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Abstract. Variable selection is a challenging problem in high-dimensional sparse
learning, especially when group structures exist. Group SLOPE performs well for
the adaptive selection of groups of predictors. However, the block non-separable
group effects in Group SLOPE make existing methods either invalid or inefficient.
Consequently, Group SLOPE tends to incur significant computational costs and
memory usage in practical high-dimensional scenarios. To overcome this issue,
we introduce a safe screening rule tailored for the Group SLOPE model, which
efficiently identifies inactive groups with zero coefficients by addressing the block
non-separable group effects. By excluding these inactive groups during training,
we achieve considerable gains in computational efficiency and memory usage.
Importantly, the proposed screening rule can be seamlessly integrated into existing
solvers for both batch and stochastic algorithms. Theoretically, we establish that
our screening rule can be safely employed with existing optimization algorithms,
ensuring the same results as the original approaches. Experimental results confirm
that our method effectively detects inactive feature groups and significantly boosts
computational efficiency without compromising accuracy.

Keywords: Safe Screening Rules · Group SLOPE · Feature Selection.

1 Introduction

Group structures are ubiquitous in many high-dimensional problems with massive
correlated and superfluous features. To obtain more stable and interpretable models with
better prediction performance, many sparse learning models with grouping structures
were proposed and achieved great success in many real-world applications. Group
Lasso [39] and its variants, including Sparse Group Lasso [30], composite absolute
penalties [41], tree Lasso [22], and Overlapping Group Lasso [18, 19], are the most
popular ones for group feature selection, which encourages structured sparsity with the
prior information of feature group structures.

In this paper, we focus on the adaptive group feature selection model - Group SLOPE
[10, 15, 16]. Let design matrix X = [x1, . . . , xn]

⊤ ∈ Rn×d have n observations and d
variables and y ∈ Rn denote the measurement vector. Given I is a partition of the set



2 Runxue Bao (�), Quanchao Lu, and Yanfu Zhang

Table 1: Representative safe screening algorithms.
Problem Reference Group-wise Inseparability Group Effects Dynamic

Lasso [13] ✗ ✗ ✗ Singly
Logistic Regression [34] ✗ ✗ ✗ ✗

Proximal Weighted Lasso [28] ✗ ✗ ✗ Singly
SLOPE [23] ✗ ✓ ✗ Singly

Group Lasso [9] ✓ ✗ ✗ Singly
Sparse Group Lasso [32] ✓ ✗ ✗ Singly

Tree Structured Group Lasso [33] ✓ ✗ ✗ ✗

Sparse-group Lasso [26] ✓ ✗ ✗ Singly
Group SLOPE Ours ✓ ✓ ✓ Doubly

{1, . . . , d} and W is a diagonal matrix with Wi,i := wi for i = 1, . . . ,m, XIi ∈ Rn×|Ii|

denotes a partition of the matrix X and JβKX,I :=
(
∥XI1βI1∥2, . . . , ∥XImβIm∥2

)T
denotes the group effects, Group SLOPE can be formulated as follows:

min
β

Pλ(β) :=
1

2
∥y −Xβ∥22 + Jλ(W JβKX,I), (1)

where β ∈ Rd denotes the unknown coefficient vector and λ = [λ1, . . . , λm] is a non-
negative regularization parameter vector of m non-increasing weights that λ1 ≥ . . . ≥
λm. The term Jλ(b) denotes the ordered weighted l1-norm as Jλ(b) =

∑m
i=1 λi|b|[i]

where b[1] ≥ . . . ≥ b[m] are the ordered terms.
Group SLOPE penalty Jλ(W JbKX,I) adaptively penalizes the group effects based

on the magnitude. Thus, Group SLOPE can simultaneously encourage the group effects
to be equal and sparse, which is helpful to denoise and improve the prediction. [10]
provided both nice empirical results and theoretical analysis for Group SLOPE on the
adaptive selection of groups of predictors. In general, Group SLOPE can achieve the
exact minimax estimation without any knowledge of coefficients sparsity and control
the group false discovery rate at a specific level [10, 15]. The attractive properties above,
which do not simultaneously exist in other models such as Group Lasso and SLOPE [8],
had made Group SLOPE an effective method for the analysis in the high-dimensional
setting [10,15,16]. Please note that Group SLOPE includes a broad set of sparse learning
models. For example, Group SLOPE reduces to Group Lasso when λ1 = . . . = λm and
wi =

√
|Ii|. Group SLOPE reduces to SLOPE when each group only has one variable

and X is standardized to have unit column norms. Besides, Group SLOPE certainly
includes Lasso, weighted Lasso [7] and L∞-norm regression. Also, Group SLOPE can
be easily extended to the logistic loss for classification tasks.

