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Abstract. Machine Learning algorithms (ML) impact virtually every
aspect of human lives and have found use across diverse sectors includ-
ing healthcare, finance, and education. Often, ML algorithms have been
found to exacerbate societal biases present in datasets leading to ad-
versarial impacts on subsets/groups of individuals and in many cases
on minority groups. To effectively mitigate these untoward effects, it is
crucial that disparities/biases are identified early in a ML pipeline. This
proactive approach facilitates timely interventions to prevent bias ampli-
fication and reduce complexity at later stages of model development. In
this paper, we leverage recent advancements in usable information theory
to introduce DispaRisk, a novel framework designed to proactively assess
the potential risks of disparities in datasets during the initial stages of
the ML pipeline. We evaluate DispaRisk’s effectiveness by benchmark-
ing it against commonly used datasets in fairness research. Our findings
demonstrate DispaRisk’s capabilities to identify datasets with a high
risk of discrimination, detect model families prone to biases within an
ML pipeline, and enhance the explainability of these bias risks. This work
contributes to the development of fairer ML systems by providing a ro-
bust tool for early bias detection and mitigation. The code is available
at https://github.com/jovasquel56/disparisk.
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1 Introduction

Extensive research on fairness in machine learning (ML) has shown that biased
datasets can amplify historical and societal inequities [24, 19, 31, 8], harming mi-
norities and disadvantaged groups in areas like criminal justice [25], healthcare
[2], and education [30]. This underscores the need to detect biases throughout
the ML pipeline—especially in its early stages [7,12]. To address this, data- and
model-focused metrics help identify potential discrimination risks, but they each
have limitations.

Data-focused metrics are computed directly from the dataset and include
Class Imbalance (CL) [11], Difference in Positive proportions in observed Labels
(DPL) [11], and Mutual Information (MI) between the sensitive attribute and the
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rest of the features [9]. While useful, these approaches do not account for model
selection or preferences, making it difficult to determine which models are more
likely to produce disparate outcomes. To address this gap, model-focused metrics
analyze trained models directly. These methods, discussed by [11,30], detect
existing discrimination (e.g., Demographic Disparity (DEMP) and Equalized
Opportunity (EQODD)) or provide explanations for disparate predictions (e.g.,
KernelSHAP [23,27]). However, these evaluations occur late in the pipeline and
are tied to specific models, limiting their generalizability. Moreover, they do
not fully capture how the interaction between data characteristics and model
capabilities affects fairness.

While fairness metrics help assess bias at different stages, they do not address
how models interact with data properties in practice. Even when datasets appear
balanced, models may process information differently across groups, leading to
hidden disparities. For instance, in an ML pipeline classifying rural and urban
loan applicants as approved or denied, a dataset may predict approvals equally
across groups. However, simple models might effectively leverage credit scores
for urban applicants while struggling with interaction-based features critical for
rural ones. This disparity in information usability can lead to uneven model
performance and potential discrimination, even with seemingly fair datasets.
Moreover, increasing model complexity does not necessarily resolve these issues,
as it depends on whether the model can effectively utilize nuanced information
for different groups. Hence, key questions emerge: Can differences in usable infor-
mation across groups be quantified to trace disparities? How does model choice
influence these differences and outcomes? Addressing these requires a deeper as-
sessment of ML pipelines, beyond dataset balance and final model evaluation.
Specifically, an approach that enables early detection of disparity risks while
accounting for model-specific characteristics is needed.

To operationalize these insights, we introduce DispaRisk, a framework de-
signed to detect disparity risks early in the ML pipeline while considering the
characteristics of the predictive models being used. Building on the usable in-
formation notions studied by Xu et al. [32], DispaRisk enables proactive fair-
ness assessments by guiding the estimation of usable information-based metrics.
Specifically, given a set of potential model choices, DispaRisk facilitates assess-
ment analyses that: (1) can be conducted in the early stages of ML pipelines, (2)
account for the predictive families selected, (3) correlate with data- and model-
focused fairness metrics, and (4) explain why different model families generate
disparate outcomes. This approach serves as an effective predictor of discrimi-
nation risks that may emerge later in the pipeline.

