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Abstract. Interpretability is crucial in natural language processing to
enhance transparency and trust. Rationalization models achieve this by
extracting key input fragments, i.e., rationales, to explain decisions while
preserving predictive performance. On the other side, Federated Learning
(FL) is recently emerging as a key paradigm for training machine learn-
ing models because it can leverage training data from multiple clients
without the requirement of uploading their original data. Considering
this, we firstly propose training Rationalization models in a FL man-
ner. However, we find that simply combining them suffers from serious
performance degradation due to the data heterogeneity among clients,
where there exists inconsistent rationale generation. To solve this issue,
we propose FedRNL which introduces a soft-sharing mechanism to align
generator and predictor encoders, ensuring shallow-consistency and deep-
generalization. An encoder loss minimizes feature discrepancies, and a
layer-wise aggregation strategy separately updates the generator and
predictor at the server, enhancing model stability. Extensive experiments
show that FedRNL significantly improves the performance as compared
to existing general heterogeneity mitigation methods.

Keywords: Federated learning · Rationalization · Non-IID.

1 Introduction

Interpretability is crucial in natural language processing (NLP) as it enhances
model transparency, fosters user trust, and supports decision-making [19, 31, 26].
However, deep learning models are often black-box systems, making their reason-
ing processes challenging to understand, thus necessitating better interpretabil-
ity in NLP models. Rationalization models address this need by extracting key
input fragments (i.e., rationales) that explain model decisions while preserving
predictive performance [15, 5, 24]. They consist of a generator and a predictor:
the generator selects the most informative text subset as rationales, which is
then passed to the predictor for final classification or decision-making. How-
ever, existing research focuses on centralized implementations of these models,
leaving their adaptation to distributed learning scenarios largely unexplored. As
concerns about data privacy and security continue to rise, extending rationaliza-
tion models to distributed environments such as Federated Learning (FL) has
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become a crucial direction. However, the challenge posed by non-independent
and identically distributed (non-IID) data complicates this transition.

In FL, data heterogeneity arises as different clients collect data from distinct
sources, leading to significant distribution shifts. This non-IID nature results in
inconsistent learning directions across clients, degrading the overall model per-
formance and causing potential model drift. This issue is particularly pronounced
for Rationalization models, as variations in textual styles, feature distributions,
or annotation standards across clients. This inconsistency makes it challenging
for the model to generate stable and coherent rationales, weakening its inter-
pretability and generalization ability.

Many approaches have been proposed to address the non-IID issue, including
parameter regularization [17, 2], personalized FL [33, 40], and local model align-
ment [10, 29]. While these approaches alleviate non-IID issues to some extent,
optimizing federated learning performance for rationalization models while pre-
serving their interpretability remains an open problem. Luo [21] found that the
classifier has the lowest feature similarity between local models and suggested
that bias in FL can be mitigated solely by rectifying the deep-networks (the clas-
sifier) of the deep network after federated training. On the other hand, Liu [20]
found that maintaining shallow-networks consistency between the generator and
predictor enables the model to learn more informative rationales. This contra-
diction raises an important question: is deep-networks classifier calibration more
critical, or does shallow-networks generator-predictor consistency play a bigger
role in addressing non-IID challenges? More importantly, can we reduce classifier
bias while preserving interpretability to further enhance Rationalization models
in federated learning?

To answer this question, we propose FedRNL, the first work to study train-
ing rationalization models through FL. Our goal is to mitigate the accuracy
performance degradation of rationalization models in FL which is caused by
non-IID. Specifically, FedRNL shares the encoder layers between the generator
and predictor in a soft manner, and introduces an encoder loss to minimize the
parameter inconsistency between encoders while allowing the deep network to
adapt to the non-IID data distribution. Each client optimizes its local model
independently while following the soft-sharing constraint to align generator and
predictor representations. At the server, we adopt a layer-wise aggregation strat-
egy, separately updating the generator and predictor parameters to enhance the
stability of the global model further. The main contributions of this paper are:

• To the best of our knowledge, this is the first work to study training the
rationalization models in a FL manner.

