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Abstract. Deep active learning (AL) selects batches of instances for
annotation to avoid retraining deep neural networks (DNNs) after each
new label. Employing a naive top-b selection can result in a batch of
redundant (similar) instances. To address this, various AL strategies
employ clustering techniques that ensure diversity within a batch. We
approach this issue by substituting the costly retraining with an efficient
Bayesian update. Our proposed update represents a second-order op-
timization step using the Gaussian posterior from a last-layer Laplace
approximation. Thereby, we achieve low computational complexity by
computing the inverse Hessian in closed form. We demonstrate that in
typical AL settings, our update closely approximates retraining while
being considerably faster. Leveraging our update, we introduce a new
framework for batch selection through sequential construction, updating
the DNN after each label acquisition. Furthermore, we incorporate our
update into a look-ahead selection strategy as a feasible upper baseline
approximating optimal batch selection. Our results highlight the potential
of efficient updates to advance deep AL research.
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1 Introduction

Active Learning (AL) sequentially selects instances for annotation by human
experts, aiming to maximize model performance while minimizing labeling efforts.
When combined with deep neural networks (DNNs), AL typically selects instances
in batches rather than one at a time. The reason for this is that retraining DNNs
after each label acquisition is computationally expensive, and delay can lead to
additional costs since annotators’ time is valuable [18].

In a naive top-b batch selection, a batch of b instances with the highest scores
is chosen based on an informativeness measure. However, when many similar
instances are present, this approach can result in significant redundancy within
the batch (similar instances have a similar score). Many selection strategies have
been developed to replace this naive selection [15]. These strategies often employ
clustering techniques to ensure diverse batches, ensuring that instances within a
batch are dissimilar to one another [15]. While effective in reducing redundancy,
clustering does not guarantee optimal selection due to its heuristic motivation.
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Orthogonal to these strategies, we explore the concept of efficient “retraining”
in deep AL. If retraining were computationally feasible, researchers could place
greater emphasis on the development of theoretically sound informativeness
measures instead of using heuristic clustering approaches to ensure diversity. Ad-
ditionally, selection strategies that aim to maximize future performance–strategies
that have been shown to be near-optimal in traditional AL [34]–could be made fea-
sible with DNNs. Therefore, we examine the concept of updating DNNs through
a single optimization step as a proxy for retraining and explore its potential to
enhance the AL process.

To underscore the requirements of such an update, consider strategies designed
to maximize future performance. Typically, these use a look-ahead to select
instances that significantly change model predictions. Specifically, they examine
how adding unlabeled instances to the labeled pool and retraining the model
affects predictions [34]. However, with a large number of unlabeled instances and
the costly retraining process of DNNs, this approach becomes infeasible in deep
AL. Therefore, instead of retraining, a highly efficient update method is required.
The only work to realize this with DNNs is by [39], which employ an ensemble of
DNNs combined with Monte Carlo (MC) updates via Bayes’ theorem. Although
this update makes a look-ahead feasible, it remains suboptimal for several reasons:
(i) the update requires an ensemble of DNNs, making the actual retraining time
and memory demands inefficient; (ii) the update does not accurately reflect the
performance of full retraining; and (iii) the updating process becomes inefficient
with an increasing number of ensemble members.

In this article, we propose an efficient update method for DNNs in the context
of AL for classification. Specifically, we transform an arbitrary DNN into a
Bayesian neural network (BNN) by employing a last-layer Laplace approximation
(LA) [8]. While the closed-form expression of the posterior allows us to leverage
second-order optimization techniques, we ensure low computational complexity
by computing the required inverse Hessian analytically. Unlike the MC-based
update used in [39], our approach does not require an ensemble of DNNs, making
it easily applicable and both memory- and training-efficient [8]. Additionally, as
we utilize a single DNN, we can leverage pretrained foundation models [30], which
are an essential part of modern AL strategies [15,14]. The resulting update is fast
and closely matches the performance of full retraining. Extensive studies across
different data modalities demonstrate that our updates outperform the typically
employed MC-based ones [39] in terms of speed and performance. Furthermore,
we examine the proposed update in two distinct AL scenarios:

1. Enhancing Existing Strategies with Immediate Label Utilization:
We propose a simple framework to improve existing strategies by immediately
making use of acquired labels through the proposed updates. Rather than
selecting the top-b highest-scoring instances simultaneously, we iteratively
select the highest-scoring instance b times but update the model between
each selection. This simple strategy, which approximates single-instance AL
during batch construction, performs surprisingly well, outperforming naive
top-b selection as well as selection strategies that employ clustering.
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2. Optimal AL with Look-Ahead Selection: We investigate the potential
of our update with a look-ahead selection strategy in an optimal AL setting.
Specifically, we approximate an optimal selection strategy that maximizes
future performance. Instead of retraining, we ensure computational feasibility
by employing our update. The resulting strategy outperforms all competitors,
showcasing that currently employed selection strategies have much potential
for improvement.