The key contributions of this study are threefold:

1. We introduce DispaRisk, a framework that leverages recent advances in us-
able information theory to detect early-stage disparities across predictive
model families in ML pipelines. To this end, we develop:

— Instance-level disparity scores (DispaRisk, DR) using pointwise V-
entropy to identify individuals at high risk (see Section 3).
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— Feature-level explanations (Uncertainty Reduction, UR) by quantifying

how masking each feature alters model uncertainty (see Section 4.2).
2. We bridge the gap between data- and model-focused bias assessment ap-

proaches.

3. We demonstrate practical applications through experiments across diverse
datasets, showcasing its ability to identify high-risk datasets, detect bias-
prone model families, and improve bias explainability.

2 Basics and Preliminaries

2.1 ML Pipeline Basics

Let X, S, and Y be random variables in the space X x § x ), representing
the input features, sensitive attributes, and target variable, respectively. An
ML pipeline is given access to a dataset D, = {z;,s;, ¥y} € X xS x Y of
n instances to learn a mapping function h : X — ) by employing a finite set
of possible models V. We assume that there is access to sufficient information
about the ML pipeline to identify the set of possible models.

2.2 Fairness Notion

We examine fairness through independence and separation notions [7,12,24,
30]. Independence requires the learned mapping function’s outcomes to be in-
dependent of the sensitive attribute (h(X) L S), while separation also requires
independence, but conditioned to the ground truth (h(X) L S|Y’). Our analysis
focuses on positive class of binary classifications, which typically signify favor-
able decisions with significant social implications. For example, in contexts such
as university admissions or loan approvals, positive outcomes (e.g., being admit-
ted or approved) directly influence individuals’ opportunities. To evaluate these
disparity kinds, we employ the metrics DEMP and EQOPP explained as follows:

Definition 1 (Demographic Disparity (DEMP)). Difference in the pos-

itive rate of class k € Y between the advantaged (s) and disadvantaged (s')
groups.

ADE]up(h,S,Yk) = P(h(X) = 1|S = 8) — P(h(X) = 1‘5 = SI)

Definition 2 (Equalized Opportunity (OPP)). Difference in the true pos-
itive rate of class k € Y between advantaged (s) and disadvantaged (s') groups:

Aopp(h,S,Y) = P(M(X) =1|S = 5,Yy = 1) — P(h(X) = 1|S = ¢, Y}, = 1)

2.3 Usable information framework

The usable information framework [32] quantifies uncertainty differences across
groups within a model family, highlighting the impact of model selection. We
next replicate Xu et al.’s [32] metric formulations, propose a new metric, and
outline their estimation within the V-information framework. The next subsec-
tion introduces DispaRisk, a framework for improving fairness analysis in ML
pipelines by assessing model class, usable information, and disparate outcomes.
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V-information framework. Xu et al. [32] introduces the V-information frame-
work to estimate usable information withim a family of models V. A first for-
mulated concept is the predictive conditional V-entropy, which represents the
minimum achievable expected negative log-likelihood to predict Y given X us-
ing models from the predictive family V. Formally:

Definition 3 (Predictive conditional V-entropy). For a family V of mod-
els, the conditional V-entropy® of Y given X is defined as:

Hy(Y]X) = inf o g,y [~ logy hlz](y)] (1)

The infimum in Equation 1 is attained by finding the function h € V that
minimizes the expected negative log-likelihood,*. Measuring a model class’s un-
certainty in predicting Y from X requires identifying its best-performing model.
Unlike Shannon entropy, V-entropy depends on V), providing distinct uncertainty
measures across model classes, making it valuable for comparing predictive ca-
pacities — a key focus of our study.

While V-entropy aggregates uncertainty over the dataset, bias assessment re-
quires analyzing specific data slices, such as demographic differences. To address
this, we propose Pointwise V-entropy (PVE) to quantify instance-level uncer-
tainty within a model family V. Formally:

Definition 4 (Pointwise V-entropy (PVE)). For a family V, and an instance
represented by the tuple (x,vy), the pointwise V-entropy (PVE) is defined as:

PVE(x — y) = —log, hlz](y) (2)
where h € V such that E[—log, h[X](Y)] = Hy(Y|X).

Higher PVE values indicate greater uncertainty, meaning models within V
struggle to predict the instance accurately. PVE complements PVI [6], which
estimates usable information by comparing predictions with and without z. In
contrast, PVE focuses on the remaining uncertainty when « is given, simplifying
estimation and reducing estimation costs.