From an optimization perspective, the block-nonseparable group effects render the
coordinate descent algorithm for Group Lasso ineffective. To address the computational
challenges of Group SLOPE, proximal gradient methods have been introduced [10].
However, these methods encounter significant computational and memory challenges,
particularly in high-dimensional settings. This is primarily because the algorithm pro-
cesses all data points at each iteration, even when group coefficients are zero.
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Various screening rules have been developed to speed up the training of sparse
learning models by eliminating inactive features. [24] introduced a static safe screening
rule for l1-regularized problems, which eliminates features before the optimization
process. Relaxing the constraints of the safe rule, [31] introduced a strong rule for Lasso
that employs heuristic strategies through an active set method. However, this approach
may mistakenly discard features. Additionally, the sequential safe rule presented in
[35, 37] relies on the exact dual optimal solution, making it potentially time-consuming.
More recently, [13] proposed a dynamic screening rule for Lasso, which is applied
throughout the learning process, based on the duality gap, offering provable safety and
improved speed compared to previous rules. This has led to the development of many
dynamic screening rules for various sparse learning models [2–5,26,28,29], all aimed at
enhancing training efficiency. Thus, improving the efficiency of solving Group SLOPE
via dynamic screening rules becomes both important and promising. Moreover, by
reducing the number of model parameters, such techniques can also enhance inference
performance, similar to the benefits observed with pruning methods [14, 17, 25, 36].

The goal of this research is to expedite the training process of Group SLOPE models
through the application of safe screening techniques, enabling the secure exclusion of
inactive groups whose parameters are guaranteed to be zeros during training. Table 1
outlines various representative safe screening algorithms, highlighting that such rules
have been developed to boost the efficiency of training algorithms across numerous sparse
learning models. However, the complex penalty structure of Group SLOPE, characterized
by its block-nonseparable nature in relation to group effects, has so far hindered the
development of safe screening rules for this model. The challenges can be summarized
as follows: Firstly, unlike other models that penalize coefficients directly, Group SLOPE
penalizes group effects ∥Xβ∥2, which does not directly enforce coefficient sparsity.
Secondly, while other models are restricted to either feature-wise or separable group-
wise penalties, Group SLOPE introduces the first non-separable group-wise feature
selection method, with all hyperparameters for each group remaining unfixed during the
training process—unlike in models such as Group Lasso or Sparse Group Lasso, where
hyperparameters are predetermined before optimization.

In response to these challenges, this paper introduces a doubly dynamic safe screen-
ing rule tailored to the general Group SLOPE models. This represents, to our knowledge,
the first safe screening rule specifically designed for adaptive group feature selection
models. In high-dimensional settings where many groups have zero-valued coefficients,
our screening rule efficiently identifies and excludes these inactive groups, thereby accel-
erating the original algorithms. Our approach begins by decoupling the design matrix
to manage the block non-separable group effects. We then establish a doubly dynamic
screening rule featuring a decreasing left bound and an increasing right bound, resulting
in an expanding safe region. Crucially, the proposed screening rule is solver-independent
and can be seamlessly integrated into existing iterative algorithms. Empirical evaluations
on four benchmark datasets confirm that our approach yields significant computational
advantages.
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2 Safe Screening Rules for Group SLOPE

In this section, we first decouple the over-complex group effect penalty and then propose
a doubly dynamic safe screening rule for Group SLOPE.

2.1 Decoupling the Group Effect Penalty

Different from other models, Group SLOPE penalizes group effects ∥Xβ∥2 directly. To
propose a screening rule for Group SLOPE, we first derive an equivalent formulation of
(1), which decomposes the design matrix as an orthogonal matrix and a corresponding
full-row rank matrix. Specifically, by representing XIi = UiRi where Ui is any matrix
with |Ii| orthogonal columns and Ri is the corresponding full-row rank matrix, we can
obtain:

Xβ =

m∑
i=1

XIiβIi =

m∑
i=1

UiRiβIi = X̃η, (2)

∥XIiβIi∥2 = ∥RiβIi∥2 = ∥ηIi∥2, (3)

where X̃Ii = Ui and ηIi := RiβIi for i = 1, . . . ,m. Thus, the decoupled version of
Problem (1) can be equivalently presented as:

min
η

1

2
∥y − X̃η∥22 + Jλ(W JηKI), (4)

where JηKI :=
(
∥ηI1∥2, ∥ηI2∥2, . . . , ∥ηIm∥2

)⊤
.