Summary of Contributions
Efficient DNN Update: We propose an efficient update method for DNNs
that employs a Laplace approximation and second-order optimization tech-
niques. We enable low computational complexity through closed-form com-
putation of the inverse Hessian.
Comprehensive Evaluation: We perform an extensive evaluation across
data modalities, demonstrating that our update outperforms MC-based
updates in both speed and accuracy.
Immediate Label Utilization: We develop a simple framework that em-
ploys our update to immediately incorporate acquired labels, improving
existing selection strategies by updating the model during batch construction.
Optimal AL with Look-Ahead: We study our update in an optimal
AL setting, making a near-optimal selection strategy as an upper baseline
computationally feasible.

2 Related Work

Pool-based deep AL strategies can be divided into three types. Uncertainty-
based methods, such as margin sampling [3,37] and BALD [13], assume that
instances with high predictive uncertainty are most informative. When selecting
batches, these strategies pick the top-b highest-scoring instances, leading to
redundancy. In contrast, diversity-based approaches like Core-Set [36] aim to
select a diverse batch of instances by considering the feature representations
of labeled and unlabeled data. In practice, hybrid strategies, a combination of
both types, have been shown to work well. BatchBALD [20] extends BALD by
reducing redundant information within a batch. Badge [1] selects instances with
high gradient norms and ensures diversity by employing k-means++ in the
gradient space. Typiclust [15] replaces the notion of uncertainty with typicality
and selects typical instances from clusters obtained through k-means.

Look-ahead strategies [34] remain underexplored in deep AL. They aim to
select instances expected to improve the model’s performance the most by retrain-
ing for all possible candidate instances. In non-deep settings, such approaches
have been shown to achieve near-optimal selection [34] while offering convergence
guarantees [45]. However, adapting these strategies to deep AL is challenging
due to the computational cost of retraining. To the best of our knowledge, BE-
MPS [39] is the only strategy to implement a look-ahead mechanism in deep
AL. They employ deep ensembles and MC-based updates via Bayes’ theorem



4 D. Huseljic et al.

(see Section 3). while this update is computationally efficient, we show that its
performance falls short compared to full model retraining.

Continual learning [9] updates models by only using new data, retaining
knowledge from the previous one. Related techniques [17,33] use conventional
first-order optimization methods, deriving regularization terms from an LA
that penalizes large deviations from prior knowledge. Unlike our method, these
approaches require training over multiple epochs for the regularization term to
have an impact. Used as an update (i.e., single optimization step), these strategies
simplify to a first-order gradient step. Additionally, they assume large amounts
of new data per task (thousands of instances), whereas our update method is
designed batch construction in AL, ranging from a single to hundreds of instances.
For example, a typical benchmark is to extend a dataset with a task consisting
of all instance-label pairs of a new class (ca. 5,000 in MNIST).

More closely related to our work is online learning [16], which aims to se-
quentially and efficiently update models from incoming data streams. Traditional
approaches often focus on linear [46] or shallow [21] models with maximum-margin
classification. However, applying online learning to DNNs remains difficult due
to issues such as convergence, vanishing gradients, and large model sizes [35,43].
[35] proposed a method that modifies a DNN’s architecture to facilitate updates.
We argue that this is restrictive in state-of-the-art settings, given the increasing
reliance on pretrained foundation models [10,30]. Recently, [19] proposed Bayesian
online inference, which is also used in [39]. This method samples hypotheses (e.g.,
via MC-Dropout) from a BNN’s posterior and weights them by the likelihood
for new arriving data. However, the empirical results raise concerns about its
feasibility in high-dimensional parameter spaces. We refer to these as MC-based
updates.

