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Abstract. Outliers in both covariates and output responses pose sig-
nificant challenges for Gaussian Process (GP) regression models. We
present a novel GP regression approach that effectively integrates the
Huber likelihood into the GP framework—with additional parameters
that can be set before inference. Specifically, we model the likelihood of
observed outputs using the Huber probability distribution: this reduces
deviations caused by output outliers. For covariate outliers, we introduce
projection pursuit weights—attenuating their influence on the model.
To address the analytically intractable, yet unimodal, posterior distribu-
tion, We employ Laplace approximation and, separately, Gibbs sampling
within a Markov Chain Monte Carlo (MCMC) framework. We simplify
Gibbs sampling by expressing the likelihood associated with outlying
points as normally distributed through the scale mixture representation
of the Laplace distribution. This work is particularly important in the
field of transmission spectroscopy—where noisy measurements are often
neglected in the estimation of planet-to-star radius ratios. We demon-
strate the robustness and effectiveness of our method through extensive
experiments on synthetic and real-world datasets.

Keywords: Covariate and Response Outliers - Transmission Spectroscopy.

1 Introduction

Bayesian inference which is based on Gaussian likelihood is known to be sensi-
tive to extreme observations and gross errors, called outliers. The estimation of
parameters in Gaussian processes (GPs) is affected in non-Gaussian error set-
tings as the predictive uncertainty assigns equal confidence to the measurements,
regardless of whether they are outliers or not. We illustrate this problem in a
numerical example. Let us consider a 2-d sinc function y(x) = sinc(z) + e, where
x = /(2?2 + %) with an additive error that follows the Student’s t-distribution

with 10 degrees of freedom e ~ Student’s-t(2). We add additional large outliers

y® with magnitude close to 0.8 and Igl). Figure 1(a) shows the predicted values

at test points = [—10, 10], obtained from standard.

Existing studies addressing the outlier problem in GP regression use vari-
ous approaches to define the likelihood. Two common strategies are: (1) using a
mixture of two normal distributions or (2) employing heavy-tailed distributions.
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Most of these methods assume the error distribution is known a priori—a condi-
tion that is often unrealistic in practical applications. Moreover, their robustness
is questionable when faced with extreme observations that do not correspond to
the non-normal distribution their heavy tailed likelihood is specified to capture.
These models typically struggle to handle both general noise patterns and large
errors in covariate and response dimensions, often attempting to fit extreme val-
ues. We show this shortcoming in Figure 1(b) with the sinc function data for
the GP with the Student’s t-likelihood and employing the MCMC integration
approximation method. We notice that the model overfits when large outliers
xgl) and y occur simultaneously, as the Student’s-t likelihood can effectively
compensates only for errors in y®).

Fig. 1: Predictions for sinc2d(zx): (a) standard GP, (b) Student’s t-likelihood via
MCMC, (c) GP with Huber likelihood. The red surface shows the mean of the
model predictions, the grey surface represents the true sinc2d function, red dots
are outliers, and green dots are training points fitting sinc2d. The proposed GP
with Huber likelihood and proejction pursuit weights demonstrates robustness
to the outliers {y®, x(®}.

In this paper, we propose a new way of handling extreme outliers in covariate
space and output responses that models the likelihood of the observed data using
Huber density function. We significantly enhance downweighting of the outliers
compared to the earlier work by [1], which was limited to handling outliers only
in the output responses with added hyperparameters (f, ¢).

2 Related Work

Goldberg et al. [11] introduced a dual-model Gaussian process framework to
account for covariate-dependent noise. The first Gaussian process model gov-
erns the output process y, while the second Gaussian process governs the noise
process. [31] investigated heavy-tailed error distributions that are constructed
as scale mixtures of normal distributions, which are also used for specifying a
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priori distribution based on the earlier ideas suggested by [6,24]. By doing so, the
prior distribution discounts any observations highlighting inconsistency between
likelihood and prior. Along the same line, [7] assumed a super heavy-tailed error
distribution dependent on an explanatory variable to make the estimation of the
population mean and ratios robust to outliers. [16] extended a mixture of two
normal distributions, one to model small errors in regular observations and a
second one to model large errors in outlying observations. However, [22] ques-
tioned the adequacy of the two-model approach. They proposed instead twin GP
that allow us to choose between the distribution of the regular observations and
that of the outliers. [16] suggested a GP with a Laplace likelihood model that
utilizes a scale mixture representation of Laplace noise distribution where the
variance follows an exponential distribution. [30] proposed a GP model based on
the Student’s t-likelihood function, where the noise is modeled as a scale mix-
ture of Gaussian distributions. Unfortunately with the non-Gaussian likelihood,
the Bayesian inference becomes analytically intractable. Consequently, various
advanced approximation methods were proposed [16,30,14,25,5] to overcome the
convergence failure of the classical approximation methods such as expectation
propagation [21], Markov Chain Monte Carlo [23], variational Bayes [9], and
Laplace approximation [32]. More recently, [17,2| presented a robust variants of
GPs for datasets with substantial contamination removing the outlier data based
on trimming parameters in iterative manner.