Considering the diagonal matrix W with Wi,i = wi for i = 1, . . . ,m, define Z as a
diagonal matrix with Zi,i := 1/wj for i ∈ Ij where i = 1, . . . , d and j = 1, . . . ,m, we
have Jλ(W JηKI) = Jλ(JZ−1ηKI). Further, defining b = Z−1η, we have η = Zb. Thus,
denoting X̂ = X̃Z, we can formulate (4) as

min
η

1

2
∥y − X̃η∥22 + Jλ(W JηKI)

= min
b

1

2
∥y − X̃η∥22 + Jλ(JZ−1ηKI)

= min
b

1

2
∥y − X̃Zb∥22 + Jλ(JbKI)

= min
b

1

2
∥y − X̂b∥22 + Jλ(JbKI). (5)

That is to say, by the equivalent transformation above, the next step to achieve our aim is
to propose a safe screening rule for Problem (5).

2.2 Dual Formulation and Screening Test

Problem (5) can be formulated as follows:

b = argmin
b∈Rd

Pλ(b) := F (b) + Jλ(JbKI), (6)
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where loss F (b) =
∑n

i=1 fi(x
⊤
i b), fi : R → R+ is the squared loss. Generally, (6) is

convex, non-smooth, and non-separable.
We initiate the derivation of the screening test by reformulating the primal objective

(6) into its dual. Leveraging insights from the dualization of l1-regularized models as
outlined in [21], the resulting dual problem takes the form:

min
b

F (b) + Jλ(JbKI)

= min
b

n∑
i=1

fi(x
⊤
i b) + Jλ(JbKI)

= min
b

n∑
i=1

f∗∗
i (x⊤

i b) +

m∑
i=1

λi∥bI[i]∥2

= min
b

n∑
i=1

max
θi

[βxiθi − f∗
i (θi)] +

m∑
i=1

λi∥bI[i]∥2

= min
b

max
θ

−
n∑

i=1

f∗
i (θi) + β⊤X⊤θ +

m∑
i=1

λi∥bI[i]∥2

= max
θ

−
n∑

i=1

f∗
i (θi) + min

b
β⊤X⊤θ +

m∑
i=1

λi∥bI[i]∥2

= max
θ∈∆

D(θ) :=

n∑
i=1

−f∗
i (θi), (7)

where θ ∈ Rn is the solution of the dual problem. Note f∗
i is the convex conjugate of

function fi as

f∗
i (θi) = max

zi∈R
θizi − fi(zi). (8)

Let us define θ̃ :=
(
∥X⊤

I1
θ∥2, . . . , ∥X⊤

Im
θ∥2

)T
. Under this definition, the constraint

θ ∈ ∆ in (7) can be equivalently expressed as
∑

j≤i θ̃[j] ≤
∑

j≤i λj for all i = 1, . . . ,m.
We next apply the optimality condition associated with the minimization part in the
penultimate expression of (7):

min
b

β⊤X⊤θ +

m∑
i=1

λi∥bI[i]∥2. (9)

This optimality condition naturally leads to the constraint structure previously introduced
in (7), thereby finalizing the dual reformulation of (6).

Leveraging the Fermat rule [6], we obtain

−X⊤θ∗ ∈ ∂Jλ(JbKI), (10)

where θ∗ denotes the dual optimum solution and ∂Jλ(JbKI) represents the subdifferential
of the regularizer Jλ(JbKI).
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Let Ã∗ be the index corresponding to inactive groups at optimality. The conditions
for the partition A∗ and Ã∗ of problems (9) can be separately expressed as:

−X⊤
IA∗ θ

∗ ∈ ∂JλA∗ (JbKI), (11)

−X⊤
IÃ∗

θ∗ ∈ ∂JλÃ∗ (JbKI). (12)

For any group i ∈ A∗, we have b∗Ii ̸= 0, it holds that

∥X⊤
Iiθ

∗∥2 ∈ [min
j∈A∗

λj ,max
j∈A∗

λj ]. (13)

Assuming both primal and dual optimal solutions are available, one can derive a safe
screening rule for each group based on the following condition:

∥X⊤
Iiθ

∗∥2 < λ|A∗| =⇒ b∗Ii = 0, (14)

which implies that such a group can be safely discarded without affecting the final
solution. This enables subsequent training stages to proceed with a significantly reduced
parameter space, leading to faster training while preserving accuracy.