BNNs [40] induce a prior distribution on parameters of a DNN and learn
a posterior distribution given data. MC-Dropout [12] uses dropout to obtain a
distribution over predictions. While it is simple to use, its inference is inefficient,
and it provides suboptimal uncertainty estimates [31]. Deep ensembles [23]
are known for their superior uncertainty estimates but are train and memory
inefficient [31]. LAs [8] approximate the posterior as a Gaussian, with the MAP
estimate as the mean and the inverse Hessian as the covariance. As computing this
Hessian is expensive for large DNNs, LA is often used only in the last layer [8].

Finally, we consider related approaches focusing on the efficiency of AL.
Prior work [6] shows that smaller more efficient proxy models can be used for
AL selection with minimal performance loss. Building on this, [44] employed
the last layer of a DNN as a proxy model in their benchmark. Other efforts to
improve efficiency revolve around sub-sampling strategies with warm starts [7].
In contrast, rather than improving efficiency of the AL cycle, we update the DNN
while constructing the batch, immediately incorporating label information that
guides the construction process.



Efficient Bayesian Updates for Deep Active Learning 5

3 Fast Bayesian Updates for Deep Neural Networks

In this section, we first introduce the general concept of Bayesian updates together
with the variant MC-based updates [19,39]. Afterward, we propose our novel
method focusing on an efficient update of the Gaussian posterior distribution via
last-layer LAs. For an introduction to LA, we refer to [8].

3.1 Bayesian Updates

We focus on classification problems with instance space X and label space
Y = {0, . . . ,K − 1}. The primary goal in our setting is to efficiently incorporate
the information of new instance-label pairs D⊕ = {(xn, yn)}Nn=1 ⊂ X × Y into
a DNN trained on dataset D ⊂ X × Y. Retraining the entire network on the
extended dataset D∪D⊕ results in high computational cost for a large dataset D.
Conversely, using the new data solely can cause catastrophic forgetting [33].

For this purpose, we employ BNNs with Bayesian updates as an efficient
alternative to retraining. The main idea of BNNs is to estimate the posterior
distribution p(ω|D) over the parameters ω ∈ Ω given the observed training
data D using Bayes’ theorem. The obtained posterior distribution over the
parameters can then be used to specify the predictive distribution over a new
instance’s class membership via marginalization:

p(y|x,D) = Ep(ω|D)[p(y|x,ω)] =

∫
p(y|x,ω)p(ω|D) dω. (1)

Thereby, the likelihood p(y|x,ω) = [softmax(fω(x))]y denotes the probabilistic
output of a DNN with parameters ω, where fω : X → RK is a function outputting
class-wise logits.1

The formulation in equation 1 provides a theoretically sound way to obtain
updated predictions. In particular, this is because the probabilistic outputs
p(y|x,ω) do not directly depend on the training data D. Consequently, to obtain
an updated predictive distribution, we do not need to update the parameters
ω directly but only the posterior distribution p(ω|D). The updated posterior
distribution p(ω|D,D⊕) is found through Bayes’ theorem, where the current
posterior distribution p(ω|D) is considered the prior and multiplied with the
likelihood p(y|x,ω) per instance-label pair (x, y) ∈ D⊕. As instances in D and
D⊕ are assumed to be independently distributed, we can simplify the likelihood
and reformulate the parameter distribution as follows2:

p(ω|D⊕,D) ∝ p(ω|D)p(D⊕|D,ω)
i.i.d.
= p(ω|D)p(D⊕|ω) = p(ω|D)

∏
(x,y)∈D⊕

p(y|x,ω).

(2)

We refer to equation 2 as the Bayesian update.
1 We denote the i-th element of a vector b as [b]i = bi.
2 We denote p(y1, . . . , yN | x1, . . . ,xN ,ω) with D = {(xn, yn)}Nn=1 as p(D|ω).
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Fig. 1. The left plot shows the predicted probabilities of the positive class for each
hypothesis (colored lines) drawn from a BNN as well as the mean (black solid line)
and standard deviation (black dashed line) of its predictive distribution. The right
plot shows updated weights for each hypothesis and the predictive distribution after
observing additional instances (green).

The most common realization [19,39] of this update is through MC-based
BNNs, such as MC-Dropout and deep ensembles. These BNNs rely on sam-
ples (or hypotheses) ω1, . . . ,ωM drawn from an approximate posterior q(ω|D).
Research [39,19] assumes that all hypotheses are equally likely to explain the
observed data and have the same probability before updating. By updating the
posterior distribution through equation 2, they weigh more likely hypotheses
given the new data higher. We refer to these as MC-based updates with a formal
definition given in Appendix A. Figure 1 illustrates this concept where different
hypotheses ω1, . . . ,ωM ∼ q(ω|D) are shown. Each hypothesis represents a possi-
ble true solution for the learning task (white instances). When new data (green
instances) arrives, we weigh each hypothesis by its likelihood of explaining the
new data and obtain an updated prediction without retraining. This results in
an updated predictive distribution, as seen in bold in Figure 1 (right).

