆f “
ş

∆Rpxq
ρGpyqdy.

Then, let two events T and Q be as follows:

T ” sk R Rpxq for all sk P D (k “ 1, 2, . . . , ψ), and

Q ”

"

si P ∆Rpxq for si P D, and
sk R ∆Rpxq for all sk P D pk “ 1, 2, . . . , ψ, i ‰ kq.

10 Y.Xu and K.M.Ting

Next, the probability PrpT ^ Qq “ PrpT qPrpQ | T q denotes that si is the
nearest neighbor of x in D, i.e., x P Vi, where

PrpT q “ p1 ´ fqψ, and

PrpQ | T q “
∆f

1 ´ f

"

1 ´
∆f

1 ´ f

*ψ´1

.

By letting ∆f be infinite decimal df , ∆f{p1´fq Ñ df{p1´fq and t1´∆f{p1´

fqu Ñ 1. Thus, we obtain the following total probability that si is the nearest
neighbor of x in D, i.e., x P Vi, by integrating PrpT ^Qq on f P r0, 1s for every
i “ 1, 2, . . . , ψ.

Prpx P Viq “

ż 1

0

p1 ´ fqψ
df

1 ´ f
“

1

ψ
.

Theorem 1 Let a L-bit code vector Bpxq “ rb1pxq, b2pxq, . . . , bT pxqs denote the
VDeH encoded binary vector for any point x, where T “ L{w is the number of
Voronoi diagrams generated and every bipxq is the w-bit vector generated by the
i-th VDeH encoded hashing. When each Voronoi diagram has 2w regions, every
bit in Bpxq is mutually independent.

Proof. For any two bits α, β P Bpxq located at different Voronoi cells, there are
the following two cases:
Case 1: α and β are generated by the different encoded hashing.
Let α P bj and β P bk (1 ď j ă k ď T). Given that Voronoi diagrams generated
in each random sampling are mutually independent, the bits obtained from each
encoded hashing are also mutually independent. Consequently, it follows that:

Prpbj “ sj , bk “ skq “ Prpbj “ sjq ¨ Prpbk “ skq,

where sj , sk P t0, 1uw. Moreover, for the bits α P bj and β P bk

Prpα “ vα, β “ vβq “ Prpα “ vαq ¨ Prpβ “ vβq,

where vα, vβ P t0, 1u.
Case 2: α and β are generated by the same encoded hashing.
Let α, β P bi p1 ď i ď T q, bi “ re1, e2, . . . , ews, and B denote a set of ψ different
w-bit binary codes correspond to the ψ distinct Voronoi cells.
When ψ “ 2w, B exhaustively represents all probable w-bit binary codes corre-
sponding to ψ Voronoi cells. Let vα, vβ P t0, 1u, then we have

ř

1rα “ vαs “
ψ
2 ,

and
ř

1rα “ vα, β “ vβs “
ψ
4 . Based on Lemma 1, it follows that

Prpα “ vα, β “ vβq “
řψ
i“1pPrpx P Viq1rα “ vα, β “ vβsq

“ 1
ψ

řψ
i“1 1rα “ vα, β “ vβs

“

řψ
i“1 1rα“vαs

ψ ˆ

řψ
i“1 1rβ“vβs

ψ

“
řψ
i“1pPrpx P Viq1rα “ vαsq ˆ

řψ
i“1pPrpx P Viq1rβ “ vβsq

“ Prpα “ vαq ¨ Prpβ “ vβq.

Voronoi Diagram Encoded Hashing 11

Consequently, in all cases, α and β are mutually independent. Since α and β
are arbitrary bits in B, when each Voronoi diagram has 2w regions, every bit in
Bpxq generated by VDeH is mutually independent.

5 Experiment

5.1 Datasets and Settings

To evaluate the proposed Voronoi diagram encoded hashing, we conducted ex-
periments on four public datasets, including two image datasets and two text
datasets. It is important to note that existing studies mainly evaluate their
performance on image datasets [9, 10, 15, 22, 32, 35, 34], our work extends the
evaluation to text datasets for a more comprehensive analysis. Unlike images,
which have obviously discriminating features and can be easily identified to guide
retrieval tasks, text data presents a greater challenge due to its inherent complex-
ity. The datasets vary in size and dimensionality: CIFAR-10 [20] contains 60,000
images (512 dimensions), GIST [19] contains one million images represented by
960-dimensional descriptors, Nytimes [27] includes 290,000 articles (256 dimen-
sions), and Kosarak [8] includes 74,962 click-stream news (27,983 dimensions).