• We propose a soft-sharing mechanism between the generator and predictor.
This mechanism ensures an adaptable consistency in the shallow network
and allows the deep network to adapt to the non-IID data distribution,
enhancing the model’s generalizability and interpretability in FL.

• We provide a theoretical analysis that guarantees the convergence of the pro-
posed method. Besides, the experimental results demonstrate that existing
FL methods are unsuitable for rationalization tasks, while FedRNL signifi-
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cantly improves accuracy while preserving the interpretability under various
non-IID settings.

2 Related Work

Rationalization Models. Rationalization models aim to enhance interpretabil-
ity in NLP by selecting key input fragments (rationales) that justify model pre-
dictions while maintaining predictive performance [15, 24]. These models typi-
cally consist of a generator that extracts the most informative text subset and
a predictor that makes the final decision based on the selected rationales. As
research on rationalization models advances, they can be further categorized
into abstract and extractive approaches. Extractive rationalization models iden-
tify and extract keywords or sentences from the input text, capturing the most
salient features to explain predictions [5, 6]. Some works study extractive meth-
ods using an encoder-decoder framework [15, 3]. The encoder assigns each word
in the input sequence a binary tag to indicate whether it is part of the ra-
tionale. The decoder then processes only the highlighted rationale words and
maps them to target categories [35]. Other works use attention mechanisms
to extract rationales [34, 39]. Abstractive rationalization models generate ratio-
nales by constructing explanations using new words and restructured sentences
from the input text [30]. Some works study text-to-text methods, which utilize
sequence-to-sequence translation models, incorporating both the label and ex-
planation simultaneously [27, 12]. Others use generative methods, which generate
a free-form explanation and then make a prediction based on the produced ab-
stractive rationale [4]. Despite significant progress, most rationalization models
are designed for centralized training, assuming access to a single dataset. The
challenge of adapting them to FL remains largely unexplored.
Non-IID in Federated learning. Many existing studies have proposed solu-
tions to mitigate client drift caused by non-IID data [29, 25, 36]. Some approaches
rely on personalization techniques to tailor model optimization to each client’s
unique data distribution [28, 40]. For instance, FedROD [7] integrates a glob-
ally shared general model with personalized client models through a joint train-
ing mechanism. FedProto [33] leverages prototypes—central representations of
classes—to facilitate personalized model training for each client. There are also
some works on improving the generalization ability of the global model, such as
parameter regularization [17, 1] and local model alignment methods [41, 28]. For
example, FedProx [18] introduces a proximal term to the local subproblem, ad-
justing local updates to account for the discrepancy between the global and local
models. FedPer [2] combines each client with globally shared model parameters.
FedNH [10] mitigates the impact of data heterogeneity on federated learning by
incorporating class prototypes into the global model. However, these methods
are not applicable to Rationalization models.
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3 Preliminary

Rationalization. We use rationalization models, denoted as R(x), which con-
sists of two components: the generator and the predictor. The generator gen-
erates an extractive rationale z = gen(x) for an input paragraph x. Then,
the generated rationale z is employed in the class prediction of x. The pre-
diction process can be formulated as ŷ = pre(x, z). The whole process, i.e., class
prediction with the rationale, can be integrated as one model and denoted as
R(x) = pre(gen(x))). FR [20] divides the structure of gen(·) and pre(·) into en-
coder layers encoderg(·) and linear layers linearg(·). The generator and predictor
share the same encoderg(·), ensuring shallow network consistency.
Federated Learning. We consider there are N clients, and each client i (i∈[1, N ])
has a local dataset Di = {(xij , yij)}mi

j=1 where mi is the data number of dataset
Di. The non-IID of FL represents that the distribution of Di differs among
clients. We denote G(·; δ) represent global model and Li(·; θ, ϕ) represent local
model of client i. The local loss function is denoted by L, which is used to opti-
mize the local model on the local dataset Di. After each communication round
t (t∈[1, T ]), the server aggregates the updates from each client by weighted av-
eraging to update the global model. The standard FL process typically follows
the FedAvg [23]. Each client i trains its local model on its own dataset Di and
computes the local model update, the local update process of local model is:

θt+1
i = θti − η∇θiL(θti , Di), ϕt+1

i = ϕt
i − η∇ϕi

L(ϕt
i, Di) (1)

where η is the learning rate. The server aggregates the local model updates from
all clients with weighted averaging, where mi is the dataset size of i:

δt+1 =

m∑
i=1

mi

m
δti (2)

where m =
∑N

i=1 mi is the total number of samples across all clients.

4 Methodology

In this section, we propose a simple yet effective method named FedRNL to
mitigate the model drift. Specifically, the core idea is to adopt a soft-sharing
mechanism between the generator and predictor, ensuring consistency in the
shallow network while allowing the deep network to adapt to the non-IID data
distribution (i.e. shallow-consistency and deep-generalization). This approach
enables the Rationalization model to maintain its interpretability while improv-
ing classification performance in non-IID scenarios, thereby achieving better gen-
eralization ability. An overview of the proposed framework is shown in Figure 1.
The algorithm workflow is presented in Algorithm 1.
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Fig. 1: The overall architecture of FedRNL.

4.1 Motivation

In FL, non-IID increases the difficulty of model training, particularly in Ra-
tionalization models that consist of a Generator and a Predictor. Existing FR
methods[20] aim to enhance the interpretability of rationalization models by
enabling the Generator and Predictor to share the same Encoder, thereby im-
proving their consistency in shallow networks. However, the effectiveness of this
approach in a FL setting remains unclear. To evaluate FR’s performance in FL,
we use the Gold Rationale F1 (GR) to measure the model’s interpretability, Test
Accuracy(ACC) to measure the model’s prediction performance, and Centered
Kernel Alignment (CKA) [14] similarity to assess the representation similar-
ity between the Generator and Predictor across different clients’ local models.
As shown in Figure 2, FR successfully reduces the similarity between genera-
tors while increasing the similarity between predictors, improving consistency
in shallow networks. However, it does not effectively mitigate the non-IID is-
sue—ACC even drops by 0.93% compared to FedAvg, and the improvement in
interpretability is minimal. The core idea of the FR is to enhance model in-
terpretability through shallow network consistency. However, experimental
results indicate that forcibly sharing the shallow network alone does
not significantly improve interpretability. Moreover, it may restrict
the expressiveness of the deep network, making it difficult for the
model to adapt to the non-IID data distribution in the FL.

Thus, we propose a key question: can we design a method that ensures con-
sistency in the shallow network to maintain the interpretability of rationalization
models while allowing the deep network to adapt flexibly to non-IID data distri-
butions? In FL, the non-IID problem requires models to achieve strong general-
ization across different data distributions. If the generator and predictor share
an identical shallow network, they may lack the necessary flexibility to adapt to
diverse local data distributions, ultimately affecting overall performance. There-
fore, a new strategy is needed—one that ensures shallow network consistency
to enhance interpretability, while enabling the deep network to achieve greater
generalization, allowing it to adapt effectively to non-IID data distributions.
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Fig. 2: Impact of non-IID over different methods.

4.2 Local Model Update

In the FedRNL framework, each client i trains its local model Li using the dataset
Di it has access to, while maintaining privacy and avoiding direct sharing of raw
data. For simplicity, we will omit the i marker in the subsequent sections of this
section. The local model L consists of two components: the generator gen(·; θ)
and the predictor pre(·;ϕ). We further decompose these two components into
encoder layers and linear layers. Specifically, the generator gen(·; θe, θl) includes
the encoderg(·; θe) and linearg(·; θl), while the predictor pre(·;ϕe, ϕl) consists of
the encoderp(·;ϕe) and linearp(·;ϕl).