3.2 Fast Approximations of Bayesian Updates for Deep Neural
Networks

Our update method is based on a combination of two concepts. First, instead of
MC-based BNNs, we suggest using LAs on the last layer of a DNN. Second, we
directly modify the approximate posterior distribution of the LA, providing a
much more flexible way to adapt it to new data than reweighting. In the following,
we explain each component in detail. For now, we focus on binary classification
with K = 2, and refer to Appendix C for an extension to multi-class classification.

Last-layer LA: LAs approximate the (intractable) posterior distribution
p(ω|D) with a Gaussian centered on the maximum a posteriori (MAP) estimate
with a covariance equal to the negative Hessian of the log posterior [8]. We denote
this approximate distribution as

q(ω|D) = N (ω|µ̂, Σ̂) ∝∼ q(ω)
∏

(x,y)∈D

p(y|x,ω), (3)
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where q(ω) is a Gaussian prior distribution. The MAP estimate µ̂ results from
training on D with conventional gradient optimization techniques. The covariance
matrix Σ̂ is the inverse Hessian of the negative log posterior evaluated at the
MAP estimate µ̂ given training data D. We model the posterior distribution only
on the last layer of a DNN to ensure fast inference.

The benefits of using a last-layer LA are manifold. Given access to q(ω|D)
through a Gaussian, we enable more flexible updates compared to MC-based
ones, as we can directly modify the mean and covariance. In contrast, MC-based
updates only change the approximate distribution by reweighting hypotheses,
leading to a strong dependency on the samples ω1, . . . ,ωM . Last-layer LAs can
be integrated seamlessly into nearly all DNNs, including pretrained models, as
only the covariance has to be computed to obtain q(ω|D). This is particularly
important in deep AL, where recent findings highlight self-supervised learning as a
crucial factor in selecting informative instances [15,14]. Finally, compared to deep
ensembles and MC-Dropout, last-layer LAs introduce minimal computational
overhead. While deep ensembles require longer training and MC-dropout impairs
the inference time, LAs simply need to calculate a covariance matrix after training
and allow fast inference through techniques such as mean-field approximation [27].

Second-Order Update: The second concept focuses on the update step of
the Gaussian distribution. Observing new data, we follow the same approach as
in equation 3, but with q(ω|D) as our prior:

q(ω|D,D⊕) = N (ω|µ̂upd, Σ̂upd) ∝∼ q(ω|D)
∏

(x,y)∈D⊕

p(y|x,ω), (4)

where µ̂upd and Σ̂upd represent the updated mean and covariance, respectively.
The resulting updated posterior q(ω|D,D⊕) is non-Gaussian due to p(y|x,ω)
being a categorical likelihood. Consequently, the closed-form computation of
the integral in equation 1 becomes intractable. The basic idea of our update is
to approximate the new posterior q(ω|D,D⊕) by first applying a second-order
optimization step via Gauss-Newton and then estimating the new covariance at
that point. Thus, the updated mean and covariance are given by:

µ̂upd = µ̂− γH−1(µ̂, Σ̂,D⊕)
∑

(x,y)∈D⊕

(px − y)hx, (5)

Σ̂upd = H−1(µ̂upd, Σ̂,D⊕), (6)

where hx denotes the representation of x at the penultimate layer, px =
sigmoid(hT

xµ) is the probability for the positive class, and γ is a factor con-
trolling the step size. The required updated Hessian can be computed efficiently
in closed form following [38] by

H−1(µ,Σ,A) = Σ −
∑

(x,y)∈A

px(1− px)

1 + σx · px(1− px)