Following existing studies [15, 17, 22], we use 10,000 randomly sampled in-
stances for training. We then randomly sample 500 instances, different from the
training set as queries. The retrieval performance is assessed using two frequently
used evaluation metrics, i.e., mean average precision (mAP) and the precision-
recall curve (PR curve). We compared the performance of VDeH with the three
types of state-of-the-art methods, i.e., (1) thresholding-based methods: spectral
hashing (SH), circulant binary embedding (CBE), iterative quantization (ITQ),
bilinear projections (BP), and sparse projections (SP); (2) hyperspheres-based
method: spherical hashing (SpH); (3) hyperplanes-based methods: density sen-
sitive hashing (DSH), sparse embedding and least variance encoding (SELVE),
and refining codes for locality sensitive hashing (rcLSH). The parameters within
each hashing method were assigned to default or suggested values by authors.
For VDeH, the parameter ψ is searched in t22, 23, . . . , 28u. All experiments are
executed on a Linux CPU machine: AMD 128-core CPU with each core running
at 2 GHz and 1T GB RAM.

5.2 Results and discussion

Comparing to the state-of-the-art. Table 2 presents the mAP scores of our
proposed VDeH and the competing hashing methods conducted on the bench-
mark datasets. VDeH has the best results, compared with all the state-of-the-
art methods, across all the tested number of hash bits ranging from 128 bits to
2048 bits. The mAP of VDeH increases consistently as the number of hash bits
increases. Overall, only DSH demonstrated comparable performance across all
datasets, positioning it as VDeH’s closest contender. Among existing methods,
rcLSH exhibited the best performance on image datasets. Notably, many exist-
ing methods showed a marked decrease in performance on the text datasets as

12 Y.Xu and K.M.Ting

Table 2: The mAP scores on four datasets with different number of hash bits.
The highest score in each row is marked with bold font.

Dataset bits VDeH rcLSH SH CBE ITQ BP SP DSH SELVE SpH
128 0.366 0.283 0.117 0.315 0.355 0.344 0.352 0.318 0.199 0.242
256 0.438 0.351 0.153 0.342 0.377 0.343 0.370 0.372 0.176 0.289
512 0.468 0.392 0.193 0.396 0.389 0.339 0.397 0.401 0.167 0.304
1024 0.501 0.412 0.201 0.401 0.398 0.332 0.407 0.429 0.169 0.314

C
IF

A
R

-1
0

2048 0.525 0.432 0.214 0.407 0.401 0.335 0.426 0.457 0.169 0.321
128 0.664 0.582 0.338 0.617 0.644 0.645 0.604 0.501 0.430 0.222
256 0.714 0.631 0.454 0.644 0.650 0.641 0.614 0.580 0.399 0.223
512 0.763 0.651 0.501 0.656 0.654 0.634 0.638 0.618 0.402 0.232
1024 0.774 0.659 0.514 0.657 0.657 0.642 0.638 0.610 0.399 0.233G

IS
T

2048 0.793 0.687 0.532 0.662 0.663 0.644 0.641 0.621 0.398 0.242
128 0.116 0.017 0.033 0.022 0.023 0.023 0.022 0.016 0.003 0.100
256 0.165 0.026 0.055 0.029 0.029 0.029 0.027 0.033 0.004 0.110
512 0.340 0.028 0.160 0.026 0.030 0.026 0.029 0.185 0.004 0.146
1024 0.348 0.103 0.295 0.108 0.104 0.008 0.106 0.339 0.006 0.088N

yt
im

es

2048 0.376 0.113 0.310 0.100 0.097 0.008 0.100 0.326 0.008 0.089
128 0.457 0.235 0.375 0.255 0.261 0.254 0.258 0.368 0.203 0.256
256 0.603 0.271 0.512 0.286 0.293 0.295 0.304 0.494 0.226 0.296
512 0.607 0.308 0.571 0.301 0.298 0.346 0.341 0.437 0.279 0.346
1024 0.615 0.307 0.569 0.300 0.302 0.351 0.357 0.415 0.289 0.372K