Nevertheless, the main difficulty lies in the fact that the screening conditions (14) ne-
cessitate prior knowledge of both the dual optimum and the order structure of the primal
optimum, which can only be obtained after the full training process has been completed.
As a result, these screening conditions cannot be utilized to enhance optimization during
the training phase.

Therefore, our objective is to devise a screening rule capable of identifying as many
inactive variables (i.e., those with coefficients that should be zero) as possible, using
the screening test (14) without knowing the dual optimum or the order structure of the
primal optimum during the optimization process. To this end, we can formulate safe
screening rules by defining a screening region that is as large as possible, characterized
by smaller lower bounds and larger upper bounds derived from the screening conditions
(14).

2.3 Upper Bound for the Left Term

It is worth noting that the lower bound of the screening region corresponds to the
upper bound of ∥X⊤

Ii
θ∗∥2. To this end, we focus on deriving a tight upper estimate for

∥X⊤
Ii
θ∗∥2 by monitoring the intermediate duality gap G(b, θ) throughout the training

iterations.
Utilizing the triangle inequality, we have:

∥X⊤
Iiθ

∗∥2 ≤ ∥X⊤
Iiθ∥2 + ∥XIi∥2∥θ − θ∗∥2. (15)

Since each f∗
i (θi) in the dual is known to be strongly convex (see Proposition 3.2

in [21]), the overall dual objective D(θ) :=
∑n

i=1 −f∗
i (θi) inherits strong concavity

w.r.t. θ. As a direct implication, we obtain the following upper bound:

D(θ) ≤ D(θ∗)− tr(∇D(θ∗)⊤(θ∗ − θ))− 1

2
∥θ − θ∗∥22. (16)



Safe Screening Rules for Group SLOPE 7

This inequality enables us to derive a bound on the distance between any feasible dual
iterate θ and the optimal dual solution θ∗ based on the first-order condition summarized
in Corollary 1

Corollary 1. For any dual feasible point θ, the following estimate holds:

∥θ − θ∗∥2 ≤
√

2G(b, θ), (17)

where G(b, θ) = P (b)−D(θ) denotes the intermediate duality gap at training.

Proof. We begin by applying the first-order optimality condition to the strongly concave
dual objective D(θ), yielding:

tr(∇D(θ∗)⊤(θ∗ − θ)) ≥ 0. (18)

Combining this with inequality (16), we obtain:

∥θ − θ∗∥2 ≤
√

D(θ∗)−D(θ)). (19)

Under the assumption of strong duality, which ensures P (b) ≥ D(θ∗), we replace the
intractable term with a computable surrogate:

∥θ − θ∗∥2 ≤
√

2(P (b)−D(θ)). (20)

This concludes the proof.

Based on the upper bound derived in Corollary 1, we substitute the quantity ∥θ−θ∗∥2
in the right-hand side of Inequality (15). This leads to an improved safe screening
condition given by:

∥X⊤
Iiθ∥2 + ∥XIi∥2

√
2G(b, θ) < λ|A∗| ⇒ b∗Ii = 0. (21)

The duality gap G(b, θ) can be efficiently evaluated using the primal-dual variables b
and θ, both of which are directly available during each iteration of standard proximal
gradient methods.

As training proceeds and the gap between the primal and dual objectives narrows,
the upper estimate of ∥X⊤

Ii
θ∗∥2 is reduced accordingly. This results in a progressively

tighter screening threshold over time.

2.4 Lower bound for the Right Term

In contrast, the upper limit of the screening region aligns with the minimal value of
λ|A∗|. Therefore, our objective in this section is to derive a sharp lower estimate for this
critical quantity.