In GP regression models with Student’s t-likelihoods [16], a scale-mixture rep-
resentation of the Student’s t-distribution is utilized. A variational approxima-
tion is devised presuming the Gaussian likelihood whose individual variances are
Gamma distributed. Combined with the Kullback-Leibler divergence, KL(q||p),
between the true posterior, p, and the approximation, ¢, an expectation maxi-
mization (EM)-type algorithm is implemented. As for the models with Laplace
likelihoods, the scale mixture model yields a unimodal posterior enabling the
implementation of the EP approximation and the MCMC sampling. Here, a
Laplace approximation is inappropriate because the discontinuous derivatives of
the Laplace likelihood at zero may cause the Hessian matrix to be undefined.

3 Contributions

[1] proposed a robust Gaussian Process (GP) regression method that lever-
ages generalized Bayesian inference to preserve computational conjugacy. Their
method handles outliers in the output responses through weighting mechanism
J in the noise term: 02.J;; = 02 (1 + r?/c?), where r; is the residual associated
with i*" data point 7; = y; — m(x;) and c is the threshold parameter. However,
a potential limitation of this approach is that it may not adequately account for
outliers in the output response, ygl), y§c), when they occur alongside outliers in
[ (OO

. . . 1
the covariate dimensions, a:gg) =[xy, 2y, ., 4]

Our approach first addresses covariate outliers a:,(cl) by introducing projection
pursuit weights w(axy). These weights are then applied to scale the residuals

r, ensuring that the influence of an outlier is adjusted based on the presence
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of extreme covariate outliers :c,(f). This method enables the model to transform

contaminated data points {ygl), yj(c), a:,(f)} into a more reliable dataset. Notably,
the projection pursuit weighting operates independently and can be applied to
various likelihoods, as shown in our experiments.

To further handle extreme outliers in output response y(l)

,, we employ a
Huber density function—derived from the exponential of the Huber loss- giving
robust L; norm treatment for the residuals having over-limit magnitude. The
combination of projection pursuit weighting and Huber likelihood can handle
cases where the locations i, j, and k coincide. Additionally, when extreme outliers

are detected in the covariate dimensions wg), the model selectively retains the

corresponding output y,(f) if it improves the regression fit.

4 The Model

Let us consider a regression setting y; = f(x;) + €;, where ¢; ~ N(0,02) is
a homoscedastic i.i.d. random variable with constant variance. In GP models,
the systematic dependency between the covariates & € X, where X C RY
and the response y € ) is given by a latent function, f(x) : R¢ — R. In
a truly non-parametric sense, the latent vector function at m covariates, f =
[f(x1),..., f(x,)]T, is assumed to have a priori probability distribution. This
distribution is a joint multivariate normal distribution with zero mean vector
and covariance matrix, K, that is,

£IX,0 ~ N(£]0, K). (1)

The covariance matrix, K, is a positive semi-definite matrix that captures resid-
ual spatial association with elements K; ; = k(x;,z;), i,j = 1,...,n. The func-
tion k(+, ), chosen from a parametric kernel family such as the Gaussian or the
Matérn kernel, is characterized by hyperparameters denoted by 6. The likeli-
hood of the data is expressed as y|f, o ~ N (y|f, X)), and the resulting posterior
distribution on f as where X = diag(o?,...,02).

Next, we develop three aspects of the proposed GP-Huber model: Huber like-
lihood, projection pursuit weights, and the resulting unimodal posterior distribu-
tion. Following that, we discuss the hyperparametric settings of the GP-Huber.

