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Abstract. While several techniques have been proposed to enhance the
generalization of deep learning models for classification problems, limited
research has been conducted on improving generalization for regression
tasks. This is primarily due to the continuous nature of regression la-
bels, which makes it challenging to directly apply classification-based
techniques to regression tasks. In this paper, we introduce a novel gen-
eralization method for regression tasks based on the metric learning as-
sumption that the distance between features and labels should be pro-
portional. Unlike previous approaches that solely consider the prediction
of this proportion as constant and disregard its variation among sam-
ples, we argue that this proportion can be defined as a mapping func-
tion. Additionally, we propose minimizing the error of this function and
stabilizing its fluctuating behavior by smoothing out its variations. To
further enhance Out-of-Distribution (OOD) generalization, we leverage
the characteristics of the spectral norm (i.e., the sub-multiplicativity of
the spectral norm of the feature matrix can be expressed as Frobenius
norm of the output), and align the maximum singular value of the feature
matrices across different domains. We conduct experiments on 5 datasets
for OOD generalization in regression, and our method consistently out-
performs state-of-the-art approaches in the majority of cases. Our code
is released at https://github.com/workerbcd/SCR

Keywords: Out-of-Distribution Generalization · Representation learn-
ing · Regression .

1 Introduction

Continuous label prediction, known as regression, finds widespread application
across various domains, including computer vision [49,8], medical testing [18,1],
and financial analysis [22]. Unlike classification, which aims to determine op-
timal decision boundaries, regression involves fitting outputs to a continuous
function [30]. On the other hand, out-of-distribution generalization has received
considerable attention in classification [40]; however, the exploration of regres-
sion generalization remains relatively limited. Specifically, existing representa-
tion learning-based methods [4,2,16,17,14] are predominantly tailored for clas-
sification tasks. Although these methods can be adapted for regression general-

https://github.com/workerbcd/SCR
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ization, their efficacy is constrained as they fail to fully account for the inherent
proportional interdependence between features and labels.

In light of the above discussion, we argue that, when addressing challenges
such as uncertainty estimation [25] and generalization [46] in regression, it is
crucial to consider the relationships between the labels. To this end, we intro-
duce a metric learning loss specifically designed for regression. Different from
the previous method RankSim[20] to regularize the distribution with the order
of label distance, our proposed loss not only takes the distance order into account
but also constrains the feature distribution by discriminating the ratio between
feature distance and label distance. This idea can efficiently solve the disconti-
nuity of feature distribution caused by the discrete ranking order in RankSim.
In addition, contrary to the assumption in Regression Metric Loss (RML) [7]
that the ratio between feature distance and label distance is constant, we show
that this ratio varies and only equals a constant under certain ideal conditions.
We argue that RML, by overlooking the variability in this ratio, may obscure
the pattern of feature distributions in certain cases. As demonstrated in Figure
1, our metric loss can significantly discriminate the pattern, while maintaining
the continuity of feature distribution.

To improve the OOD generalization, we design a method to align the discrim-
inative feature pattern in different distributions. Motivated by augmentation-
based techniques [44,39,48] for OOD generalization in classification, we further
leverage the method mixing pairs of training data [46] to generate new distribu-
tions. For each distribution, we create a metric penalty to identify discriminative
patterns within the feature distribution. The real and synthesized distributions
are aligned by minimizing the difference between the spectral norms of their fea-
ture representations. According to the spectral norm property, the minimization
process ensures that the Frobenius norm of outputs remains consistent, thereby
reducing the upper bound of distribution discrepancy in regression tasks. The
main contributions of this paper are three-folded:

– We introduce a tailored metric loss for regression, bringing features closer if
their label distances are small and pushing them apart if distances are large.
This facilitates pattern recognition in regression and improves generalization
performance. We depart from previous approaches by modeling the feature-
label distance proportion as a variable mapping function and mitigating
instability caused by its fluctuations.

– According to the theory of domain adaptation in regression, we theoretically
present the relation between the spectral norm of feature matrix and the up-
per bound of the distribution discrepancy in regression. Based on our theory,
we expand the training distribution by generating samples with new distri-
bution and then align the real and synthesized distributions by minimizing
the difference between the spectral norm of their feature representations, to
enhance OOD generalization in regression.

– We conduct experiments on five regression datasets and show that our method
outperforms the state-of-the-art in most cases. The t-SNE visualization of
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the feature embedding illustrates the effectiveness and stability of our pro-
posed metric loss.

2 Related Work

2.1 Metric Learning

Metric learning has been shown to be effective when related to methods that rely
on distances and similarities [28]. Traditionally, methods like PCA and KNN are
widely used in the area of machine learning. With the development of deep
learning, networks [38] related to pair distances are designed to correlate among
samples while using shared weights in deep learning [26]. Then, prototype-based
metric losses [41,13] were proposed based on contrastive motivation. In regression
tasks, the metric learning loss has not been well-defined because it is hard to build
the connection between the metric distance and continuous labels. Recently,
RML [7] has been proposed based on the assumption that there is a constant
proportion between the feature distance and the label distance. However, the
method based on this assumption only considers the scale of the feature matrix,
ignoring fluctuations in the proportion map. To solve this issue, we assume that
the proportion is a mapping function in the training process and propose a metric
loss to smooth fluctuations.