To effectively compute this bound amidst numerous unspecified hyperparameters, we
design an iterative scheme that tackles the challenges introduced by the non-separability
of the penalty term. This is achieved by exploiting the unknown order structure embed-
ded in the primal solution of (14). In its general form, our screening criterion can be
formulated as:

∥X⊤
Iiθ∥2 + ∥XIi∥2

√
2G(b, θ) < λ|A| ⇒ b∗Ii = 0. (22)
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At the initial stage, we assume all m groups are active, and hence the screening is
applied with respect to λm:

∥X⊤
Iiθ∥2 + ∥XIi∥2

√
2G(b, θ) < λm ⇒ b∗Ii = 0. (23)

As training proceeds and only mk groups remain active, the set A is updated to
size mk. The remaining m − mk groups can then be assigned any permutation of
λmk+1, . . . , λm—the smallest parameters—without affecting the final result. This re-
veals that the ranks of the m−mk zero-valued coefficients are deterministically among
the lowest values in the λ sequence. Accordingly, the screening test is adapted and
evaluated at λmk

:

∥X⊤
Iiθ∥2 + ∥XIi∥2

√
2G(b, θ) < λmk

⇒ b∗Ii = 0, (24)

yielding an updated active group set A of size m′
k, where m′

k ≤ mk. The mk − m′
k

newly deactivated groups are again assigned the next smallest unused λ values.
This iterative refinement continues until convergence—i.e., when the active set

stabilizes. Crucially, each iteration involves only a single hyperparameter, ensuring
computational efficiency even when Group SLOPE involves a large number of tuning
parameters.

Throughout this process, as the active set A shrinks and due to the monotonicity of
λ, the corresponding λ|A| increases. This raises the lower bound of λ|A∗| and in turn,
enlarges the screening threshold.

In summary, by jointly updating the upper and lower bounds across iterations, the
screening region continuously expands, enabling more inactive groups to be excluded
and improving overall algorithmic efficiency.

For the computation of the screening rule, the dual f∗
i for Group SLOPE can also be

calculated as f∗
i (θi) =

1
2θ

2
i + θiyi. Using this screening rule, inactive feature groups

can be eliminated during the training process.

3 Proposed Algorithms

In this section, we begin by applying the safe screening rules to proximal gradient
algorithms, specifically focusing on the APGD algorithm for batch settings and the
SPGD algorithm for stochastic settings. We then delve into the theoretical analysis
of our unified safe screening rules, highlighting their properties in terms of safeness,
convergence, and screening capability.

3.1 Algorithms

Coordinate descent and block coordinate descent methods are efficient for solving Lasso
and Group Lasso problems. However, due to the challenges posed by the non-separable
penalty, these algorithms are highly efficient but not practical for solving Group SLOPE.
To address this issue, accelerated proximal gradient descent (APGD) methods have been
proposed, as seen in works like [10, 16].
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Since Group SLOPE is generally used in high-dimensional settings, all the proximal
algorithms mentioned above face significant computational and memory challenges
when dealing with large feature sizes. Therefore, accelerating the training of Group
SLOPE through the use of screening techniques for proximal algorithms becomes both
important and promising.

For the APGD algorithm in batch settings, our approach involves repeatedly per-
forming the screening test and updating the active set A. If A is updated during this
iteration, we set the step size tk = t1. From this point onward, the procedure mirrors that
of the original APGD algorithm, using the current active set A. This process is detailed
in Algorithm 1.

Algorithm 1 APGD Algorithm with Our Safe Screening Rules

Input: b0, b̂1 = b0, t1 = 1
1: for k = 1, 2, . . . do
2: repeat
3: Apply the safe screening from (22)
4: Update the active group set A
5: until A remains unchanged
6: if A was updated then
7: tk = t1
8: end if
9: bk = proxtk,λ(b̂

k − tk∇F (b̂k))
10: tk+1 = 1

2
(1 +

√
1 + 4t2k)

11: b̂k+1 = bk + tk−1
tk+1

(bk − bk−1)

12: end for
Output: Coefficient b

Moreover, as each update in Algorithm 1 relies on all samples, the per-iteration cost
of the APGD algorithm can be substantial in large-scale learning because it necessitates
full gradient computations. To mitigate this, the stochastic proximal gradient descent
(SPGD) algorithm, as introduced in [38] and building on [20], serves as an efficient
alternative in the stochastic setting, requiring only mini-batch gradient calculations.