os
ar

ak

2048 0.638 0.313 0.579 0.309 0.312 0.359 0.369 0.412 0.300 0.381

Fig. 2: PR curves on four datasets with the 512-bit binary codes

the hash bits increases, except VDeH, SH, and DSH. This is probably because
text data have complex density variations. DSH and SH are adapted by using
more hash functions in dense distribution and fewer in sparse distribution; while
VDeH naturally adapts because it creates smaller Voronoi cells in dense distribu-
tion and larger ones in sparse distribution [7, 30]. In addition, Figure 2 provides
the PR curves of VDeH and the competing hashing methods, when the number
of hash bits is 512. We can observe that the VDeH curve (in red) consistently
dominates the curves of other methods across all datasets, demonstrating its su-
perior precision and recall scores. For the cases with different hash bits, similar
results can be observed (not presented due to lack of space).
Comparing to the deep hashing methods. Deep hashing is known for its
high accuracy in semantic-based image retrieval [24]. However, deep hashing
methods cannot accurately retrieve input distance similarities, even after ex-
tracting semantic information from images. To show this, we use CIFAR-10

Voronoi Diagram Encoded Hashing 13

(a) Cifar10 (b) GIST

Fig. 3: The mAP scores comparison for five methods on image datasets.

Fig. 4: Training time comparison on GIST dataset with the 512-bit binary codes.

and GIST datasets, which possess semantic information in images. Initially, we
utilized ResNet18 to extract embeddings from these two datasets. Since the
Euclidean distance between the obtained embeddings can reflect the semantic
information between images, we used the Euclidean distances derived from these
embeddings as ground truth to test the performance of VDeH and SP, as well as
three deep hashing methods PairRec [11], OASIS [33] and ODH [14]. The com-
parison results are shown in Figure 3. We can observe that typical L2H methods
can effectively preserve the Euclidean distances between instances, whereas deep
methods lack this capability. This is due to the fact that deep methods incorpo-
rate labels as part of their loss function during training, aiming to map instances
with the same label to close hash codes, rather than being designed to preserve
the input distance similarities between instances.
Training time comparison. Unlike existing hashing methods that rely on
optimization for learning hash functions, VDeH’s training process is straightfor-
ward, requiring only the random sampling of a given number of points from the
training data, each corresponding to a nearest-neighbor-based hash function (as
shown in Eq. 2). Note that all methods require the transformation of training
data into binary codes via hash functions. We tested the training time of vari-
ous methods on the GIST dataset, shown in Figure 4. VDeH took the shortest

14 Y.Xu and K.M.Ting

(a) 512-bit binary codes (b) GIST dataset

Fig. 5: The impact of Parameter ψ: (a) testing on different datasets with 512-bit
binary codes; (b) Testing on GIST dataset with different number of hash bits.

time for every training data size, from 10k to 1M, demonstrating its efficiency
superiority over other methods. This is because VDeH needs no learning, but all
other existing methods must perform learning.
Effects of hyper-parameter ψ. Figure 5 illustrates the impact of the parame-
ter ψ on the performance of the proposed VDeH method across different datasets
and binary code lengths. In subfigure (a), we observe that only the GIST dataset
shows a degree of sensitivity to ψ, while Cifar10, Nytimes, and Kosarak show
relatively stable mAP scores across the different ψ values. Subfigure (b) fur-
ther explores this by examining VDeH’s mAP scores on the GIST dataset with
varying binary code lengths. We can observe that the optimal ψ value remains
consistent regardless of the number of hash bits, ranging from 128 to 2048 bits.
This suggests that the optimal selection of ψ is intrinsic to the characteristics of
the specific dataset, rather than the code length.

6 Discussion

We acknowledge that the integration of Voronoi diagrams with hashing tech-
niques is not an entirely novel concept [1, 23]. However, our proposed VDeH
distinguishes itself from existing works through its unique mechanism for gen-
erating data-dependent hash functions and its redefinition of the hashing pro-
cess. Prior approaches, such as VLSH by Loi et al. [23], use Voronoi regions
to primarily localize and adapt standard Locality Sensitive Hashing (LSH); its
core hashing still relies on LSH’s random projection-based mechanism within
these regions. Similarly, the work by Ajani & Wanjari combines Voronoi cluster-
ing with hash indexing, where hash indexing serves to optimize their k-means
clustering algorithm for uncertain data rather than generating binary codes for
similarity search. In contrast, VDeH directly derives hash functions from the
partitions of Voronoi diagrams themselves. The goal of VDeH is to generate
highly efficient binary representations for large-scale datasets, thereby enabling

Voronoi Diagram Encoded Hashing 15

rapid similarity search and retrieval. The main novelty of VDeH lies in its utiliza-
tion of Voronoi diagrams as the core data-dependent hash function generator.
It proposes a method that can achieve key hashing properties, including full
space coverage, entropy maximization, and bit independence, without resorting
to complex learning procedures, notably through its specifically defined encoded
hashing mechanism.