2.2 Out-of-Distribution Generalization

Out-of-distribution (OOD) generalization aims at generalizing the model from
the training distribution to an unseen distribution. Mostly, the methods can
be divided into 3 parts [40]: data augmentation, representation learning, and
training strategy. Data augmentation methods [48,50] utilize linear interpola-
tion to fill the distribution gap, and some methods [44,39] also generate a new
distribution to enrich the convex hull supported by the source distributions.
Representation learning [4,3] aims at generating distribution-invariant feature
representations from source distributions. Recently, methods like SWAD [6] pro-
posed some novel training and model selection strategies, significantly improving
performance in OOD generalization. However, most methods above are designed
for classification. There are limited methods [46,4] designed for regression tasks.

2.3 Generalization in Regression

Recent research targeting generalization in regression tasks is based on data aug-
mentation in which mixup pairs are selected based on the probability related to
label distances [46,45]. Even though limited research has been proposed on this
topic, some methods designed for regression tasks can be transferred to general-
ization purposes. For instance, due to the function of metric learning, the metric
loss in regression [20,47,7] can be regarded as an in-distribution generalization
method. Also, distribution alignment methods in regression [34,11] can be up-
dated as OOD generalization methods. However, these distribution alignment
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methods are not related to the proportion between features and labels, which
are supposed to be very important in regression tasks.

3 Methodology

3.1 Problem Definition

Let {(xi, yi)}Ni=1 be the dataset with N samples, with xi ∈ X being the input
sample i ∈ R+ and yi ∈ Y its corresponding label, and X and Y denoting the
input space and the continuous label space, respectively. In the training phase,
the network learns a projection function g : X → F and a regression function
ϕ : F → Y. The projection function g transforms the input data into the feature
space, and the regression function ϕ maps the compact feature representation to
the label space. The objective of the regressor is to bring the output prediction
ŷi close to the ground truth label yi. Ideally, the optimal predictor ϕ is a fully
connected layer that satisfies yi = ŷi = W ∗ϕfi + b∗ϕ, where fi = g(xi) is the
extracted feature, W ∗ϕ is the optimal weight, and b∗ϕ is the optimal bias.
Distribution discrepancy in regression. A theory of learning from different
distributions in regression is defined in [12]. Given the hypothesis h being a map
from input space X to the label space Y, the discrepancy distance disc between
two distributions P and Q is defined as:

disc(P,Q) = max
h,h′∈H

|LP (h′, h)− LQ(h′, h)|

Here, the hypothesis H is a subspace of the reproducing kernel Hilbert space
(RKHS) H and LD(h′, h) = Ex∼D[L(h(x), h′(x))], with L being a MSE loss. In
this paper, we only consider the situation of finite dimension, thus, Euclidean
space can be considered as a Hilbert space with a linear kernel.

3.2 Proportional Metric Loss

By leveraging the discrete labels to define sample pairs in classification models,
metric learning aims to learn feature representations with low intra-class variance
and high inter-class separation, which can improve the generalization ability of
the learned model [28,9]. However, this motivation is based on the fact that the
labels are discrete [34]. In regression tasks, given an input-label pair of (xi, yi),
∀ε > 0, with input xi+ε and its continuous label yi+ε, it’s proven that ϕ should
be a continuous bijection [7], with homeomorphic label and feature distributions.
Intuitively, there is an optimal relationship between the distances of labels and
distances of features - as the distance between two labels increases, the distance
between their corresponding features should also increase, meaning that when
two examples have labels that are farther apart, their representations in feature
space should also be farther apart, and vice versa for labels that are closer
together.

Remark 1 d(yi, yj) < d(yi, yk)⇐⇒ d(fi, fj) < d(fi, fk),∀i, j, k ∈ R+
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For any bounded open subset in F , ϕ should be convergent and bounded, which
means ϕ should be uniformly continuous on any bounded open subset [36]. Thus,
we conclude Remark 2.

Remark 2 d(yi, yj) < d(yt, yk)⇐⇒ d(fi, fj) < d(ft, fk),∀i, j, k, t ∈ R+

Building upon Remark 1, since F is a compact space and label Y is contin-
uous, then for ∀ε > 0, we can find labels y′, y′′ with d(y′, y′′) = ε. Then,
∃δ = d(f ′, f ′′) > 0, such that ∀d(fa, fb) < δ, we have d(ya, yb) < ε. So, Re-
mark 2 keeps ϕ uniformly continuous.

In light of the discussion above, we argue that the distance between labels
can not be ignored in the regression tasks. In particular, we propose learning
a feature-label proportional distance instead of the traditional distance, e.g.,
Euclidean distance between features:

dr(fi, fj) =
d(fi, fj)

d(yi, yj)
, (1)

Here, d(·, ·) represents Euclidean distance and dr(·, ·) denotes the proportional
distance induced from d(·, ·). In addition, dr(·, ·) should be a bounded distance,
which can be illustrated by the following Proposition.

Proposition 1 Given any two data points (xi, yi) and (xj , yj), we have ‖fi −
fj‖p ≤ ‖W ∗−1ϕ ‖p|yi − yj |. Here, W ∗ϕ is the optimal weight of the fully connected
layer. fi, fj are the features extracted from xi, xj through model g, and ‖ · ‖p is
the norm under Lp space.