In applying our screening rule to the SPGD algorithm for stochastic settings, we
similarly repeat the screening test and update A in the outer loop before proceeding with
the standard SPGD algorithm steps using the newly obtained active set. This procedure
is outlined in Algorithm 2.

Interestingly, the duality gap, which represents the main time-consuming aspect of
our screening rule, has already been computed in the original APGD and SPGD algo-
rithms. Furthermore, as inactive variables are continually screened during optimization,
and given that the active set size for iteration k is dk, the computational complexity
of the screening rule for this iteration is only O(dk), which is even less than the com-
plexity of the original stopping criterion evaluation O(d). Consequently, the complexity
O(dk(n+ log dk)) and O(dk(n+ T l + T log dk)) for each iteration of the APGD and
SPGD algorithms, respectively, can be reduced to O(dk) for analysis purposes.
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Algorithm 2 SPGD Algorithm with Our Safe Screening Rules

Input: b0, l.
1: for k = 1, 2, . . . do
2: repeat
3: Apply the safe screening from (22)
4: Update the active group set A
5: until A remains unchanged
6: b = bk−1

7: ṽ = ∇F (b)
8: b̃0 = b
9: for t = 1, 2, . . . , T do

10: Pick mini-batch It ⊆ X of size l
11: vt = (∇FIt(b̃

t−1)−∇FIt(b))/l + ṽ
12: b̃t = proxγ,λ(b̃

t−1 − γvt)
13: end for
14: bk = b̃T

15: end for
Output: Coefficient b

We further examine the overall complexity of our algorithms, focusing on both the
per-iteration cost and the number of iterations. For per-iteration cost, if the algorithm has
dk active variables at iteration k, our Algorithm 1 requires only O(dk(n+log dk)), which
is less than the original APGD algorithm’s complexity of O(d(n+ log d)). Regarding
the number of iterations, since the optimal solution for the inactive features screened at
iteration k must be zeros, removing these inactive features beforehand either keeps the
objective function the same or decreases it. Thus, our Algorithm 1 will converge to the
same stopping criterion with at most the same (and usually fewer) iterations compared to
the original APGD algorithm. With fewer or the same iterations and lower per-iteration
costs, our proposed algorithm is more efficient. Similarly, our Algorithm 2 requires
O(dk(n+ T l + T log dk)) for the main loop k, whereas the original SPGD algorithm’s
complexity is O(d(n+ T l + T log d)). Since our algorithm also requires fewer or the
same iterations and lower per-iteration costs, the overall complexity is reduced compared
to the original SPGD algorithm.

More precisely, the computational advantage of our methods hinges on the sparsity
of the final model. The training process gains more from the screening rule when dealing
with sparser models. In cases where n < d, the final model becomes very sparse, leading
to dk ≪ d during training. Consequently, our method is particularly well-suited for high-
dimensional settings. It is evident that the proposed algorithms consistently outperform
the original ones in terms of speed. Additionally, it’s important to note that our method
also applies to datasets where n > d. Assuming the presence of sparsity, our screening
rule will effectively identify inactive features, enabling our algorithms to determine the
final active set in a finite number of iterations. As a result, we still achieve dk < d during
training, and the per-iteration cost of our algorithm remains lower than the original one.
Therefore, with fewer or an equivalent number of iterations and reduced per-iteration
costs, the proposed algorithms remain faster than the original ones for n > d.
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The following part provides the theoretical analysis of our screening rules, highlight-
ing their safeness, convergence, and screening ability.

Property 1. (Safeness) The proposed screening rule retains all relevant groups through-
out the entire optimization trajectory of Group SLOPE, irrespective of the specific
iterative method employed.

Property 2. (Convergence) Our screening rule can be seamlessly embedded into a wide
range of iterative algorithms, such as APGD, SPGD, and their derivatives, without
disrupting convergence guarantees.

Theorem 1. Let i denote any group that belongs to the final active set A∗. Then
∥X⊤

Ii
θ∗∥2 ∈ [minj∈A∗ λj ,maxj∈A∗ λj ]. As algorithm Ψ converges, there exists a finite

iteration number K0 ∈ N s.t. ∀k ≥ K0, any group i /∈ A∗ will be successfully discarded
by the screening rule.