4.1 Huber likelihood

We propose to use the Huber density function based on the Huber loss proposed
by [12] to model the likelihood of the observed data. The Huber loss function
p(+) is a truncated mixture of two commonly used loss functions: squared loss,
I(r) = r? for residuals below threshold b, and absolute loss, I(r) = |r| for residuals
r; = y; — f(x;) below threshold b, given by

o) = {27“2, if |[r] <b @)

blr| — 1b%.  otherwise
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[12] considered the contamination model (1 — &)G(r) + eH(r), where G(r) is
the Gaussian cumulative density function and H(r) is the unknown cumulative
density function. The associated least favorable Huber density function with a
fraction of contamination ¢ is defined as

L, P
(ylf,0) = | | —=—exp (—p(ri))- (3)
pu(y Ema p(—p

The parameter €, symbolizing the fraction of the dataset presumed to deviate
from the underlying model, can be computed utilizing the minimum covariance
determinant estimator [13]. The threshold b is selected to protect estimation of
the model parameters and hyperparameters against the fraction of contamina-
tion €. The Huber likelihood provides a balance between sensitivity to inliers
and robustness to outliers, controlled by the threshold b, which has a theoret-
ical interpretation and can be set based on domain knowledge or easily tuned
empirically. Student’s-t likelihood, while also robust to outliers, may give undue
influence to extreme observations because of its heavy tails. The Laplace likeli-
hood’s uniform linear loss may underweight small residuals—potentially leading
to less efficient estimates when the data contains mostly inliers.

4.2 Projection Pursuit Weighting

The idea is to scale the residual r; associated with the i*" data point with pro-
jection pursuit weight w(ax;) based on robust variant of Mahalanobis distances,
called projection statistics PS(x;) : RY — R?. This scaling highlights the impact
of outliers in single or multiple dimensions masking each other in the covariate
space. Residual larger than the threshold b gets robust L1 norm treatment, while
those smaller than b are treated with an efficient L2 norm within the Huber loss
p(r).

We obtain standardized the residual rs, = r;/(w;08) by scaling r; by its cor-
responding projection pursuit weight w; and using a scaling factor s = by med|r|,
where by = 1+5/(n — d) is the dimensionality correction factor. When the error
distribution is unknown, s accounts for its spread parameter. The projection
pursuit weights w limit the influence of outliers simultaneously arising in multi-
ple covariate dimensions at multiple locations on the loss function, are based on
projection statistics PS;, calculated as

1, for PS? < ¢;,

Wi = {“’ for PS22 > cz‘. (4)
PSTe i > Ci

The projection statistics [28,8] are a robust version of Mahalanobis distances

based on the median absolute distance from the median. Formally defined as

the maxima of the standardized projection distances obtained by projecting the

point cloud in the directions that originate from the co-ordinate wise median
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and that pass through each of the data points, ; [20]. They’re easy to calculate:

lzTu; — me(%ian(:c{uj)\

PS; = max , 5
" (juy =1 1.4826 median lelu; — me(’%ian(mguj)\ 5)
where u; = %, 7,k =1,...,n. The co-ordinate wise median M is given
J
by M = {‘nlled i1, .., ‘rrlled x;q}. The projection statistics attain the
J=4..n J=1,...,n

maximum breakdown point given by [(n —d — 1)/2]/n [19].

[27] and [20] showed that, when n > 5d, the squared projection statistics
PS? roughly follow a x? distribution with a degree of freedom equal to the
number of non-zero elements v; in the row vector of the associated regressor, x;,
ie., PS? ~ x?, However, when n < 5d, it is the PS that roughly follow a x?2
distribution, that is, PS; ~ X12, Consequently, the threshold c¢; is chosen as the
97.5 percentile of the chi-square distribution with v; degrees of freedom while
defining weights in (4). Throughout the inference process (as detailed in Section
5), we use standardized residuals g, within the Huber likelihood.

n

1—¢
pua(ylf,¢) =
i 115

exp (=p(rs,)) - (6)

Q

4.3 GP-Huber posterior

The posterior distribution resulting from our model, which incorporates a non-
conjugate prior, is given as:

pG(f‘Ov K)

p(f|D,9,0’) = p(D|0,0’) pH(Y|f70)7 (7)
where where pg(f]0,K) is the Gaussian prior N(f|0,K) and py(y|f, o) is the
likelihood modeled using the Huber density. This formulation leads to a posterior
that does not have a closed-form expression due to the non-conjugate nature of
the Huber likelihood. The marginal likelihood (or evidence) of the data, which
plays a crucial role in model selection and hyperparameter optimization, is ex-
pressed as:

p(Dlo, 6) = / P (£10, K)ps (y[£, o) dE. (8)