Proof 1 Given the optimal weight W ∗ϕ, bias b∗ϕ and data (xi, yi), (xj , yj), we
have

yi = W ∗ϕfi + b∗ϕ, yj = W ∗ϕfj + b∗ϕ

where fi, fj are extracted features from xi, xj, respectively. Then,

‖fi − fj‖p = ‖W ∗†ϕ (yi − yj)‖p ≤ ‖W ∗†ϕ ‖p|yi − yj |

where † represents Moore–Penrose inverse

Proposition 1 gives the upper bound of dr(·, ·) which is ‖W ∗†ϕ ‖2. In addition,
when the equal sign in Proposition 1 holds, it can explain the assumption of
regression metric loss [7] that the distance between the features should be pro-
portional to the distance between their corresponding labels. Specifically, [7] uses
a learnable parameter to restrain the proportion between feature distance and
label distance. However, according to Proposition 1, this proportion should be
related to the optimal weightW ∗ϕ, and the equation may not hold when the labels
are continuous. Moreover, representing this proportion with a constant ignores
its fluctuations and variances among different samples. To alleviate this issue,
we formulate this proportion as a mapping function and minimize its standard
deviation to constrain the distance between the features to be uniform along the
samples.
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According to Proposition 1, the result of dr(·, ·) should be a bounded pro-
portion map and can be a constant function in some ideal situation. Hence, we
minimize the standard deviation of dr(·, ·) to acquire a flatter proportion map
in a mini-batch. The proportional metric loss function should be:

Lpml =

√√√√ 1

N2
b − 1

Nb∑
i

Nb∑
j

(dr(fi, fj)− d̄r) (2)

Here, d̄r is a constant function equal to the mean of the relative distances in the
batch and Nb is the batch size. Lpml constrains the predictor ϕ as a Lipschitz
continuous function satisfying Remarks 1 and 2. Lpml is based on the assumption
that the target label is univariate. For the multivariate regression task with a D
dimensional target label y ∈ RD, the loss can be updated as:

L̂pml =

D∑
i=1

Lipml (3)

with Lipml = Lpml if D = 1.
Superiority of Lpml over SOTA RankSim [20] is the SOTA method to reg-
ularize the feature distance in regression by aligning the feature distance order
with the label distance order. We argue that the consistency between the orders
of label distance and feature distances is insufficient to regularize the feature
distribution with continuous labels, especially for unseen labels.3 With the con-
sideration of the proportion between label distance and feature distance, Lpml
can mitigate this problem with continuous feature distribution.

3.3 Spectral Alignment of Domains

Existing works [44,43] in domain generalization have demonstrated that the di-
versity and amount of training examples are positively correlated with the gen-
eralizability of a machine learning model. To expand the training set, we em-
ploy the data augmentation technique of C-Mixup [46] to generate additional
samples from unseen distributions. However, without imposing a constraint of
domain invariance, the learned feature space might include domain-specific in-
formation and thus become noisy [32]. This could hinder obtaining the optimal
generalization power of the model.

To impose domain invariance constraint, the existing work of [11] suggests
not to minimize the difference between the Frobenius norm of feature repre-
sentations of different domains. However, this may cause unstable performance.
3 In the 1-D space, given seen labels ls = {1, 2, 10, 11}, the feature can be distributed
as fs = {1, 2, 100, 101} according to [20]. But, according to the pigeonhole principle,
there must be at least two unseen labels in [2, 10] with label distance equal to 0.5
(default to {4, 4.5}), whose feature distance is larger than 1 (default to {6, 7.1}).
However, the features f = {1, 2, 6, 7.1, 100, 101} with labels l = {1, 2, 4, 4.5, 10, 11}
are ill-distributed according to [20].
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We argue that this instability can come from the fact that the Frobenius norm
may encode the average of variances (i.e., singular values) along all orthogonal
feature projections, and that, the transferability of the feature representations
mainly lies in aligning the highest variability directions corresponding to the
largest singular values [10]. Therefore, in our formulation, the Frobenius norm
is substituted by the spectral norm, which only encodes the highest variability
direction. We further show that the difference between spectral norms of features
can be related to domain discrepancy.
Notations The expected loss in regression is LD(h′, h) = Ex∼D[L(h(x), h′(x))]
with L being the MSE loss [12]. We have the LD(h, 0) = 1

N ‖Ŷ
h
D‖2F , with N

being the number of samples, and Ŷ hD being the output with hypothesis h under
distribution D. 0 represents the hypothesis mapping to zero element in Y.

Proposition 2 Given two distributions P and Q, we have

disc(P,Q) ≤ 1

N
max
h∈H

|‖Ŷ hP ‖2F − ‖Ŷ hQ‖2F |,

where disc represents the difference between distributions and N denotes the
number of the samples.

Proof 2 Generally speaking, we have

L(h′, h) = L(h− h′, 0)

Since h, h′ are in the subspace H of Hilbert Space H, we have h′′ = h− h′ ∈ H.
Then, we have

∀h′′ ∈ H, disc(P,Q) ≤ max
h′′∈H

|LP (h′′, 0)− LQ(h′′, 0)|

So, the proof is concluded.