Proof. From the strong concavity of the dual problem, it follows that the optimal dual
variable θ∗ is unique. Moreover, θ converges to θ∗ as b converges to b∗. Thus, for any
given ϵ > 0, one can find an index K0 s.t. ∀k ≥ K0: ∥θk−θ∗∥2 ≤ ϵ,

√
2G(bk, θk) ≤ ϵ.

Then, for any group i /∈ A∗, we can bound the screening condition as:

∥X⊤
Iiθ

k∥2 + ∥XIi∥2
√
2G(bk, θk)

≤ ∥XIi∥2∥θk − θ∗∥2 + ∥X⊤
Iiθ

∗∥2 + ∥XIi∥2
√
2G(bk, θk)

≤ 2∥XIi∥2ϵ+ ∥X⊤
Iiθ

∗∥2. (25)

Since i /∈ A∗ implies λ|A∗| − ∥X⊤
Ii
θ∗∥2 > 0, choosing ϵ <

λ|A∗|−∥X⊤
Ii
θ∗∥2

2∥XIi
∥2

, ensures

∥X⊤
Ii
θk∥2 + ∥XIi∥2

√
2G(bk, θk) < λ|A∗|, which triggers our screening condition.

Theorem 1 highlights the strong screening performance of the proposed rules. As the
iterative solver progresses and the duality gap narrows, the rule becomes increasingly
effective: the upper bound on the left-hand side tightens, while the right-hand side’s
lower bound increases. This progressively improves the chances of filtering out inactive
groups. Ultimately, every group i /∈ A∗ will be accurately screened and discarded in a
finite number of iterations.

4 Experiments

In this section, we outline our experimental setup and subsequently present the results
and discussions.

4.1 Experimental Setup

Design of Experiments We empirically evaluated our method on real-world benchmark
datasets under the Group SLOPE framework, highlighting its computational advantages
and its capability to reliably discard irrelevant groups.



12 Runxue Bao (�), Quanchao Lu, and Yanfu Zhang

Table 2: The descriptions of benchmark datasets used in our experiments.

Dataset Sample size Attribute

Duke Breast Cancer (DBC) 44 7129
Colon Cancer (CC) 62 2000
IndoorLoc (IL) 21048 520
SenseIT Vehicle (SV) 78823 100

To assess the efficiency of our algorithms in reducing computation time, we compared
the runtime of our proposed algorithms against other competitive algorithms for solving
Group SLOPE under various conditions. Given that the APGD algorithm is well-suited
for scenarios where n ≪ p in the batch setting, and the SPGD algorithm is tailored for
large-scale learning where n is large in stochastic settings, we evaluated the runtime
across both batch and stochastic setups using different datasets. The algorithms compared
in batch and stochastic settings are summarized as follows:

– Batch setting
• APGD: Accelerated proximal gradient descent algorithms as presented in [10,

16].
• APGD + Screening: Accelerated proximal gradient descent algorithms enhanced

with our safe screening rules.
– Stochastic setting

• SPGD: Stochastic proximal gradient descent algorithm adopted from [38].
• SPGD + Screening: Stochastic proximal gradient descent algorithm integrated

with our safe screening rules.

To further confirm the effectiveness of our algorithms in filtering inactive variables,
we evaluated the screening rate at each iteration of the algorithms with our screening
rules applied to Group SLOPE, tested in both batch and stochastic setups across various
datasets during the training process.

Datasets Table 2 provides an overview of the benchmark datasets utilized in our experi-
ments. Duke Breast Cancer, Colon Cancer, and SenseIT Vehicle datasets are from the
LIBSVM repository [11], which can be accessed at https://www.csie.ntu.edu.
tw/~cjlin/libsvmtools/datasets/. IndoorLoc dataset is obtained from the
UCI benchmark repository [12], available at https://archive.ics.uci.edu/
ml/datasets.php. IndoorLoc dataset includes 2 tasks: IndoorLoc Latitude and
IndoorLoc Longitude.

Implementation Details We implemented all the algorithms using MATLAB and
compared the average CPU time across different algorithms on a 2.70 GHz machine
over 5 trials. We adhered to the basic setup described in [10] and set the tolerance for
the duality gap and the dual infeasibility to 10−6. To ensure fairness in comparisons,

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
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Fig. 1: Running time of the algorithms without and with safe screening for Group SLOPE.

the experimental configurations for Algorithm 1 and 2 followed the original APGD
and SPGD algorithms, maintaining consistent hyperparameters across all setups. In the
stochastic setting, the mini-batch size and the number of inner loop iterations were set to
30 or 40, depending on the dataset. The step size γ was selected from a range of 10−8

to 10−5. Initially, the APGD algorithms exhibited a large duality gap, offering minimal
benefit from our screening rule, so we first ran the algorithms without screening and
later applied our screening rule with a warm start. For ease of comparison, the CPU
time of each algorithm is presented as a percentage relative to the runtime of the first
configuration for each dataset.