(
Σhx

)(
Σhx

)T
, (7)

where σx = hT
xΣhx is the predictive variance. The derivation can be found in

Appendix D.
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The idea behind using second-order optimization techniques is that they
are more robust than first-order gradient optimization techniques due to the
incorporation of curvature information of the log posterior. This results in a more
accurate representation of the loss landscape, enabling more efficient and robust
parameter updates that are less sensitive to hyperparameter choices. A critical
aspect of our method’s efficiency is that we do not need to recompute the Hessian
from scratch. Instead, our updates leverage the covariance available through
LAs and use the Woodbury identity [42] for closed-form inversion, significantly
reducing computational overhead. Further, a common problem with last-layer
LAs is that the Hessian can become a bottleneck when dealing with a large
number of classes. To address this, we can approximate the Hessian in equation 7
by considering a Gaussian likelihood instead of a multi-class one, as also done in
[25]. Lastly, we want to highlight that an assumption of an LA is that we are
at the mode of a distribution, and adding more data violates this assumption.
As we focus on AL and only update with a few (up to hundreds) instances at a
time, this issue is less severe.

4 Bayesian Updating Experiments

In this section, we evaluate the efficiency of the proposed update by comparing
it against competitors on various benchmark datasets for image and text clas-
sification. Our code is publicly available at https://github.com/dhuseljic/
dal-toolbox.

4.1 Experimental Setup

Our experimental design is based on the work of [19]. First, we train a DNN
on the training dataset D (baseline). We then use this baseline DNN to evaluate a
last-layer LA and related Bayesian updates on additional instance-label pairs D⊕

and compare these results to retraining the DNN on the complete dataset D∪D⊕.
We evaluate (i) the influence of the step size γ on chosen validation datasets, (ii)
the impact of our update at different learning stages of the DNN, (iii) the impact
of our update with increasing sizes of new arriving datasets, and (iv) the time
efficiency of our update by considering the speed-up factor against retraining.
For comparison, we consider MC-based updates by sampling 10k hypotheses
from the approximate Gaussian posterior q(ω|D) and the less complex first-order
updates only considering gradients. Note that the latter is equivalent to the
continual learning strategy of [33], as we demonstrate in Appendix A. Since
first-order updates do not use the Hessian, this comparison also allows us to
assess the benefits of using second-order optimization. We exclude retraining
solely on D⊕, as we empirically found that it leads to catastrophic forgetting [17].
All performance metrics are averaged across 10 repetitions. For visual clarity, we
do not report standard errors.

The datasets D and D⊕ are randomly sampled from real-world datasets.
We use three image and three text benchmark datasets commonly used in

https://github.com/dhuseljic/dal-toolbox
https://github.com/dhuseljic/dal-toolbox
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Table 1. Overview of datasets.

Type Dataset # classes

Image
Cifar-10 [22] 10
Snacks [28] 20
DTD [5] 47

Text
DBPedia [2] 14
Banking-77 [4] 77
Clinc-150 [24] 150

literature [15,32] with varying complexity reflected through different numbers
of classes. Table 1 gives an overview. A detailed summary for each dataset is
provided in Appendix E.

The goal of an update method is to ensure both effectiveness and speed. To
assess this, we use different performance metrics. To evaluate effectiveness,
or how well an update or retraining generalizes, we measure accuracy. When
experimenting with hyperparameters, accuracy is assessed on a 10% validation
split. Otherwise, it is measured on the test dataset. An optimal update method
should achieve the same performance as completely retraining the DNN with
D∪D⊕. To assess the speed of an update, we report the speed-up factor compared
to retraining by dividing the time required for retraining by the time required
for updating (equation 6 and 7). Retraining and updating times were recorded
on an NVIDIA RTX 4090 GPU and an AMD Ryzen 9 7950X CPU, respectively.

We choose common pretrained DNN architectures from the literature [15,14].
For image datasets, we employ a Vision Transformer (ViT) [11] with pretrained
weights via self-supervised learning, complemented by a randomly initialized
fully connected layer. Specifically, we use the DINOv2-ViT-S/14 model [30] with
a feature dimension of D = 384 in its final hidden layer. For text datasets, we
employ the transformer-based pretrained language model BERT [10]. We utilize
bert-based-uncased from the Huggingface library [41] with a feature dimension
of D = 768 and a maximum sequence length of 512. We train each DNN by
finetuning for 200 epochs, employing the Rectified Adam optimizer [26] with a
training batch size of 64, a learning rate of 0.01 for images and 0.1 for text, and
weight decay of 0.0001. In addition, we utilize a cosine annealing learning rate
scheduler. These hyperparameters were determined empirically to be effective
across all datasets by investigating the loss convergence on validation splits.