Proposition 2 shows the relation between the difference of feature representations
and their distribution discrepancy. To determine the relation between the norm
of the feature matrix and the output scale4, we consider the spectral norm of the
feature space, ‖F‖2 = supw 6=0

‖Fw‖2
‖w‖2 . If Wi is a row vector of the weight W in

the fully connected layer, then ‖Ŷ hi ‖2 ≤ ‖Ŷ hi −bi‖2+|bi| ≤ ‖F‖2‖Wi‖2+|bi|, Ŷ hi ,
and Ŷ hi is the i-th vector of the output matrix Ŷ h and bi is the i-th value of the
bias vector b in the fully connected layer. If we define λi(F ) = ‖F‖2‖Wi‖2 + |bi|,
we will have ‖Ŷ h‖F ≤ ‖λ(F )‖2.

From the discussion above, the spectral norm is related to the upper bound
of the output scale. So aligning the spectral norms can prevent the output scales
from differing greatly, which can also align two distributions as per Proposition
4 The Frobenius norm of the output ‖Ŷ h

P ‖F represents the scale of the output in
distribution P . Unlike classification, in regression, the target label for each sample
can be a vector. That means, if we have N samples, each withM dimensional target
vectors, then Ŷ h

P is an N ×M matrix.
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2. Therefore, we propose the spectral alignment loss based on singular value
decomposition (SVD) as follows:

Lsa = |max(sreal)−max(ssyn)|, (4)

where sreal and ssyn are the set of the singular values of the feature matrices from
the real and synthesized distributions. The largest singular values of matrices
are selected for calculating the loss. Note that ‖F‖2 = max(sF ), where sF is the
set of the singular values of matrix F .

3.4 Overall Objective Function

We combine our objectives for proportional metric loss and spectral alignment,
and optimize them in an end-to-end training fashion. Formally, we have:

L = Lmse + αL̂pml + βLsa, (5)

where α and β represent hyper-parameters to balance the contribution of
their corresponding loss functions. We further optimize the supervised loss of
Lmse, formulated as:

Lmse =
1

N
(

N∑
i=1

(ϕ(g(xreali ))− yreali )2 +

N∑
i=1

(ϕ(g(xsyni ))− ysyni )2) (6)

with ϕ(g(xreali )) and ϕ(g(xsyni )) being the prediction of input xreali and the
augmented sample xsyni with C-Mixup [46], respectively. Here, yreali and ysyni

denote the ground truth label corresponding to xreali and xsyni , respectively.

4 Experimental Results

4.1 Implementation Details

Recent research [29,27] reveals a phenomenon that fine-tuning the whole network
on a new task can improve the in-distribution (ID) performance of the new task,
at the price of its out-of-distribution (OOD) accuracies. This is because fine-
tuning the whole network changes the feature space spanned by the training data
of a new task, which distorts the pretrained features. While linear probing can
be an alternative solution to fine-tuning, due to its inability to adapt the features
to the downstream task, it may degenerate the performance on in-distribution
tasks. To mitigate this ID-OOD trade-off, motivated by the discussion in [29,27],
we freeze the top of the C-Mixup [46] pretrained network (excluding the last
block and the linear layers) during the training process. Specifically, we only
fine-tune the bottom layer to preserve the low-level features from the pretrained
model and unfreeze the last block to avoid degeneracy in the ID tasks.
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Table 1: Comparison on out-of-distribution datasets. The bold number is the
best result and the underline number is the second best result. The results of
methods with † are reported by [46]. ERM is the baseline method using only
MSE loss. The results of methods with * are reproduced based on the provided
source code

RCF-MNIST DTI
RMSE↓ R↑
Avg. Avg. Worst

ERM† 0.162 0.464 0.429
ERM* 0.160 0.475 0.438
IRM† [4] † 0.153 0.478 0.432
IB-IRM† [2] 0.167 0.479 0.435
CORAL† [31] 0.163 0.483 0.432
GroupDRO† [37] 0.232 0.442 0.407
Mixup† [48] 0.176 0.465 0.437
C-Mixup* [46] 0.153 0.483 0.449
C-Mixup† [46] 0.146 0.498 0.458
RML* [7] 0.167 0.480 0.446
RankSim* [20] 0.239 0.479 0.464
Full model w/o Lsa 0.145 0.491 0.479
Full model w/o Lpml 0.147 0.481 0.447
Full model 0.143 0.500 0.448

4.2 Generalization in Univariate Regression

Datasets. The generalization ability of models in regression tasks with uni-
variate output is evaluated over two datasets, namely Drug-target Interactions
(DTI) [24] and RCF-MNIST [46].DTI is a real world dataset designed to predict
the binding activity score between each small molecule and the corresponding
target protein by collecting 232,458 data on the drug and target protein infor-
mation. The whole dataset is divided into different domains according to the
years of data collection. RCF-MNIST is a dataset with 60,000 images built
on FashionMNIST [42] with spurious correlations between colours and rotation
angles (label).
Experimental Settings. We evaluate our method on two datasets, namely
RCF-MNIST and DTI. We leverage Resnet18 [23] as the feature extractor for
RCF-MNIST, and employ DeepDTA [35] on DTI.