Theorem 1. Let D = (wi,yi);;l be a dataset with distinct covariates x; € X
and response y; € Y, where n < oo. The kernel matriz K € R™"*"™ is positive
definite, with elements K;; = k(x;,x;) defined by a continuous kernel function
k: XxX — R. Assume the Huber likelihood function pg (y|f, o) based on strictly
convex and continuous Huber loss p(r;) : R — R. Then the posterior distribution
p(f|D, 8, 0) is unimodal.
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The proof is presented in appendix 2.1. This theorem shows that despite
the non-Gaussian and potentially complex nature of the Huber likelihood, the
posterior retains a single peak. This simplifies both parameter inference and
hyperparameter optimization.

We can set the threshold b = 1.5 to achieve high efficiency at the Gaussian
distribution (see appendix 2.3). This would make our model robust to 10% out-
liers (since fraction of contamination is € = 0.1). Note that, in the context of our
work, "efficiency" refers to the estimator’s ability to achieve low variance when
the noise follows a Gaussian distribution. Specifically, a highly efficient estima-
tor can make the best use of data that is predominantly Gaussian, leading to
more accurate parameter estimation. The contamination fraction € defines the
model’s tolerance to deviations from the Gaussian assumption, allowing it to
handle a proportion of outlier points without being overly influenced by them.
The parameter b controls the threshold for identifying outliers and thus influ-
ences the transition between L2 and L1 norm treatment. By setting b = 0.45,
we get ¢ = 0.45 for heavy-tailed and Gaussian error distributions, we aim to
accommodate up to 45% outliers while maintaining reasonable efficiency. The

only hyperparameter of the likelihood function requiring estimation is ¢ = o2.

5 Approximate Bayesian Inference

By retaining the optimization-friendly properties of convex problems ensured
by to unimodality (see Theorem 1), our method enables the use of the Laplace
approximation [29] for the posterior. To facilitate predictions f*, we develop
Gibbs sampling and Laplace’s method. The key requirement for the latter is the
continuity of the Huber density function. In Gibbs sampling, the joint posterior
distribution p(f,0,0?) can be simplified using the scale mixture model of the
Laplace distribution for data points with residuals r > b: this representation
expresses the likelihood of these points as a normal distribution—making the
sampling process more efficient.

5.1 Gibbs Sampling

The Huber density function is a mixture of a truncated normal and a Laplace
density function for an absolute standardized residual respectively lying within
and outside the threshold b. This yields

c 7
y eXp <_ 2w2;252> |TS¢‘ <o,
i%g

2Tw;o458
paylfo) = V" 9)
21111:2(18 p 7111‘;;"9) |r5i‘ > ba

where C7 and C5 are the constants respectively, defined as C; =1 —¢ and Cy =
v/ 5exp(b?*/2). The Laplace distribution pr,(y;|f(x;), @) with location parameter
a can be represented as a scale mixture of normal distributions N (y;| f(x;), 0?)
where o2 follows an exponential distribution pg(c2|3) [3] and i = 1,...,n; are
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the indices of the points associated with the standardized residuals larger than
the threshold b hereafter referred to as outlying points. Formally, we have

pr(yil F(x:), 0) = / powilf (%), 02 (02 |8)do?. (10)

Using this property, we represent the individual standard deviations correspond-
ing to ny; outlying training points as {oy,,..., 0y, }, which are elements of the
vector o7. The variance associated with ng inlying points is denoted as O’;. Con-
clusively, the Huber probability density function takes the form

2 CiN (yil f (i), 07) Irs,| <b,
f o2 o2 ~ HL 1Vl g i 11
yif, 09,078 { o CQN(y,;\f(xi),Ui)Exponential(aﬁ,/3) |rs,| > b, ( )
where ny + n; = n is the total number of points in the training dataset. An
alternative representation of the likelihood function is given by
2 42 ., Yolfg| [Zgg O

ygayl|fg’flvagaal N<|:yl|fl 1o 2y ’ (12)
where ¥, and ¥ both are diagonal matrices, the former with constant diagonal
elements equal to Jg and the latter with diagonal entries {oi, e 70'l2nl }. Let the