The generator is responsible for producing a rationale z = gen(x; θe, θl) from
the input data x, where z represents a subset or transformation of the input that
is deemed most relevant for the prediction. First, the generator’s encoder layer
extracts the semantic features from the input text x and generates a feature rep-
resentation rg = encoderg(x; θe) for each token of x. rg are then passed to the
generator’s linear layer and generate a mask z = linearg(rg; θl) to select the most
important parts of the text for the classification task. Through this process, the
generator creates the rationale z, providing the necessary information for subse-
quent prediction. Then z is passed into the encoder layer of the predictor, which
is responsible for extracting the feature representation rp = encoderp(z;ϕe) of
z. rp are then processed through the linear layer of the predictor, followed by
the classification layer, which performs the classification task and outputs the
final prediction ŷ = linearp(rp;ϕl). This process enables the predictor to make
accurate predictions based on the rationale provided by the generator.

The whole process, i.e., class prediction with the rationale, can be integrated
as one model and defined as L(x) = pre(gen(x; θe, θl), ϕe, ϕl). To train the perfor-
mance of the rationalization model, we calculate the cross-entropy loss between
the predictions ŷ outputted by the predictor and the ground-truth labels y. This
loss is referred to as prediction loss Lpre. The optimization constraint used in
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the training process is defined as follows:

Lpre =
∑

(x,y)∈Di

L(L(x; θe, θl, ϕe, ϕl), y)

(3)

where the L represents the cross-entropy loss of the rationalization model.
Encoder loss. To enforce feature alignment between the generator and predic-
tor, we introduce a soft-sharing mechanism that aligns the encoder layer learned
by the generator and the predictor across clients. Specifically, we design an en-
coder loss Lenc to control the parameter similarity between the encoder layers
encoderg and encoderp, aimed at optimizing the parameters of these two en-
coders, ensuring that their feature representations remain consistent. The opti-
mization constraint is defined as follows:

Lenc = ∥θe − ϕe∥2 (4)

where ∥ · ∥2 denotes the squared L2 norm, which calculates the Euclidean dis-
tance between the two parameters. By minimizing this loss, the parameters of
encoderg and encoderp are guided to optimize towards more similar directions,
improving the coordination between the generator and the predictor and, ulti-
mately, enhancing the performance of the model facing non-iid problem.
Joint loss. The total loss for each client is the sum of the prediction loss and
the encoder loss:

L = Lpre + λLenc (5)

where λ is a hyperparameter that controls the balance between the prediction
loss and the encoder loss.

4.3 Global Model Aggregation

In aggregating the global model, we use the FedAvg algorithm to aggregate the
local model parameters from all clients. At round t, the server receives local
model parameters from each client and updates the global model parameters.
Specially, the parameters of the generator and predictor are aggregated sepa-
rately to update the global model. The global aggregation is formulated as:

σ(t+1)
g =

N∑
i=1

mi

m
θ
(t)
i , σ(t+1)

p =

N∑
i=1

mi

m
ϕ
(t)
i (6)

where σ
(t+1)
g and σ

(t+1)
p represent the global model parameters of the generator

and predictor. θ
(t)
i represent the local model parameters of generator, which

consist of encoder layer parameters θ
(t)
e,i and linear layer parameters θ

(t)
l,i . ϕ

(t)
i

represent the local model parameters of predictor, which consist of encoder layer
parameters ϕ

(t)
e,i and linear layer parameters ϕ

(t)
l,i .