Following the original paper of DTI [24], we evaluate the methods on R value.
Same as C-Mixup [46], we report both average and worst-domain performance
for the experiments on DTI. For RCF-MNIST, the evaluation metric is Root
Mean Square Error (RMSE). Our full model is trained with three losses, Lmse,
Lsa and Lpml. The fine-tuning strategy mentioned in Section 4.1 is also applied
in the experiments on univariate regression in our models. All the experiments
are run over 3 seeds.
Performance comparison. The performance of OOD robustness on the two
datasets is shown in Table 1. We compare our methods with not only the OOD
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generalization methods, i.e C-Mixup [46], CORAL [31], but also some metric loss
in regression, i.e RankSim [20] and RML [7]. Note that RankSim is a method de-
signed for age prediction where the continuity of the target label is not required.
ERM is the baseline training strategy, where the objective is to minimize the
Mean Squared Error (MSE) loss Similar to our proposed losses, the fine-tuning
method is applied for the models with RankSim and RML. As the table shows,
our method can achieve superior performance in most cases. For the datasets
with small sizes, the pretrained model plays an important role in improving gen-
eralization, since the scarcity of data and the lack of variety is the key problem
in these datasets. In addition, we find that Lpml can also generalize the spurious
correlation, as shown by the results of RCF-MNIST. We assume that the spuri-
ous correlation increases the variance in the proportion, which can be generalized
by Lpml.

(a) Lmse (b) RML (c) RankSim

(d) Full model w/o Lsa (e) Full model w/o Lpml (f) Full model

Fig. 1: T-SNE visualization of the embedding space on DTI dataset. The vi-
sualizations from le to right are (a) The baseline model that is fine-tuned to
minimize MSE loss, (b) The model that is fine-tuned to minimize both MSE
and RML objectives, (c) the model that is fine-tuned to minimize both MSE
and RankSim, (d) The model that is fine-tuned to optimize full model without
Lsa, (e) The model that is fine-tuned to optimize full model without Lpml. (f)
The model that is fine-tuned to optimize full model. Red points represent the
features extracted from the train set and the blue points represent the features
extracted from the test set.
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t-SNE visualization. According to our discussion, Lpml is trying to get a
flatter dr, which means the feature distribution should follow a discriminative
pattern with less variance. To test the effect of the losses in regression on em-
bedding space, we visualize the feature distribution without metric loss, with
RML, and with Lpml on Figure 1. This visualization can strongly support our
assumption and discussion above. As Figure 1 shows, the feature distribution
is more compact and the distribution pattern is clearer with Lpml. In addition,
as we discussed, RML focuses on learning a scale of the matrix feature and ig-
nores the variance in the proportion. So, in some situations, the pattern will be
blurred with RML, which is the same as the one shown in Figure 1. Note that
Lpml maintains the property of being Lipschitz continuous for the predictor,
which enhances the continuity of the feature distribution with less steep slopes.
Figures 1c and 1d illustrate this difference: unlike Lpml, RankSim [20], which
focuses solely on the distance between orders, does not preserve Lipschitz conti-
nuity. This characteristic might contribute to Lpml’s superior performance over
RankSim in most scenarios, as shown in Tables 1. It will also contribute to the
frequent breakpoints in Figure 1c, which supports this hypothesis.
Lpml v.s. Ranksim: The t-SNE visualization highlights two primary distinctions
between the methods: the pattern of Lpml appears rougher than that of RankSim;
and Lpml exhibits significantly fewer breakpoints compared to RankSim. This is
likely due to the penalty mechanism of RankSim, which aligns feature distances
more loosely in accordance with label distances, allowing for a broader spread
with fewer disruptions. This accounts for the rougher appearance of the Lpml
pattern. However, such stretching of patterns might result in extremely varied
feature distances, potentially causing poorly distributed patterns, particularly
for unseen labels as noted in Footnote 3. Consequently, the t-SNE visualization of
RankSim reveals more breakpoints than that of Lpml, explaining the suboptimal
performance of RankSim in DTI and RCF-MNIST.

4.3 Generalization in Multivariate Regression

Datasets. The out-of-distribution (OOD) generalization ability of models in
multivariate regression is evaluated over three datasets, including dSprites [33],
MPI3D [19] and BiwiKinect [15] which are widely used for domain adaptation
tasks in computer vision [11,34]

dSprites is a synthetic dataset of three domains, namely Color(c), Scream(s)
and Noisy(n), which are generated by adding colors or noise in the real images.
Each domain comprises 737,280 images. Following the setup in [11], the orien-
tation factors in the dataset are excluded.

MPI3D is a benchmark dataset of 1,036,800 images with three distributions
to predict intrinsic factors. The dataset contains real data (domain Real (rl))
and synthetic data (domain Toy (t) and Realistic (rc)). In our experiments, we
only consider the prediction of the rotation around a vertical and horizontal axis.

BiwiKinect is a real-world dataset of head poses recorded by a Microsoft
Kinect sensor. The dataset can be divided into 2 domains: Female (F) with 5,874
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Table 2: Comparison on MPI3D and dSprites dataset with the setting of domain
generalization under the MSE index. The bold number is the best and the
underline number is the second best result. The unseen domains are on the top.