2

hyperparameter vector o“ consist of the diagonal entries of the matrix X,
which are a'g and o?. The joint posterior probability density function of f, o2,
and 0 is given by

p(f,0°,0) o p(y|f, o*)pc(£]0, K)p(a?|B)p(B[¢)p(6][¢). (13)

We assume that the hyper-hyperparameter vector 3 and the hyperparameter
vector @ follow the log-uniform distribution with parameters contained in (.
Since the distribution of the variance parameter 03 of ng inlying training points
is degenerate, the hyper-hyperparameter vector 3 = [, 3;]7 corresponding to
the ny points follows a degenerate distribution as well. Therefore, p(cZ|3,) is a
Dirac impulse while 07|38, ~ Exponential(a?|3;). The samples generated from
this distribution are highly correlated. Therefore, in order to better mix the
Monte Carlo chains, we follow the trick used by [16] as follows:

p(o?,3.0) o< [ [ pa(ylf, 2)pc (£10, K)df] p(a2|B)p(BI¢)p(0]¢), (14)

where the covariance matrix of the ng4 inlying samples and the n; outlying sam-
X4 0

0 Xy
imated probability density functions of the latent vector function, p(f*|D, X*),
at the new test covariates contained in X* by averaging over all unknowns.
Formally, we have

ples is given by 3 = [ } . The samples can be used to obtain the approx-

p(f*|D, X*) = [ p(f*|f, 02,0, X*, D)p(f, o2, 0|D)df do>db. (15)
For T samples, it can be evaluated as

p(f*|D,X*,¢) = 7 ZtT:I [ p(£*1£, X, X*, 0:)p(f| D, o2, 0;)df. (16)
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Table 1: RMSE and MAE values on the Neal dataset for the Case 1. Values in
parentheses represent the performance for Case 3. Bold values highlight the best
performance with the lowest RMSE and MAE.
SCtMCMC  tLA  HuberMCMC™®" HuberLA™™ RCGP GP  LaplaceMCMC
e ~ N(0.01,0.08)

RMSE 0.74 (0.52) 0.75 (1.31)  0.37 (0.42)  0.25 (0.25) 1.84 (0.82
MAE 0.47 (0.25) 0.48 (0.61)  0.31 (0.25)  0.14 (0.14) 1.28 (0.54

€ ~ Student-¢(10)
RMSE 4.86 (11.56) 1.22 (1.31)  0.50 (0.81)  1.17 (0.37) 1.89 (0.88) 1.52 (0.98) 0.59 (0.93)
MAE 1.67 (1.25) 0.7 (0.65)  0.41 (0.39)  0.79 (0.18) 171 (0.85) 1.34 (0.22) 0.43 (0.35)

e ~ Laplace(0,0.1)
RMSE 4.76 (0.48) 1.23 (1.31)  0.58 (0.42)  1.17 (0.35) 1.95 (0.86) 1.51 (0.89) 1.06 (0.82)
MAE 164 (0.23) 0.76 (0.61)  0.41 (0.24)  0.68 (0.18) 1.27 (0.46) 1.23 (0.41) 0.75 (0.34)

€ ~ Student-t(1) (Cauchy)
RMSE 4.75 (0.57) 1.25 (1.32)  0.61 (0.49)  1.20 (0.17) 1.97 (0.62) 1.50 (0.89) 0.42 (0.75)
MAE 1.65 (0.27) 0.78 (0.67)  0.47 (0.27) 0.81 (0.11) 1.78 (0.42) 1.32 (0.66) 0.66 (0.38)

1.44 (0.90)  0.43 (0.46)
. 0.33 (0.26)

=
—
)
=

—
o
(=2}
£J

=

5.2 Laplace Approximation

To ensure the continuity of the derivative of the Huber density function with
respect to the latent vector function f, we utilize the pseudo-Huber loss function

[4], which is defined as
p@g=b2< u+(%32—1>. (17)

Laplace approximation of the posterior requires the likelihood to be log-concave
in order for it to be represented by a unimodal multivariate normal distribution.
It is executed by approximating the posterior distribution of f with a normal
distribution [26], that is,

f|D, 0,0 ~ N(f|f, A). (18)

The remainder of the method is detailed in appendix 1. Finally, we present the
following theorem which guarantees the robustness of GP-Huber to outliers.