7 Conclusion

We introduce VDeH, a novel no-learning data-dependent method for binary
hashing. VDeH distinguishes itself from L2H methods in three aspects. First,
VDeH employs the unique space partitioning of Voronoi diagrams, leveraging
its three previously concealed properties that match perfectly those required
for hashing. Second, VDeH is an implementation of a new definition of hashing
which equates the probability of some hashed condition to a similarity function.
The definition enables Voronoi diagrams, already used to compute the similarity
of Isolation Kernel, to construct hash functions easily without much effort. No
existing L2H methods have used a similar definition as far as we know. Third, the
integration of encoded hashing enables VDeH to generate mutually independent
binary bits, which could not be utilized by existing methods because they have
already employed independent hash functions. Our experiments show that VDeH
exhibits superior performance with lower computational cost compared to the
state-of-the-art methods.

Acknowledgments. We thank the anonymous reviewers for their valuable comments.
This work was supported in part by the National Natural Science Foundation of China
(Grant No. 92470116).

References

1. Ajani, S., Wanjari, M.: An efficient approach for clustering uncertain data mining
based on hash indexing and voronoi clustering. In: 2013 5th International Confer-
ence and Computational Intelligence and Communication Networks, pp. 486–490.
IEEE (2013)

2. Al-Odat, Z.A., Ali, M., Abbas, A., Khan, S.U.: Secure hash algorithms and the
corresponding FPGA optimization techniques. ACM Computing Surveys (CSUR)
53(5), 1–36 (2020)

3. Borthwick, A., Ash, S., Pang, B., Qureshi, S.: Scalable Blocking for Very Large. In:
ECML PKDD 2020 Workshops, September 14–18, 2020, Proceedings, vol. 1323, p.
303. Springer Nature (2021)

4. Cai, D.: A revisit of hashing algorithms for approximate nearest neighbor search.
IEEE Transactions on Knowledge and Data Engineering 33(6), 2337–2348 (2021)

5. Charikar, M.S.: Similarity Estimation Techniques from Rounding Algorithms. In:
Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Com-
puting, pp. 380–388 (2002)

16 Y.Xu and K.M.Ting

6. Chi, L., Zhu, X.: Hashing techniques: A survey and taxonomy. ACM Computing
Surveys (Csur) 50(1), 1–36 (2017)

7. Devroye, L., Györfi, L., Lugosi, G., Walk, H.: On the measure of Voronoi cells.
Journal of Applied Probability 54(2), 394–408 (2017)

8. FIMI: FIMI datasets. http://fimi.ua.ac.be/data/. Accessed 2 Jan 2017 (2017)
9. Gong, Y., Kumar, S., Rowley, H.A., Lazebnik, S.: Learning binary codes for high-

dimensional data using bilinear projections. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (2013)

10. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: A pro-
crustean approach to learning binary codes for large-scale image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence 35(12), 2916–2929
(2013)

11. Hansen, C., Hansen, C., Simonsen, J.G., Alstrup, S., Lioma, C.: Unsupervised
Semantic Hashing with Pairwise Reconstruction. In: Proceedings of the 43rd In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval (2020)

12. Haq, I.U., Caballero, J.: A survey of binary code similarity. Acm computing surveys
(csur) 54(3), 1–38 (2021)

13. He, J., Chang, S.-F., Radhakrishnan, R., Bauer, C.: Compact hashing with joint
optimization of search accuracy and time. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 753–760 (2011)

14. He, L., Huang, Z., Liu, C., Li, R., Wu, R., Liu, Q., Chen, E.: One-bit Deep Hashing:
Towards Resource-Efficient Hashing Model with Binary Neural Network. In: Pro-
ceedings of the 32nd ACM International Conference on Multimedia, pp. 7162–7171
(2024)

15. Heo, J.-P., Lee, Y., He, J., Chang, S.-F., Yoon, S.-E.: Spherical hashing: Binary
code embedding with hyperspheres. IEEE transactions on pattern analysis and
machine intelligence 37(11), 2304–2316 (2015)