MPI3D-MSE MPI3D-MAE
rc rl t rc rl t

ERM 0.08132 0.09819 0.007004 0.3163 0.3511 0.0922
C-Mixup 0.09226 0.10495 0.014453 0.3367 0.3666 0.1296
RML 0.08596 0.09412 0.020132 0.3315 0.3448 0.1661
Nuclear-norm 0.09490 0.09536 0.011940 0.3270 0.3313 0.1181
F-norm 0.09565 0.10548 0.008318 0.3226 0.3411 0.0985
Full model w/oLsa 0.07829 0.08262 0.006996 0.3149 0.3478 0.0919
Full model w/o Lpml 0.07942 0.08355 0.006016 0.3016 0.3225 0.0856
Full model 0.07956 0.07885 0.006017 0.3058 0.3137 0.0858

dSprites-MSE dSprites-MAE
c s n c s n

ERM 0.04904 0.4903 0.4108 0.3071 0.9793 0.8977
C-Mixup 0.08769 0.5087 0.3672 0.4144 0.9846 0.8596
RML 0.08037 0.5860 0.4348 0.4147 1.054 0.9115
Nuclear-norm 0.2076 0.7718 0.4970 0.3270 0.3313 0.1181
F-norm 0.06709 0.4856 0.5868 0.3035 0.9234 1.067
Full model w/o Lsa 0.03480 0.4589 0.4051 0.2626 0.9413 0.8953
Full model w/o Lpml 0.03721 0.4861 0.3954 0.2711 0.9650 0.8859
Full model 0.03479 0.4569 0.4030 0.2620 0.9396 0.8942

images and Male (M) with 9,804 images. The Euler angles of the head, namely
yaw, pitch and roll angles are used to evaluate our method.
Experimental settings. We analyze our method under the setting of domain
generalization on the three datasets, which is a benchmark dataset for Domain
Adaptation in Regression. We adapt a domain generalization setting [21] by
evaluating our method over three generalization tasks on the three datasets: 1)
dSprites:c, s → n; c, n → s; s, n → c; 2) MPI3D: rl, rc → t; t, rc → rl;
rl, t → rc; 3) Biwikinect: F → M; M → F. We use the test sets of source
distributions as the validation sets for the model selection. All the experiments
are run over three random seeds, and we follow [6] for random seed and hyper-
parameter seed selection.

The evaluation metrics on this task are Mean Square Error (MSE) and Mean
Absolute Error (MAE). The variances over seeds of the methods are reported in
the supplementary. We do not use our fine-tuning method on the three datasets
and there is no frozen parameter during the training process on these three
datasets. Since RankSim does not provide the algorithm for multivariate regres-
sion, we do not include it in the experiments for multivariate regression.
OOD generalization with multiple source domains. The MSE and MAE
results on dSprites and MPI3D are shown in Table 2. The comparison between
Lpml and RML [7] shows the advantage of modeling the proportion as a fluctu-
ating map rather than a fixed constant. In addition, the performance also shows
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Table 3: Comparison on BiwiKinect dataset with the setting of domain gener-
alization under MSE and MAE index. The bold number is the best and the
underline number is the second best result. The unseen domains are on the top.

BiwiKinect-MSE BiwiKinect-MAE
F M F M

ERM 0.3953 0.4949 0.7907 0.8879
C-Mixup 0.3542 0.4908 0.7555 0.8795
RML 0.4139 0.4923 0.8125 0.8833
Nuclear-norm 0.4792 0.5967 0.8771 0.9902
F-norm 0.3472 0.4735 0.7394 0.8489
Full model w/o Lsa 0.3486 0.4744 0.7401 0.8424
Full model w/o Lpml 0.3376 0.4683 0.7257 0.8585
Full model 0.3391 0.4695 0.7276 0.8419

that the alignment with Lsa can significantly improve the generalization ability
in some cases. We also provide the results of alignment with Nuclear-norm ‖ · ‖∗
and Frobenius norm ‖ · ‖F . With norm equivalence [5], ‖ · ‖2 ≤ ‖ · ‖F ≤ ‖ · ‖∗,
the spectral norm can give a tighter upper bound. This can explain the reason
that Lsa can get the best performance among them. In addition, compared with
Lpml, Lsa makes more significant improvement in generalization tasks, which
illustrates the importance of distribution alignment in OOD generalization.

Table 2 shows that the C-Mixup performs very well, when the Noisy domain
is the unseen domain on dSprites. We assume that the mix-up distribution is
very similar to the noisy domain. When the other distributions are involved, the
well-built distribution is damaged, which may complicate the training process.
OOD generalization with single source domain. We also evaluate our
method on single OOD generalization on BiwiKinect dataset. Table 3 shows
the MSE and MAE results on BiwiKinect. From the result of F-norm and Lsa,
it seems that the distribution alignment methods can contribute more to the
improvement of the performance on single domain generalization because of the
lack of diversity in the source distribution.