Theorem 2. Under the same assumptions as Theorem 1, the influence of an
individual observation y on the posterior mean E[f | y] is bounded:

0 b
—E < —.
Bl 1] <
Proof is provided in appendix 2.2

6 Experiments

Through our experiments, we aim to address the following questions:
(Q1) When is HuberLA*PY (GP-Huber with Laplace’s method with pursuit
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weights) preferable, and under which outlier scenarios is HuberMCMCP¥ (GP-
Huber with Gibbs sampling with pursuit weights) more suitable?

(92) Does GP-Huber show a significant performance improvement over standard
GP regression and the RCGP method proposed by [1] under their experimental
settings?

(9Q3) Does projection pursuit weighting give GP-Huber an edge over baselines
with the same weighting?

(Q4) Does GP-Huber provide more accurate estimates of the planet-to-star ra-
dius ratio compared to the standard GP method used by [10] in the transmission
spectroscopy experiment?

We conducted experiments on benchmark datasets with extreme outliers in
location, magnitude, and error distribution. The threshold b was 1.5 for Gaus-
sian errors and 0.45 for Student’s-t, Laplace, and Cauchy errors. An anisotropic
squared exponential kernel was used, with a zero mean function except in the
spectroscopy experiment. Performance was measured using RMSE and MAE.
Our implementation is available online .

6.1 Neal Dataset

We evaluate the proposed GP-Huber on the Neal dataset [23| for the following
cases of extreme outliers:

o @

Case 1: Extreme outliers y,’,,’ in added in output and covariate dimensions,
respectively.

Case 2: Only output dimensions y(l) were contaminated with extreme data points.

Case 3: Bad data points yj(-c) , a:,(f)in added to both output and covariate dimen-
sions, respectively, with the former being relatively close to the main data
cluster compared to Case 1.

Case 4: Only output dimensions were contaminated with data points y(c)

7 rela-
J
tively close to the data cloud compared to Case 1.

In all the cases above, the locations 4, j and k& may differ or coincide (refer to
appendix 3.1 for the location and magnitude details on outliers). For each case,
we considered four different error distributions: A(0.01, 0.08), Student-t(10),
Laplace(0,0.1), Student’s-t(1).

The baseline models considered for comparison on the Neal dataset, along
with RCGP, include: GP with a Student’s t error model solved using MCMC
integration (SCtMCMC), GP with a Student’s t error model using Laplace ap-
proximation (tLA), and GP with a Laplace likelihood solved via MCMC integra-
tion (LaplaceMCMC). Table 1 presents the RMSE and MAE values comparing
GP-Huber against these baselines for Cases 1 and 3. Refer to appendix 3.1 for
the Tables A3, A4 for the Cases 2, 4 and appendix 2.4 for the implementation
details of the baselines. Furthermore, pursuit weighting is incorporated into all

! https://anonymous.4open.science,/r/GpHuber-C9D6
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Fig. 2: Predicted values for the Case 1 of the Student’s t-error distribution for
the Neal dataset obtained from the eight considered GP regression models: (a)
HuberMCMC ; (b) HuberLA; (c) RCGP.

baseline models, and their performances are compared in Tables A5 to A8 (pro-
vided in appendix 3.2). Now, we are in position to answer Q1.

When is HuberMCMC better?

In scenarios with ¥y, ® (Case 1), HuberMCMC performed better than Hu-
berLA (see, Tables 1 and A3). HuberMCMC also outperformed tLA in predictive
accuracy, demonstrating a more robust fit that is less influenced by () (Figure
2). HuberLA generally provided better uncertainty quantification compared to
HuberMCMC (see Figures 2 and A3), while maintaining competitive predictive
performance. In outlier scenarios with () (Case 2), HuberMCMC exhibited su-
perior performance across Student’s-t, Laplace, and Cauchy error distributions
(see, Table A3). This suggests that HuberMCMC is a robust choice for datasets
containing extreme output outliers i.e. outlier scenarios similar to Cases 1 and
2.

When is HuberLA better?

HuberLA exhibited superior performance in handling closer output outliers y(©)
compared to HuberMCMC (values in parenthesis in the Table 1 and Table A4).
Figure A4 highlights HuberLA’s robustness to z(!), in contrast to tLA which
is influenced by such points. While HuberLA generally provided more accurate
predictions and reliable uncertainty quantification than both HuberMCMC and
tLA, HuberMCMC performed competitively for the Cases 3 and 4.