Estimating V-entropy and PVE. The V-entropy can be empirically estimated
on a finite dataset D of n instances as:

. . 1
Hy(Y|X;D) = }11613 - Z —logy hfzi)(y;) (3)
z4,Y; €D
.1
= Jig}ﬁ Z PVE(z; — v;) (4)
zi,y: €D

3 In this article, conditional V-entropy is referred to as V-entropy.
4 With log,, the measure is in bits; for nats, use log,.
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Algorithm 1 V-entropy and PVE

Require: Dirgin = {(mi,yi)}f:h Dhetd—out = {(zi, i) tiept1, and family V
Ensure: Hy and PVE estimates.
: h <+ fine-tune V on Dirain = { (24, vi) ey
: Hy(Y|X) 0
: for (2i,yi) € Dhetd—out do
Hy(Y|X) + Hy(Y|X) — 25 log, hlz:] (yi)
PVE(z; — y;) < —log, hlz:](y:)
end for

where the infimum h € V is approximated using cross-entropy loss to minimize
the negative log-likelihood of Y given X [32,6]. The approximation of Hy is
achieved by training or fine-tuning a pretrained model following Algorithm 1,
which extends [6] to focus on V-entropy and PVE. The algorithm splits data
into training and held-out sets, using the latter to estimate fIv and PVE. Since
estimation is based on finite data, results may deviate from true V-entropy. Xu
et al. [32] provide Probably Approximately Correct (PAC) bounds, showing that
larger datasets and simpler V yield tighter bounds.

3 DispaRisk

3.1 V-information in disparity assessment

We propose to assess unfairness by comparing uncertainty for predicting Y from
X across slices of the dataset that we are interested, arguing that these dif-
ferences are expected to align with fairness metrics in later stages of the ML
pipeline. To this end, we introduce DispaRisk (DR), a framework for computing
differences over PVE averages of data slices and analyzing their relationship with
disparities. In the following paragraphs, we first explain the rationale of using
average of PVE,® and then, introduce how to compute DR for independence and
separation notions of fairness.

Rationale of using average PVE. For disparity metrics to be meaningful,
uncertainty estimates across groups must be comparable—that is, all derived un-
der the same reference mapping function. Computing separate infimum h for ad-
vantaged and disadvantaged slices produces inherently incomparable V-entropy
values, since each is defined over a different input—output space. In contrast,
using a single global infimum ensures every average PVE is evaluated against
the same baseline, isolating uncertainty differences that arise solely from the
groups’ data distributions rather than from variations in the learnable mapping
function. Indeed, for fairness criteria defined over a single class (such as EQOPP,

® It is worthy to note that V-entropy coincides with the expected PVE only if the
model used to estimate PVE has been trained on the entire dataset; accordingly, the
mean PVE of any subset does not equal to its own V-entropy [32, 6].
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discussed later), estimating group-specific V-entropy is ill-posed: taking an infi-
mum over slices of only one target class yields zero V-entropy. Nevertheless, we
leave exploration of group-specific training regimes to future work.

DR and DEMP: to analyze fairness under independence notions (in this
study, measured through DEMP), we propose to compute the average of PVE
on slices comprised by instances belonging to the advantaged (D,) and disad-
vantaged (Dy) group. Formally:

S PVEG ey - — 3 PVE@oy) ()

1
DR(D,, Dy4|V) =
D z,y€D, ‘,Dd‘ z,y€Dy

|Dal

where DR quantifies the difference in PVE among groups in the family V when
forecasting Y from X. Since V is defined over the entire dataset, DR serves as a
computationally efficient alternative, requiring only one model per group instead
of a full dataset estimation.

DR and EQOPP: Under EQOPP in separation, where disparity is assessed
only for the positive class, DR is computed over Y = 1 as follows:

1
DR(Dg,y=1,Day=1|V) = o Z PVE(x +— )
wy= 2,Y€Da,y=1
6)
1 (
—_ PVE(z —
Do > (z+y)

z,Yy€Dg, y=1

where D, y—1 and Dy ,—1 represent dataset slices for advantaged and disadvan-
taged groups with target label ¥y = 1. Thus, when comparing DR with DEMP,
we use Equation (5), and for EQOPP, we use Equation (6).