4.4 Hyper-parameter Sensitivity Analysis

We analyze the hyper-parameters on α and β in Equation 5. When the values of
Lpml and Lsa are much larger than Lmse, the total loss Lmse is hard to converge
and the performance will drop dramatically. So, we analyze the trend of the
performance of Lpml and Lsa with α and β in the range between [1e−9, 1] and
[1e−9, 1e4] respectively. Figure 2 shows the sensitivity of the hyper-parameters
on out-of-distribution dataset DTI. We find that the Lpml is much more sensitive
since the value of Lpml is usually much larger than Lmse and Lsa.
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1 1e-3 1e-6 1e-9
0.472

0.480

0.488

(a) α on DTI

1e4 10 1e-2 1e-5 1e-8
0.479

0.480

0.481

(b) β on DTI

Fig. 2: (a) and (b) shows the hyper-parameter analysis on DTI datasets. The
larger R value means the better result.

5 Conclusion

This paper discusses two main objectives that are required to improve generaliza-
tion in regression. For In-Distribution generalization, we propose proportional
metric loss, based on the assumption that the distance between features and
their corresponding labels should be correlated. We assume that the proportion
between feature distance and label distance is a mapping function. Through this
loss, we show that the variance in the embedding space is decreased, resulting
in more discriminative patterns. To improve the transferability of the model on
out-of-distribution data, we propose to augment the original data and then align
the synthesized and real distributions through minimizing the difference between
spectral norm of features.

Acknowledgments. This work is partially supported by Australian Research Council
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References

1. Agatston, A., Janowitz, W., Hildner, F.J., Zusmer, N.R., Viamonte, M., Detrano,
R.: Quantification of coronary artery calcium using ultrafast computed tomogra-
phy. Journal of the American College of Cardiology 15(4), 827–832 (1990) 1

2. Ahuja, K., Caballero, E., Zhang, D., Gagnon-Audet, J.C., Bengio, Y., Mitliagkas,
I., Rish, I.: Invariance principle meets information bottleneck for out-of-distribution
generalization. Proceeding of the Conference on Neural Information Processing
Systems 34, 3438–3450 (2021) 1, 9

3. Albuquerque, I., Monteiro, J., Darvishi, M., Falk, T.H., Mitliagkas, I.: Generalizing
to unseen domains via distribution matching. arXiv:1911.00804 (2019) 3

4. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization.
arXiv preprint arXiv:1907.02893 (2019) 1, 3, 9

5. Cai, T.T., Ren, Z., Zhou, H.H.: Estimating structured high-dimensional covariance
and precision matrices: Optimal rates and adaptive estimation (2016) 13



Spectral Distribution Alignment for Enhanced Generalization in Regression 15

6. Cha, J., Chun, S., Lee, K., Cho, H.C., Park, S., Lee, Y., Park, S.: Swad: Domain
generalization by seeking flat minima. Proceeding of the Conference on Neural
Information Processing Systems 34, 22405–22418 (2021) 3, 12

7. Chao, H., Zhang, J., Yan, P.: Regression metric loss: Learning a semantic repre-
sentation space for medical images. arXiv preprint arXiv:2207.05231 (2022) 2, 3,
4, 5, 9, 10, 12

8. Chen, W., Fu, Z., Yang, D., Deng, J.: Single-image depth perception in the wild.
Proceeding of the Conference on Neural Information Processing Systems (2016) 1

9. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet
network for person re-identification. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 403–412 (2017) 4

10. Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability:
Batch spectral penalization for adversarial domain adaptation. In: Chaudhuri,
K., Salakhutdinov, R. (eds.) Proceedings of International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 97, pp. 1081–1090.
PMLR (09–15 Jun 2019), https://proceedings.mlr.press/v97/chen19i.html 7

11. Chen, X., Wang, S., Wang, J., Long, M.: Representation subspace distance for
domain adaptation regression. In: International conference on machine learning.
pp. 1749–1759 (2021) 3, 6, 11

12. Cortes, C., Mohri, M.: Domain adaptation in regression. In: International Confer-
ence on Algorithmic Learning Theory. pp. 308–323. Springer (2011) 4, 7

13. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angular margin loss for
deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4690–4699 (2019) 3

14. Deshmukh, A.A., Lei, Y., Sharma, S., Dogan, U., Cutler, J.W., Scott, C.: A
generalization error bound for multi-class domain generalization. arXiv preprint
arXiv:1905.10392 (2019) 1

15. Fanelli, G., Dantone, M., Gall, J., Fossati, A., Van Gool, L.: Random forests for real
time 3d face analysis. International Journal of Computer Vision 101(3), 437–458
(2013). https://doi.org/10.1007/s11263-012-0549-0 11

16. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: International conference on machine learning. pp. 1180–1189. PMLR (2015) 1

17. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
March, M., Lempitsky, V.: Domain-adversarial training of neural networks. Journal
of machine learning research 17(59), 1–35 (2016) 1

18. Gilsanz, V., Ratib, O.: Hand Bone Age: A Digital Atlas of Skeletal Maturity.
Springer Berlin Heidelberg (2011) 1

19. Gondal, M.W., Wuthrich, M., Miladinovic, D., Locatello, F., Breidt, M., Volchkov,
V., Akpo, J., Bachem, O., Schölkopf, B., Bauer, S.: On the transfer of inductive
bias from simulation to the real world: a new disentanglement dataset. In: Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems. vol. 32. Curran Associates,
Inc. (2019) 11

20. Gong, Y., Mori, G., Tung, F.: Ranksim: Ranking similarity regularization for deep
imbalanced regression. arXiv preprint arXiv:2205.15236 (2022) 2, 3, 6, 9, 10, 11

21. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: Interna-
tional Conference on Learning Representations (2021) 12

22. Happersberger, D.: Advancing Systematic and Factor Investing Strategies Using
Alternative Data and Machine Learning. Lancaster University (2021) 1

https://proceedings.mlr.press/v97/chen19i.html
https://doi.org/10.1007/s11263-012-0549-0
https://doi.org/10.1007/s11263-012-0549-0


16 Kaiyu Guo, Zijian Wang, Brian C. Lovell, and Mahsa Baktashmotlagh (�)

23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (June 2016) 9

24. Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao,
C., Sun, J., Zitnik, M.: Therapeutics data commons: Machine learning datasets and
tasks for drug discovery and development. arXiv:2102.09548 (2021) 9

25. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine
learning: An introduction to concepts and methods. Machine Learning 110, 457–
506 (2021) 2

26. Kaya, M., Bilge, H.Ş.: Deep metric learning: A survey. Symmetry 11(9), 1066
(2019) 3

27. Kirichenko, P., Izmailov, P., Wilson, A.G.: Last layer re-training is sufficient for
robustness to spurious correlations. In: International Conference on Learning Rep-
resentations (2023), https://openreview.net/forum?id=Zb6c8A-Fghk 8

28. Kulis, B., et al.: Metric learning: A survey. Foundations and Trends® in Machine
Learning 5(4), 287–364 (2013) 3, 4

29. Kumar, A., Raghunathan, A., Jones, R., Ma, T., Liang, P.: Fine-tuning can
distort pretrained features and underperform out-of-distribution. arXiv preprint
arXiv:2202.10054 (2022) 8

30. Lee, C., Landgrebe, D.A.: Feature extraction based on decision boundaries. Trans-
actions on Pattern Analysis and Machine Intelligence 15(4), 388–400 (1993) 1

31. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial
feature learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 5400–5409 (2018) 9, 10

32. Liu, Y., Wang, Y., Chen, Y., Dai, W., Li, C., Zou, J., Xiong, H.: Promoting se-
mantic connectivity: Dual nearest neighbors contrastive learning for unsupervised
domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 3510–3519 (2023) 6

33. Matthey, L., Higgins, I., Hassabis, D., Lerchner, A.: dsprites: Disentanglement
testing sprites dataset. https://github.com/deepmind/dsprites-dataset/ (2017) 11

34. Nejjar, I., Wang, Q., Fink, O.: Dare-gram : Unsupervised domain adaptation re-
gression by aligning inversed gram matrices. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. (2023) 3, 4, 11

35. Öztürk, H., Özgür, A., Ozkirimli, E.: Deepdta: deep drug–target binding affinity
prediction. Bioinformatics 34(17), i821–i829 (2018) 9

36. Rudin, W.: Principles of Mathematical Analysis. International series in pure and
applied mathematics, McGraw-Hill (1976) 5

37. Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neu-
ral networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731 (2019) 9

38. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 815–823 (2015) 3

39. Sicilia, A., Zhao, X., Hwang, S.J.: Domain adversarial neural networks for domain
generalization: When it works and how to improve. Machine Learning pp. 1–37
(2023) 2, 3

40. Wang, J., Lan, C., Liu, C., Ouyang, Y., Qin, T., Lu, W., Chen, Y., Zeng, W.,
Yu, P.: Generalizing to unseen domains: A survey on domain generalization. IEEE
Transactions on Knowledge and Data Engineering (2022) 1, 3

https://openreview.net/forum?id=Zb6c8A-Fghk


Spectral Distribution Alignment for Enhanced Generalization in Regression 17

41. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach
for deep face recognition. In: Computer Vision–ECCV 2016: 14th European Con-
ference. pp. 499–515. Springer (2016) 3

42. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017) 9

43. Xu, Q., Zhang, R., Fan, Z., Wang, Y., Wu, Y.Y., Zhang, Y.: Fourier-based aug-
mentation with applications to domain generalization. Pattern Recognition 139,
109474 (2023) 6

44. Xu, Q., Zhang, R., Zhang, Y., Wang, Y., Tian, Q.: A fourier-based framework for
domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 14383–14392 (2021) 2, 3, 6

45. Yang, Y., Zha, K., Chen, Y., Wang, H., Katabi, D.: Delving into deep imbalanced
regression. In: International Conference on Machine Learning. pp. 11842–11851.
PMLR (2021) 3

46. Yao, H., Wang, Y., Zhang, L., Zou, J., Finn, C.: C-mixup: Improving generalization
in regression. In: Proceeding of the Conference on Neural Information Processing
Systems (2022) 2, 3, 6, 8, 9, 10

47. Zha, K., Cao, P., Son, J., Yang, Y., Katabi, D.: Rank-n-contrast: Learning con-
tinuous representations for regression. In: Thirty-seventh Conference on Neural
Information Processing Systems (2023) 3

48. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. In: International Conference on Learning Representations (2018) 2,
3, 9

49. Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: Appearance-based gaze estimation
in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 4511–4520 (2015) 1

50. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. In:
International Conference on Learning Representations (2021) 3


	Spectral Distribution Alignment for Enhanced Generalization in Regression