From Tables A5 and A6 in appendix 3.2 (Cases 1 and 3), where projection
pursuit weights were added to other baselines, we observe that HuberLLA and
HuberMCMC benefit the most from these weights. While Student’s-t likelihood
also scales residuals by pursuit weights, its logarithmic penalty o log(1 + 72 /v)
(with v controlling tail heaviness) is less sensitive to large residuals than Huber
likelihood’s linearized penalty o |r|. Laplace likelihood similarly penalizes |r| but
lacks a quadratic center, making Huber likelihood the optimal balance of robust-
ness and efficiency. Tables A7 and A8 show the results for outlier Cases 2 and
4, where projection pursuit weighting is added to other baselines. The weights
equal 1 for all data points due to the absence of covariate outliers (). GP-Huber
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performs comparably to other baselines in these cases. This demonstrates that
the weighting mechanism enhances GP-Huber’s accuracy, addressing Q3.

6.2 UCI datasets

In this set of experiments, we compared the performance of GP-Huber on the
UCIT datasets, Energy and Yacht, against RCGP and other baselines: t-GP, m-
GP, and standard GP, using the outlier settings from [1]. We specifically focused
on the "focused outlier" and "asymmetrical outlier" scenarios, as they closely
resemble our extreme and close outlier cases. MAE values of the comparison are

Table 2: MAE values for energy and yacht. Bold values indicate the best perfor-
mance for each row.

GP RCGP t-GP m-GP  HuberMCMC HuberLA

Focused Outliers
Energy 0.03 (0.04) 0.02 (0.00) 0.03 (0.05) 0.24 (0.00) 0.12 (0.01) 0.04 (0.01)
Yacht 0.26 (0.15) 0.10 (0.14) 0.20 (0.04) 0.24 (0.00) 0.24 (0.02)  0.18 (0.00)

Asymmetric Outliers
Energy 0.54 (0.02) 0.44 (0.04) 0.42 (0.02) 0.41 (0.00) 0.47 (0.02) 0.11 (0.00)
Yacht 0.54 (0.06) 0.35 (0.02) 0.41 (0.00) 0.40 (0.00) 0.51 (0.01) 0.12 (0.00)

presented in Table 2. As expected, HuberLA demonstrates to be more robust
than HuberMCMC since the asymmetrical and focused outliers cases considered
in the study of [1] broadly fall under the Cases 3 and 4 in our study. On the
Energy dataset, HuberLA outperformed both tLA and RCGP.

In our experiments, HuberLA outperformed RCGP and other baselines sig-
nificantly in asymmetric outlier case and also showing the good computational
efficiency, thus answering Q2. Note that the outliers are present only in the re-
sponse and not in the covariate dimensions, the projection pursuit weights are
equal to 1 for these datasets.

Computational costs for the experiments on Neal and UCI datasets are pre-
sented in Table A10 and A1l in appendix 4. HuberLA—similar to RCGP and
tLA—requires less computational time than HuberMCMC, as expected. The
models converge faster for unidimensional data: HuberMCMC performs com-
parably to MCMC techniques with Student-t likelihood.For multidimensional
cases, HuberMCMC, as expected for sampling-based methods, requires more
time to converge, while HuberLA achieves faster convergence (between 5 to 10

s).

6.3 Transmission Spectroscopy

Transmission spectroscopy records the relative change in the stellar flux, which
is the incident photons per unit area, as a planet travels in front of the star.
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The sources of error, such as photon noise and instrumental and astrophysi-
cal systematics, raise many potential challenges for precise planet’s atmosphere
characterization. The goal is to infer the planet to star radius ratio p,q4ius from
the observed flux as the planet passes in front of the star. The optical state
parameters are metered via auxiliary measurements of the spectral trace such as
position, width, angle, or other parameters, indicating the state of the detector
and optics, which are thought to be the cause of instrumental systematics. In-
stead of modeling the latter as a linear function of the optical state parameters,
[10] proposed a non-parametric model by leveraging GPs.