The OSCAR hyperparameter setting, which is commonly used (see [1, 27, 40, 42]),
was applied in all our experiments:

λi = α1 + α2(m− i), (26)

where α1 = pi∥X⊤y∥∞ and α2 = α1/d for Group SLOPE. For a fair comparison, the
factor pi is used to control sparsity. In our experiments, we set pi = i ∗ e−τ , i = 1, 2, 3.

For Group SLOPE, batch algorithms were applied to the Duke Breast Cancer and
Colon Cancer datasets, while stochastic algorithms were run on the SenseIT and Indoor-
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Fig. 2: Screening rate of our screening rule in both batch and stochastic settings for Group SLOPE.

Loc Longitude datasets, with τ set to 2 for IndoorLoc Longitude and 3 for the other
datasets. We duplicate each feature i to form the feature group Ii with size |Ii| ∼ U(1, s)
where U is the discrete uniform distribution and choose s = 10 for Duke Breast Cancer
and Colon Cancer datasets and s = 40 for IndoorLoc Latitude and SenseIT Vehicle
datasets.

To assess the screening rate of our algorithms, it was calculated as the proportion
of inactive partitions of groups screened by our method to the total number of inactive
groups at the optimal solution. We used the p1 setting for this evaluation.

4.2 Experimental Results and Discussions

Figures 1(a)–(d) present the average runtime comparisons of the proposed algorithms
with and without the safe screening technique applied to Group SLOPE, under both
batch and stochastic optimization frameworks across multiple experimental settings.
In cases where the sample size is much smaller than the number of features (n ≪ d),
the APGD method achieves acceleration ratios between 3× and 14× when integrated
with our screening approach. For large-scale problems, incorporating the screening rule
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into the SPGD variant leads to speed improvements ranging from 2.5× to 8× compared
to its unscreened counterpart. These observations consistently validate the substantial
efficiency gains attained by augmenting Group SLOPE solvers—both batch and stochas-
tic—with our screening mechanism. The primary contributor to this acceleration is the
effective early-stage exclusion of inactive feature groups, which lowers the computa-
tional complexity throughout training. Notably, the improvements become even more
pronounced as the data dimensionality increases and sparsity intensifies.

Figures 2(a)-(d) depict the screening rates of our algorithms in both batch and
stochastic settings for Group SLOPE, highlighting the effectiveness and characteristics
of our screening rule. The data support the conclusion that our algorithm can successfully
eliminate most inactive feature groups at an early stage, converge on the final active set,
and ultimately screen nearly all inactive features within a finite number of iterations. This
effectiveness is due to the tight upper and lower bounds of the screening test’s left and
right terms, respectively, which allow for more efficient screening of inactive variables
as the optimization algorithm progresses. Specifically, as the algorithm converges, the
duality gap narrows, leading to a continuously decreasing upper bound for the left term
of the screening test, while the iterative strategy increasingly solidifies the order structure
of variables, thus continuously increasing the lower bound for the right term.

5 Conclusion

In this paper, we introduced a safe variable screening rule for Group SLOPE, addressing
the challenges posed by the non-separable group effects. This approach significantly
speeds up the training process by eliminating unnecessary computations for inactive
variables. Our screening rule is uniquely dynamic, featuring a decreasing left term
through tracking the intermediate duality gap, and an increasing right term by iteratively
assessing the order of the primal solution, considering the unknown order structure. Im-
portantly, the proposed rules are seamlessly integrable into existing iterative optimization
methods, applicable in both batch and stochastic settings, such as the APGD and SPGD
algorithms. We have theoretically proven that our screening rule remains safe when
applied to these algorithms, ensuring no loss in accuracy. Extensive empirical results
on real-world benchmark datasets demonstrate that our algorithms provide substantial
computational benefits while maintaining accuracy in both batch and stochastic learning
contexts by effectively screening out inactive variables.
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