4.2 Experiments

Hyperparameter Ablation: In equation 6, we introduced the hyperparameter
γ, which controls the step size of our update. Intuitively, this factor determines
the extent to which the DNN is influenced by the new dataset D⊕. This factor
is essential to control the update process and avoid issues such as catastrophic
forgetting. Similarly, first-order and MC-based updates also utilize this factor to
mitigate such problems. For further details, we refer to Appendix A.
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To investigate the influence of γ and determine a suitable value for all
subsequent experiments, we conduct a simple ablation study on two datasets.
The results of our update are shown here, while the results for first-order and MC-
based updates can be found in Appendix B. We determine the value of γ in this
manner since an extensive hyperparameter search for update methods is typically
impractical in an online setting [9]. Hence, fixing a value beforehand is necessary.
We randomly sample an initial dataset D of 50 instances and train our baseline
DNN. Subsequently, updates and retraining are performed on randomly sampled
datasets |D⊕| ∈ {1, . . . , 10}, and the accuracy is computed on a validation split.
We repeat this process for different values of γ.

The resulting curves in Figure 2 indicate that our update with D⊕ consistently
achieves better performance than the baseline DNN that is only trained on D.
For both CIFAR-10 and DBPedia, updating with γ = 1 does not yield accuracies
close to retraining, suggesting that the update is too weak. By increasing γ,
we observe accuracies much closer to complete retraining, with γ = 10 being
sufficient for CIFAR-10 and DBPedia. For CIFAR-10, we also notice that a very
high value, i.e., γ = 30, can lead to worse performance, likely due to catastrophic
forgetting. To ensure effective updates across all datasets, we will be using γ = 10
in all subsequent experiments. While this may not be optimal for some datasets,
it should ensure a consistently working update in all cases.

Different Learning Stages: To investigate how our update behaves at
different stages of learning, we train the baseline DNN on varying sizes of initial
datasets D and update it with a new dataset of fixed size |D⊕| = 10. To better
visualize the differences, we report accuracy improvement of updated/retrained
DNNs relative to the baseline in Figure 3. The results demonstrate that our
updates provide the highest accuracy improvements across all datasets, high-
lighting the effective and consistent performance improvements of our update
at different learning stages. While first-order and MC-based updates are also
effective in earlier stages (when |D| < 50), they tend to be less effective and even
deteriorate accuracy in later stages. Compared to the first-order update, our
update consistently enhances performance due to including the Hessian. As the
Hessian considers curvature information about the posterior, the update is more
robust regarding the choice of γ.

CIFAR-10 DBPedia

Fig. 2. Accuracies after updating with different values for γ in comparison to the
baseline DNN and retraining.



Efficient Bayesian Updates for Deep Active Learning 11

Fig. 3. Accuracy improvement curves for benchmark datasets, showing the difference
in accuracy between retrained and updated DNNs for varying sizes of D.

Fig. 4. Accuracy curves for three benchmark datasets after updating and retraining
DNNs for varying sizes of D⊕.

Varying Size of D⊕: To investigate our update’s behavior with an increasing
number of new data points in D⊕, we train a baseline DNN with a fixed initial
dataset |D| = 100 and vary the size of the new dataset |D⊕| ∈ {10, 20, . . . , 100}.
We report the results for the most complex datasets DTD, Banking-77, and
Clinc-150. In Figure 4, we observe that as the size of D⊕ increases, the accuracy
of retraining, our update, and the first-order update consistently improves. In
contrast, MC-based updates result in worse accuracies than the baseline, indi-
cating that it is not suited for an increasing size of D⊕. Considering our update,
we see that it consistently achieves better accuracies compared to competitors,
regardless of the complexity of the dataset. Moreover, first-order updates seem to

Fig. 5. Speed-up of update methods compared to retraining.
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Fig. 6. Accuracy improvement curves for different datasets showing the accuracy
difference between the respective selection strategy and random instance selection.

be less effective on the more complex datasets such as Banking-77 and Clinc-150,
highlighting the importance of the Hessian.

Time Comparison: Finally, to evaluate the speed of updates, we fix the size
of the new dataset to |D⊕| = 10 and compute the speed-up relative to retraining
by varying the initial dataset size |D|. Figure 5 presents the speed-up factors on
CIFAR-10. All update methods are faster than retraining, with the first-order
update being the fastest. For example, with an initial dataset of |D| = 1000,
the first-order update is about 1700 times faster than retraining. Notably, our
update provides a similar speed-up factor while yielding more effective updates
by using the closed-form Hessian update. Compared to MC-based updates, both
the first-order and our update are significantly faster.