8 L. Kong et al.

Algorithm 1 Training Process of FedRNL
Input: clients N , local dataset Di, i = 1, . . . , N , communication rounds T , local epoch
M , learning rate η, encoder weight λ
Global server does:
1: Initialize global model G(.; δ)
2: for t = 1 to T do
3: Select Nt participated clients
4: for each client i ∈ [Nt] in parallel do
5: Li(.; θi, ϕi)← LocalUpdate(i, G(δ))
6: end for
7: Aggregate global model G(.; δ) by Eq.(6)
8: end for

LocalUpdate(i, G(δ)):
1: for m = 1 to M do
2: for batch (xij , yij ∈ Di) do
3: Compute loss using λ by Eq. (5)
4: Update local model Li(.; θi, ϕi) according to the loss
5: end for
6: end for
7: return Li(.; θi, ϕi)

5 Theoretical Analysis

We make the following assumptions for these objectives, which are widely adopted
in FL [32, 36].

Assumption 1 (L-smoothness). The objective function Li is L-smooth with
Lipschitz constant L > 0, i.e., ∥∇Li(θ, ϕ)−∇Li(θ

′, ϕ′)∥2 ≤ Li(∥θ − θ′∥+ ∥ϕ−
ϕ′∥)2 for all θ, ϕ, θ′, ϕ′.

Assumption 2 (Bounded Variance). For all parameters θ, ϕ, the variance of
the local stochastic gradient in each client is bounded by σ2, i.e., E∥∇Li(θ, φ)−
∇L(θ, φ)∥2 ≤ σ2.

Assumption 3 (Bounded diversity). Under non-IID data distribution, the
variance of local gradients to global gradient is bounded by ζ2, i.e., ∥∇Li(θi, φi)−
∇Lg(σg, σp)∥2 ≤ ζ2.

Based on Assumption 1, we have

Lg(σ
t+1
g , σt+1

p ) ≤ Lg(σ
t
g, σ

t
p) + ⟨∇Lg(σ

t
g, σ

t
p), (σ

t+1
g − σt

g, σ
t+1
p − σt

p)⟩

+
L

2
∥(σt+1

g − σt
g, σ

t+1
p − σt

p)∥2
(7)

Based on Assumption 2 and 3, we have

ELg(σ
t+1
g , σt+1

p ) ≤ ELg(σ
t
g, σ

t
p)− η∥∇Lg(σ

t
g, σ

t
p)∥2 +

Lη2

2
(σ2 + ζ2). (8)
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Based on the above, we have the following theory for the convergence of the
proposed algorithm.

Theorem 1. If the learning rate η diminishes with O
(

1√
T

)
, then the global

model achieves asymptotic convergence, i.e.,

ELg(σ
T
g , σ

T
p )− L∗

g ≤ 1√
T

(
Lg(σ

0
g , σ

0
p)− L∗

g

)
+

L

2
√
T
(σ2 + ζ2). (9)

The details of the proof can be found in Appendix A.

6 Experiments

Datasets. Following [20], we implemented the performance on two widely used
rationalization dataset: Beer Reviews [22] and Hotel Reviews [37], which is
a token-level multi-aspect sentiment analysis dataset for beer. Our experiments
employ four aspects: Appearance, Palate, Taste, and Aroma. The training set,
development set, and test set consist of 33782, 8731, and 936 available examples.
The federated learning system comprises five clients for non-IID settings, each
exclusively owning data sampled from one of five distinct datasets.
Evaluation Metrics. For task performance evaluation, we employ classification
accuracy (ACC) and Gold Rationale F1 (GR). ACC is used to assess classifica-
tion performance by comparing the predicted class label with the actual label.
GRchen2022can, defined as the F1 score between the predicted and human-
annotated rationale, is used to evaluate the quality of rationale generation.
A higher GR score signifies a more substantial alignment between the model-
generated and Gold rationale, indicating better interpretability of the model.
Configurations. We employ the GRU-base models [9] to encode text, which
has been adopted by most previous works [11, 38, 20]. We use Adam optimizerD-
BLP:journals/corr/KingmaB14 for model training. The max sequence length,
the network dropout rate, the sparsity trade-off, and the continuity trade-off are
set to 256, 0.2, 10, and 10, respectively. The learning rate η, the communication
round T , the batch size, and the hidden dims are set to 1× 10−5, 500, 512, and
200, respectively. Unless otherwise mentioned, each client’s local epoch M is set
to 5, and encoder weight λ is set to 2. Our models are trained with NVIDIA
GeForce RTX 3090 (Ubuntu 22.04 LTS PyTorch).
Baselines. We compare FedRNL with several popular and state-of-the-art FL
methods: FedAvg [23], FedProx [18], FedBABU [28], FedDyn [1], and Moon [16].