3.2 The relationship between DR and fairness notions

We now examine the relationship between DR and the fairness notions of sepa-
ration and independence. Higher uncertainty implies that models in V are less
confident in predicting Y from X. When V-entropy is high, models in V tend to
rely on guessing, favoring the majority class in Y. Consequently, instances from
the group with the highest average PVE are more likely to be predicted as the
majority class. How does this affect disparities in V7 In the following, we outline
rules of thumb to address this question.

DR and separation through EQOPP. EQOPP measures the difference in true
positive rates between advantaged and disadvantaged groups. By the definition
of DR in Equation (6), higher absolute DR values should positively correlate with
EQOPP. The reasoning is that greater DR differences indicate that the group
with higher average PVE experiences greater uncertainty in predicting Y from
X, leading to more inaccurate predictions and a lower true positive rate. This
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results in higher EQOPP values, reflecting greater disparities under separation.
Based on this analysis, we establish the following rules of thumb, demonstrated
in the experiments: For higher absolute values of DR, higher levels of disparities
under EQOPP are expected.

DR and independence through DEMP. DEMP measures the difference in
positive ratios between advantaged and disadvantaged groups. To determine
whether higher DR values from Equation (5) correspond to higher or lower posi-
tive ratios for the group with greater uncertainty—and thus the expected DEMP
levels—we identify two key dataset characteristics.

The first is the majority class in the target, which helps predict whether
the higher-uncertainty group will receive a higher or lower positive rate. Since DR
implies that the group with higher average PVE is more likely to be predicted as
the majority class, the relationship between DR and DEMP depends on whether
the majority class is positive or negative. If the majority class is positive, the
higher-uncertainty group is expected to receive higher positive ratios, leading to
greater disparities under DEMP. Thus, a second rules of thumb is: For higher
absolute values of DR, higher levels of disparities under DEMP are expected.

Conversely, if the majority class is negative, the relationship is reversed.
The group with higher uncertainty is now less likely to be predicted as positive,
reducing the difference in positive ratios. Therefore, the third rules of thumb is
defined as: For higher absolute values of DR, lower levels of disparities under
DEMP are expected.

3.3 Benefits of DR

Our simple yet effective approach offers two key benefits. First, it aligns with
fairness notions by accounting for the dependency between labels and sensitive
attributes. DR translates fairness concepts into the V-entropy framework, where
fairness implies uncertainty differences close to zero, ensuring equal usable in-
formation across groups and reducing disparities. However, as we will show, this
holds only under certain conditions and disparity notions.

Second, V-entropy enables pipeline-dependent metrics for model selection.
Since it is defined over V), this set can be tailored to the models used in the
ML pipeline, making DR context-specific rather than dataset- or model-specific.
A more granular approach could involve multiple V sets, each representing dif-
ferent model families, allowing for comparable metrics across model types. The
following sections demonstrate how DispaRisk enhances disparity risk assessment
through a thorough analysis.

4 Experiments

4.1 Machine Learning Pipelines

We assess disparity risks in three ML pipelines using datasets KDD, FACET,
and Hate Speech, denoted as D*¢ Dfaecet and D"s. Each dataset D includes
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Table 1. Disadvantaged group and positive class from the sensitive attribute and
target variable for each ML pipeline.

ML Pipeline Sensitive Disadvantaged Target Positive class
phdd sex female income > 50K
. lawman
pFacet gender non-masculine person-related
nurse
Dhs dialectal african-american harrasement non-harrasement

input features X, sensitive attribute S, and target Y for learning h : X — Y.
While S is excluded from mapping, it remains available for fairness analysis. We
now describe each dataset.

The KDD Census-Income dataset (D*99) originates from the 1994-1995 U.S.
Census Bureau surveys, containing 41 demographic and employment-related
variables for 299,285 individuals. It is used to classify whether a person earns
more than 50K per year, with sensitive attributes such as age, sex, and race.

The FACET dataset (Df%¢*?) is a benchmark from Meta Al for evaluating
vision model fairness [10]. It includes 32,000 images labeled with demographic
(e.g., perceived gender presentation) and person-related attributes (e.g., lawman,
nurse), covering 50,000 people. We extract a dataset of 50,000 images (one per
person) using provided bounding boxes, along with a binary masculine gender
attribute and person-related class labels.