5 Deep Active Learning

In this section, we examine the proposed update in AL. First, we introduce a
new framework that uses our updates to exploit label information during batch
construction. Essentially, this approach mimics single instance AL, in which
the model is retrained after each label acquisition. Next, we employ our update
to approximate an optimal look-ahead strategy. Instead of obtaining future
performance of the DNN with expensive retraining, we realize this through our
update. Here, we average metrics over 30 repetitions to account for reproducibility
challenges in AL [29]. Labeling budgets and acquisition sizes differ based on the
complexity of a dataset. A more detailed experimental setup and all learning
curves, including ones that report absolute values, are available in Appendix F.

Improved Batch Selection via Updates: A naive and suboptimal way of
using sequential selection strategies for batch selection is to use the top-b scoring
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Fig. 7. Accuracy improvement over random selection of popular selection strategies
compared to our upper baseline approximating optimal batch selection.

instances [18]. Our idea is to overcome the necessity of batch strategies by using
the proposed update with sequential strategies as a fast alternative to retraining.
Thus, we iteratively select the highest-scoring instance b times and update the
DNN between each selection. After acquiring b labels, we retrain the DNN similar
to batch selection strategies. An algorithm can be found in Appendix F.

The hypothesis is that already well-performing sequential selection strate-
gies [37] can simply be used in a batch setting and that our framework can
achieve higher performance compared to selecting the top-b instances. Here, we
consider the widely used strategy Margin, which has proven to be effective in
several studies [3]. Additionally, we are interested in whether this idea can also
replace the diversity component of a batch selection strategy. Therefore, we also
evaluate the popular strategy Badge [1] in combination with our updates.

Figure 6 shows the accuracy improvement curves relative to a random instance
selection. The query strategies using our updates outperform the respective top-b
selection strategies. Specifically, we see improved performance in early stages when
redundancy within a batch plays an important role. Moreover, combining our
update with Badge also results in improved accuracy. This indicates that selecting
a single instance and updating the DNN leads to a more effective selection than
using the k-means++ algorithm as proposed in Badge.

Updating in Look-Ahead Strategies: The idea of look-ahead strategies is
to select instances that, once labeled and added to the labeled pool, maximize the
performance of the model [34]. Unlike uncertainty- or diversity-based approaches,
look-ahead strategies select instances based on an optimal criterion: the model’s
actual performance. However, they are often neglected in deep AL due to the
high computational requirements. One of the biggest bottlenecks in the selection
is retraining. DNNs are not well-suited for this due to their long training process.
For this reason, we employ our proposed update to make this feasible.

Here, we consider a near-optimal strategy with access to ground truth infor-
mation, including labels and validation datasets. It can be considered as an upper
baseline in deep AL research. For the selection, we randomly sample 2000 subsets,
each with a size equal to the acquisition size, and assess how their addition
to the labeled pool affects the performance. The batch leading to the highest
performance gain is selected. While this approach would traditionally require
2000 times of retraining our update enables the efficient use of this strategy.
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We also include the recently proposed Typiclust strategy, which demonstrated
strong performance [15], especially in early stages of AL. Figure 7 presents the
resulting accuracy improvement compared to random instance selection. Our
optimal strategy, using updates rather than full retraining, performs exceptionally
well, consistently outperforming all competitors. Based on these results, we can
see that the current selection strategies still have much potential for improvement.
Interestingly, we can see that Typiclust’s selection in the early stages of AL seems
to be close to an optimal selection but declines in effectiveness in later stages.

6 Conclusion

We proposed an efficient second-order update for DNNs in AL using the Gaussian
posterior of a last-layer LA. It achieves low computational complexity through a
closed-form computation of the required inverse Hessian. An extensive experimen-
tal evaluation showed that the proposed update provides an efficient alternative
to retraining. Based on this, we introduced a new batch selection framework by
sequentially updating the DNN after each label, offering a new perspective on
constructing batches without resorting to heuristics such as clustering. Addition-
ally, we realized a look-ahead strategy as a feasible upper baseline approximating
optimal batch selection, highlighting the great potential for improvement in
current research on batch selection strategies. In future work, we plan to utilize
the proposed updates to enhance look-ahead selection strategies [34] in deep
AL. As these strategies are based on decision-theoretic principles, they naturally
balance explorative and exploitative instance selection, a key challenge in AL.
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