6.1 Performance Evaluation

To evaluate the effectiveness of FedRNL, we conduct experiments on the Beer
dataset, which concludes 4 aspects: Appearance, Palate, Taste, and Aroma, and
the Hotel dataset, which concludes 3 aspects: Cleanliness, Location, and Service.
We assess model performance on the validation sets of these aspects indepen-
dently. Additionally, to measure the model’s generalization ability across differ-
ent aspects, we construct a mixed validation set by randomly sampling 50% of
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Table 1: Best test accuracy(%) and GR(%) over Beer datasets. Bold fonts high-
light the best accuracy.

Methods Appearance Palate Taste Aroma Average

GR ACC GR ACC GR ACC GR ACC GR ACC

FedAvg 22.77 72.73 22.76 73.92 22.76 73.02 22.76 73.75 22.76 73.36
FedProx 22.43 72.51 22.45 72.51 22.44 73.21 22.44 72.96 22.44 72.80

FedBABU 22.93 66.54 22.94 68.01 22.94 67.33 22.94 67.25 22.94 67.28
FedDyn 22.28 75.8 22.25 75.89 22.28 75.97 22.32 76.2 22.28 75.97
Moon 22.83 77.57 22.84 77.52 22.84 77.6 22.84 77.55 22.84 77.56

FedRNL 23.92 80.56 23.93 80.67 23.95 80.42 23.94 80.59 23.93 80.56

Table 2: Best test accuracy(%) and GR(%) over Hotel datasets. Bold fonts
highlight the best accuracy.

Methods Cleanliness Location Service Average

GR ACC GR ACC GR ACC GR ACC

FedAvg 14.72 87.97 14.70 86.95 14.75 87.29 14.72 87.40
FedProx 14.98 87.63 15.01 87.80 14.97 86.95 14.99 87.46

FedBABU 15.09 87.12 15.11 87.12 15.06 87.97 15.09 87.40
FedDyn 15.02 83.05 14.97 82.54 14.98 82.71 14.99 82.77
Moon 14.35 85.08 14.36 84.75 14.38 84.92 14.36 84.92

FedRNL 15.52 89.66 15.78 90.68 15.50 89.15 15.60 89.83

the data from each validation set and reporting the average performance. Ta-
ble 1 and Table 2 demonstrate the superior performance of FedRNL compared
to traditional federated learning methods across the Beer and Hotel datasets.
In Table 1 (Beer dataset), FedRNL achieves the highest ACC of 80.56% and
the best GR of 23.93% at the highest non-IID level, significantly outperforming
other methods such as second-best method Moon (77.56% ACC, 22.84% GR)
and FedAvg (73.36% ACC, 22.76% GR). Similarly, in Table 2 (Hotel dataset),
FedRNL again achieves the best performance with an ACC of 89.83% and GR of
15.60% at the highest non-IID level, surpassing the second-best method, FedProx
(87.46% ACC, 14.99% GR). These results indicate that FedRNL not only im-
proves model accuracy but also enhances generalization across different datasets,
effectively mitigating the significant challenges posed by non-IID data in feder-
ated learning and improving the model’s interpretability.