The Hate Speech dataset (D"*) by Davidson et al. [3] contains 24,802 tweets
labeled as hate speech, offensive, or neither. We augment it with demographic
dialect predictions from Blodgett et al. [1], estimating dialect proportions for
African-American, Hispanic, White, and other groups per tweet.

Following fairness conventions for binary classification, we define disadvan-
taged group membership using sensitive attributes and the positive class based
on target variables. Table 1 summarizes these criteria. We transform the sensi-
tive attribute, assigning 1 to disadvantaged groups and 0 otherwise. Likewise,
the target variable is set to 1 for positive class instances and 0 for all others.

4.2 Disparity Risk Assessments

We conduct two approaches to evaluate disparity risks in each ML pipeline:
(1) a baseline using popular dataset-focused metrics from literature, and (2) an
approach using DR and comparing with popular model-focused metrics.

Baseline. We use data-focused metrics—CIm, DPL, KL, ry, and Matthews Cor-
relation Coefficient—to assess bias [11,18]. Table 2 presents the results, high-
lighting varying bias levels across datasets. For D% we observe slight over-
representation of the disadvantaged group, with a moderate negative correlation
(ry = —0.159) between sensitive attributes and labels and a higher positive rate
for the male socio-demographic group (DPL> 0). In D"#, bias is strongest for
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Table 2. Data-focused metrics computed from datasets. Higher values indicate stronger
relationships between sensitivities and labels.

Pipeline Class CIm DPL ry, KL
phdd > 50k -0.04 0.08 -0.16 0.07
Dhs no_harassment -0.06 0.25 -0.34 0.33
lawman 0.06 -0.10 0.03

facet
D nurse 0.34 -0.04 0.12 0.02

the positive class (no_ harassment), where DPL, 74, and KL reach the high-
est absolute values, indicating that the advantaged group has more tweets la-
beled as no_harassment than disadvantaged one. Df%°** shows a strong over-
representation of the advantaged group. Based on r4 and DPL, the lawman
class has a higher positive rate for the advantaged group, while nurse exhibits
the opposite trend.

While these results offer valuable insights, they provide a global perspec-
tive, lacking the granularity needed to analyze specific model types within each
ML pipeline. The following section applies DispaRisk to enable a more nuanced
assessment of potential biases in ML pipelines.

DispaRisk in Practice. DispaRisk is applied in three steps: (1) constructing
model families based on the intended models for the ML pipeline, (2) estimating
DR, and (3) analyzing results to generate insights.

Construction of families V. For each hypothetical ML pipeline, we define model
families based on assumed preferences. For D*? we construct five Feedforward
Neural Network (FNN) families with different activation functions: no activa-
tion (linear), ReLU [33|, LeakyReLU [13], Sigmoid, and GELU [15]. For D"s,
we analyze transformer-based families: BERT [4], RoBERTa [21], GPT2 [26],
BART [20], and DeBERTa [14]. For Dfe¢¢* we employ popular vision model
families: VGG [28], Inception [29], DenseNet [17], MobileNet [16], and Vision-
Transformer [5]. Model families are identified using activation functions or model
architecture names as subscripts. For example, Vleaky, elu represents FNNs with
LeakyReLU, and Vgpt2 denotes the GPT2 family.

DR Estimates. To estimate uncertainty differences via DR (Section 3), we follow
this protocol for each ML pipeline using dataset D) and family V;:

rain, a0 D,(f;)ldiout sets at 80/20 ratio.
(2) Approximate the infimum h € V; by training or fine-tuning a pretrained
model using cross-entropy loss (Step 1 of Algorithm 1).
(3) Estimate Hy, and PVE following Steps 2—6 of Algorithm 1.

(1) Split D into D)

Since the most computationally powerful model in V often attains the in-
fimum (Definition 3), this weakens the PAC bound [32], requiring overfitting
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Fig. 1. Average EQOPP disparity in family versus estimated uncertainty difference
through DR(Dq,y—1, Da,y=1) for each family V;.

(p)

prevention. To mitigate this, we create a validation set D, ; by sampling 10%

of Dt(fl)lm and evaluate estimates per epoch. Models are trained/fine-tuned for 5
epochs with a learning rate of 5e — 5 and batch size 32. If overfitting arises, we
lower the learning rate to 5e — 6, halve the batch size, and rerun Algorithm 1.