16. Hu, D., Chen, Z., Wu, J., Sun, J., Chen, H.: Persistent memory hash indexes: An
experimental evaluation. Proceedings of the VLDB Endowment 14(5), 785–798
(2021)

17. Jin, Z., Li, C., Lin, Y., Cai, D.: Density sensitive hashing. IEEE Transactions on
Cybernetics 44(8), 1362–1371 (2014)

18. Joly, A., Buisson, O.: Random Maximum Margin Hashing. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2011)

19. Jégou, H., Douze, M., Schmid, C.: Product Quantization for Nearest Neighbor
Search. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 117–
128 (2011)

20. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
Report from the Department of Computer Science at the University of Toronto
(2009)

21. Li, Y., van Gemert, J.: Deep Unsupervised Image Hashing by Maximizing Bit
Entropy. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, no. 3, pp. 2002–2010 (2021)

22. Liu, H., Zhou, W.H., Wu, Z., Zhang, S.C., Li, G., Li, X.L.: Refining Codes for Lo-
cality Sensitive Hashing. IEEE Transactions on Knowledge and Data Engineering,
pp. 1–11 (2023)

23. Loi, T.L., Heo, J.-P., Lee, J., Yoon, S.-E.: VLSH: Voronoi-based locality sensitive
hashing. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 5345–5352. IEEE (2013)

Voronoi Diagram Encoded Hashing 17

24. Luo, X., Wang, H., Wu, D., Chen, C., Deng, M., Huang, J., Hua, X.-S.: A survey
on deep hashing methods. ACM Transactions on Knowledge Discovery from Data
17(1), 1–50 (2023)

25. Mao, J.-Y., Pan, Q.-K., Miao, Z.-H., Gao, L., Chen, S.: A hash map-based memetic
algorithm for the distributed permutation flowshop scheduling problem with pre-
ventive maintenance to minimize total flowtime. Knowledge-Based Systems 242,
108413 (2022)

26. Min, X., Lu, K., Liu, P., Wan, J., Xie, C., Wang, D., Yao, T., Wu, H.: SepHash:
A Write-Optimized Hash Index On Disaggregated Memory via Separate Segment
Structure. Proceedings of the VLDB Endowment 17(5), 1091–1104 (2024)

27. Pham, N., Liu, T.: Falconn++: A Locality-sensitive Filtering Approach for Approx-
imate Nearest Neighbor Search. In: Proceedings of the 36th Annual Conference on
Neural Information Processing Systems (2022)

28. Singh, A., Gupta, S.: Learning to hash: a comprehensive survey of deep learning-
based hashing methods. Knowledge and Information Systems 64(10), 2565–2597
(2022)

29. Thangavel, M., Varalakshmi, P.: Enabling ternary hash tree based integrity verifi-
cation for secure cloud data storage. IEEE Transactions on Knowledge and Data
Engineering 32(12), 2351–2362 (2019)

30. Ting, K.M., Zhu, Y., Zhou, Z.-H.: Isolation Kernel and Its Effect on SVM. In:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2018)

31. Wang, J., Zhang, T., Song, J., Sebe, N., Shen, H.T.: A Survey on Learning to Hash.
IEEE Transactions on Pattern Analysis and Machine Intelligence 13(9) (2017)

32. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Proceedings of the 21st
Annual Conference on Neural Information Processing Systems, pp. 1753–1760
(2008)

33. Wu, X.-M., Luo, X., Zhan, Y.-W., Ding, C.-L., Chen, Z.-D., Xu, X.-S.: Online En-
hanced Semantic Hashing: Towards Effective and Efficient Retrieval for Streaming
Multi-Modal Data. In: AAAI Conference on Artificial Intelligence, pp. 4263–4271
(2022)

34. Xia, Y., He, K., Kohli, P., Sun, J.: Sparse projections for high-dimensional binary
codes. In: Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3332–3339 (2015)

35. Yu, F.X., Kumar, S., Gong, Y., Chang, S.-F.: Circulant binary embedding. In:
Proceedings of the 31st International Conference on Machine Learning (2014)

36. Zhu, L., Zheng, C., Guan, W., Li, J., Yang, Y., Shen, H.T.: Multi-modal hashing
for efficient multimedia retrieval: A survey. IEEE Transactions on Knowledge and
Data Engineering 36(1), 239–260 (2023)

37. Zhu, X., Zhang, L., Huang, Z.: A Sparse Embedding and Least Variance Encoding
Approach to Hashing. IEEE Transactions on Image Processing (2014)