Furthermore, the results on the mixed validation set confirm that FedRNL
maintains strong generalization capabilities when handling data from multiple
aspects. Unlike FedBABU, which exhibits weak performance in specific cate-
gories such as Appearance and Taste (66.54% and 67.33%, respectively), Fe-
dRNL achieves a more balanced and consistent improvement across different
aspects. This suggests that the soft-sharing strategy between the generator and
predictor ensures consistency in the shallow network while allowing the deep
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network to adapt to the non-IID data distribution. The substantial performance
gap between FedRNL and other methods further highlights its robustness in
heterogeneous federated learning scenarios.

6.2 Ablation Study

To further verify the contributions of our proposed method, we conduct ablation
studies in different settings. The learning rate of the model training and other
settings remains consistent.

4 8 12 16 20 40
Client Number

60

65

70

75

80

85

90

95

100

A
C

C
(%

)

73.36

80.56

75.3

81.01

77.27

82.16

78.9

82.7

78.87

83.2
80.75

83.31

FedAvg
FedRNL

(a) ACC

4 8 12 16 20 40
Client Number

20

21

22

23

24

25

26

A
C

C
(%

)
22.76

23.93

23.02
23.19

22.9423.08
22.76

24.39

22.96

24.08

22.9

23.95

FedAvg
FedRNL

(b) GR

Fig. 3: Model performance comparison under different non-IID levels.

Impact of different non-IID level. To evaluate the performance of FedRNL
under different non-IID levels (i.e., different numbers of clients), we compared the
ACC and GR of FedRNL with FedAvg across varying numbers of clients on Beer
dataset. We partitioned each aspect data into 10 subsets, resulting in a total of
40 subsets while ensuring that each subset maintains the same label distribution.
Each client randomly selects one subset for training. Clients originating from the
same dataset are categorized as IID clients, whereas those from different datasets
are considered non-IID clients. As the number of clients decreases, the degree
of non-IID increases, leading to more pronounced data heterogeneity. Figure 3a
presents the ACC across different client settings, demonstrating that FedRNL
consistently outperforms FedAvg, with the performance gap becoming more pro-
nounced in highly non-IID scenarios. Specifically, when the number of clients is
4 (highest non-IID level), FedRNL achieves 80.56% accuracy, significantly sur-
passing FedAvg (73.36%), indicating its superior ability to mitigate performance
degradation caused by data heterogeneity. As the number of clients increases,
the non-IID effect weakens, and the accuracy of both methods improves, but
FedRNL maintains a consistent advantage. Figure 3b shows that FedRNL con-
sistently achieves higher GR scores than FedAvg, with a peak GR of 23.93% at
4 clients, compared to 22.76% for FedAvg. This suggests that FedRNL not only
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improves accuracy but also enhances interpretability by generating rationales
that better align with human annotations.
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Fig. 4: Model performance comparison under different sharing ways.

Impact of different sharing ways. To analyze FedRNL’s effectiveness com-
pared to FR, we evaluate performance under different non-IID levels on the
Beer dataset. FR uses a hard-sharing experimental setup that uses an identical
encoder, meaning that the encoder parameters of both the generator and the
predictor are completely the same. Figure 4a shows that FedRNL consistently
outperforms FR in ACC, demonstrating the advantages of soft-sharing encoder
parameters instead of enforcing full parameter sharing. When the number of
clients is 4 (highest non-IID level), FedRNL achieves 80.56% accuracy, signifi-
cantly outperforming FR’s 72.43%, indicating that FR sharing limits the model’s
adaptability to non-IID data, whereas FedRNL’s soft-sharing approach enables
better feature extraction and generalization across different client distributions.
Figure 4b indicates that FedRNL consistently achieves higher GR scores than FR
across all client settings. The gap is most prominent at 4 clients (highest non-IID
level), where FedRNL attains 23.93% compared to FR’s 22.93%, demonstrating
that soft-sharing encoders improve rationale alignment in highly non-IID level.