The observation set obtained from HST-NICMOS includes the light curves for
18 wavelength channels extracted from n = 638 spectra of the planetary system
HD-189733. The flux measurements contained in the vector, f = [f1, fa, .-, fa]%,
are recorded at n time instants, {¢1,ts,...,t,} and the optical state parameters
x4, collected in the matrix X € R™"*? constitute the training dataset. We extend
the work of [10] by using the GP-Huber model to estimate the planet-to-star
radius ratio prqdius- As demonstrated earlier, the robustness to outliers of GP-
Huber allows us to utilize 517 measurements associated with four out-of-transit
orbits, namely orbit numbers, {2,3,4,5}, and 137 measurements associated with
one in-transit orbit, namely orbit number 1. The latter was excluded from the
analysis performed by [10] as it constitutes much larger systematics effects at-
tributed to the spacecraft settling. The observed transit flux modeled in the GP
framework follows a normal distribution, that is,

F(&,X) ~ N(T(t, ), K), (19)

where the parameter vector, ¢, include the parameter of interest, p,qdius, and
other parameters. We consider the analytical quadratic limb darkening transit
function proposed by [18]. Analogous with (11), we assume that the observed
transit flux vector, f = f(¢,X), in the GP-Huber framework follows a normal
distribution, that is,

fIT(t,¢),X,0,0,0° ~N (T(t,X), T +K). (20)

The joint un-normalized log-posterior function of ¢, 3, and @ with the gamma
aprior probability density function, p(8) = %exp ( ’Te), over the covariance func-

tion hyperparameters is given by

log P(¢,0,07, B|f,X,¢) =log (L(rs|X,¢,0,07))

—Z—Zd:(l

Sil;
i=1 N

) L log(8) - BT0% +log(p(BC)) £ C. (21

The challenging task now is to infer the parameter p;,qq4:.s from the joint posterior
distribution of (¢, 80,02, 3). The log-likelihood £ term is expressed as

log L(rs|X, ¢,6,02) = S1%(2 + K) v — Llog|S + K| — Zlog(2r) + log(1 — ),
(22)
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Fig. 3: Transit curve fit and estimated p,qdius- (@) Transit curve mean function
T(t,0) (in red dotted line) and GP-Huber model fit (in blue solid line); (b) results
of planet-to-star radius ratios (p,qdius) obtained from GP-Huber with error-bars.
The dashed grey line represents the sanity check values.

where r = f — T'(¢,X). One of the approaches is to use the Bayesian method
that seeks the posterior distribution of prq4ius by marginalizing over the other
parameters of the mean function parameters ¢ and the covariance function hy-
perparameters, 8 using MCMC methods. The other method proposed as the
type-II maximum likelihood method by [10], where the hyperparameters, 8 and
o?. Formally, we have

(¢,0,62,B) = arg max log P(¢,0,02,8|f, X, (). (23)
$,0,02,8

And the posterior distribution of the parameter of interest p,qqius is obtained
by marginalizing the joint posterior distribution p(¢, 8, 0%, 3) over the hyperpa-
rameters and the rest of the mean function parameters. In the standard type II
maximum likelihood method, the hyperparameters are fixed to their maximum
likelihood estimates i.e. by maximizing the evidence p(D|¢, 0, 0?).

Figure 3(a) shows the transit fit obtained for one wavelength channel. Figure
3(b) shows the estimated p,q4ius Obtained using MCMC integration over the rest
of the mean function parameters ¢ and hyperparameters 8 along with the values
estimated from the white light curve represented as the white dashed line. Note
that the estimated p,qqius values are very close to the white light curve value of
0.155. Most of our results agree with the results obtained from the Gibson model
except for wavelength channels 1.665um and 2.124um (see, appendix 3.3), which
effectively answers Q4. We retain the noisy orbit-1 observations—and still, GP-
Huber delivers estimates on par with, or better than, existing methods. This
highlights its robustness and accuracy in the face of outliers in both the flux and
the optical state parameters, data that spectroscopy models typically discard.
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7 Conclusions

The proposed GP-Huber model shows promise for handling a variety of heavy-
tailed and Gaussian error distributions with extreme outliers in both covariate
and output dimensions. Notably, it introduces additional parameters, b and ¢,
which can be heuristically set prior to parameter inference. The model’s uni-
modal posterior simplifies Gibbs sampling and allows for an efficient Laplace
approximation. We prove the bounded influence of observations on the pos-
terior mean. From our experiments on the Neal and UCI datasets, we found
that HuberMCMC*PY shows superior robustness against extreme outliers, while
HuberLATPY performs better with near outliers, compared to RCGP*PY and
other baselinestP¥. Additionally, the transmission spectroscopy experiment demon-
strates their potential in real-world applications.

Future work involves extending the scalability of GP-Huber to handle large
datasets by implementing sparse inference techniques.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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