Impact of different local epoch. We evaluate the impact of varying the
number of local epochs on ACC and GR on the Beer dataset. Figure 5 shows
that FedRNL consistently outperforms FedAvg, demonstrating superior model
performance. However, as the number of local epochs increases from 2 to 7,
both FedRNL and FedAvg exhibit a slight decline in ACC and GR, which may
be attributed to local overfitting caused by excessive local updates in a highly
non-IID setting. Despite this decline, FedRNL maintains a significant accuracy
and interpretability advantage over FedAvg across all settings, highlighting its
robustness in FL scenarios.

Impact of different encoder loss. To evaluate the effect of different en-
coder loss functions on model performance, we compare FedAvg under different
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Fig. 5: Model performance comparison under different local epoch.

Table 3: Best test accuracy(%) and GR(%) using different encoder loss over Beer
dataset. Bold fonts highlight the best accuracy.

Loss 4 8 12 16 20 40

GR ACC GR ACC GR ACC GR ACC GR ACC GR ACC

FedAvg 22.76 73.36 23.02 75.30 22.94 77.27 22.76 78.90 22.46 78.87 22.90 80.75
Cos 22.43 75.13 22.68 76.65 22.71 77.88 22.80 78.81 22.59 80.28 22.86 81.15
L1 20.27 78.76 22.52 79.74 21.13 64.86 24.30 80.30 20.03 70.26 24.54 80.92
L2 21.23 76.14 22.46 77.32 21.67 80.25 21.78 81.37 21.80 82.72 21.62 82.95

Frobenius 23.93 80.56 23.19 81.01 23.08 82.16 24.39 82.70 24.08 83.20 23.95 83.31

non-IID levels with four loss functions: Cosine Similarity (Cos), L1 loss, L2 loss,
and Frobenius norm loss. Table 3 shows that across different non-IID levels, the
Frobenius norm loss consistently achieves the highest accuracy, outperforming
other loss functions, including FedAvg. For instance, with 40 clients, the Frobe-
nius loss reaches 83.31%, which is the best among all configurations. And the
L1 loss also performs relatively well. The GR values show a similar trend, where
Frobenius loss achieves the highest GR across different non-IID levels, only 0.59%
below the L1 function at 40 clients. Experimental results demonstrate the ability
of our proposed encoder loss to guarantee model interpretability and alleviate
non-IID problems. And Frobenius loss is the most effective encoder loss function,
as it provides the best balance between accuracy and generalization.
Impact of different encoder weight. To evaluate the impact of the encoder
weight on FedRNL’s performance, we conduct experiments with varying values
of λ over Beer dataset. Figure 6a shows that ACC improves consistently as λ
increases, reaching a peak at approximately 80%. This suggests that incorporat-
ing encoder alignment enhances model consistency and improves performance.
However, further increasing λ to 5 results in a slight decline in ACC, indicating
that over-constrained representations may restrict the model’s learning flexibil-
ity and hinder adaptation to diverse client distributions. Figure 6b reveals a
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Fig. 6: Model performance comparison under different encoder weight.

non-monotonic trend in GR. The generalization ratio initially increases, peak-
ing at λ = 0.5 with a value above 24%, demonstrating that moderate encoder
alignment improves the quality of rationales. However, GR starts to decline as
λ further increases beyond 1, suggesting that excessive alignment may lead to
over-constrained representations, reducing rationale diversity and quality.

7 Conclusion

In this work, we introduce FedRNL, the first method to adapt rationalization
models to federated learning (FL) while addressing the challenges of non-IID
data. By incorporating soft-sharing between generator and predictor encoders,
we ensure consistency in the shallow network while allowing the deep network to
adapt to the non-IID data distribution. Additionally, the encoder loss function
ensures feature alignment, while our layer-wise aggregation strategy improves
robustness in global model updates. Our theoretical results guarantee the con-
vergence of FedRNL. Experimental results on benchmark datasets demonstrate
that FedRNL significantly improves both classification accuracy and rationale
quality, effectively bridging the gap between interpretability and FL robustness.
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