We use the AdamW optimizer [22] with a linear scheduler® for all experiments.

Assessing Fairness Through Usable Information. We use the estimates to address
two key questions that data-focused metrics alone cannot answer:

(Q.1) Which model families in the ML pipeline are more likely to
replicate or exacerbate biases? To investigate this, we simulate later ML
pipeline stages and compare estimated DR with observed disparities, identify-
ing model families prone to higher bias reproduction. For example, in the D¢
pipeline, we first estimate DR for each family. Next, we train FNNs with vary-
ing hidden layers from each family and compute average disparity levels using
EQOPP and DEMP. In parallel, we estimate DR for each family. Finally, we
compare uncertainty difference estimates with observed disparities to evaluate
whether DR effectively signals model families more prone to exacerbating biases,
as inferred in Section 3. Applying this protocol across all ML pipelines, we obtain
the results shown in Figures 1 and 2, which depicts the relationship between DR
estimates and EQOPP/DEMP across different pipelines and model families.

Figure 1 shows the relationship between absolute DR(Dq, y—1, Dd,yzl) values
and average EQOPP. The observed trend confirms the rule of thumb from Sec-
tion 3 across all ML pipelines, validating DR as a predictor of disparity risks
for future models in downstream tasks. Given this, we derive the first insight
for (Q.1): the model families most prone to higher disparities under separa-
tion notions are Vsigmoid, Vdeverta, 018 Vmobitenet for the Dkdd phs  gpd Dlacet
pipelines, respectively.

8 Minimum learning rate set to 0.
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Fig. 2. Average DEMP in predictive families versus estimated uncertainty difference
through DR(Dq, Dq) for each family V;.

Figure 2 illustrates the relationship between DR(D,, Dy) and DEMP. To ana-
lyze these results and address Q.1, we follow a structured approach: (1) identify
the majority class, (2) evaluate whether the observed trends align with the ex-
pected DR-DEMP relationship from Section 3, and (3) synthesize insights to
answer Q.1. Applying this approach, we find that for D9 the negative class
(income < 50k) is the majority, suggesting an inverse relationship between abso-
lute DR and DEMP (Section 3). Figure 2 confirms this, with higher absolute DR
values corresponding to lower DEMP. Models in Vgej,, and Vsigmoia show higher
disparity risks. Additionally, in D"* the majority class is harassment (negative
class), indicating a similar inverse DR-DEMP relationship as in D*¥. Consistent
with Section 3, models in Vjepertq are more prone to disparities under indepen-
dence. Finally, for Df%°¢* the majority class is lawman. From Figure 2, the rule
of thumb (Section 3) that an inverse DR-DEMP relationship is expected for the
nurse class and a direct one for lawman is confirmed. Models in Vyepsenet are
more prone to disparities for lawman, while Vvit shows similar tendencies for
nurse.

(Q.2) Why might these model types produce disparate outcomes?
The rules of thumb not only help identify high-risk model families but also
explain why these families contribute to disparities in later pipeline stages. For
example, in Vsigmoid, EQOPP is higher because the group with a higher average
PVE is less likely to be correctly predicted, leading to a lower true positive
rate. Similarly, DEMP is higher as the lower average PVE differences shows that
models are reflecting dataset biases seen in Table 2. This pattern generalizes
across model families and ML pipelines.

To further explore these disparities, we analyze which features contribute to
the computed average PVE in each model family. We select the riskiest families
per ML pipeline and identify key features by measuring uncertainty reduction
when a feature is added to the input space. Specifically, we compare PVE when
feature ¢ is masked using transformation 7; versus when x is complete. The
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Uncertainty Reduction

masked variable

Fig. 3. Top 15 UR of features over the advantaged group (male) for the Vs;gmoiq family
in the D*¥ ML pipeline.

transformations applied in each pipeline are: setting feature i to 0 in D4
replacing word i with a blank space in D", and setting specific pixel sets to 0
in Dfacet Formally, this uncertainty reduction is measured as follows:

UR(D|V, 72) = % S PVE(ri(z) — y) — PVE(z — ) (7)
z,yeD

- ﬁ S —logy hlw—i](y) + logy hlz](y) (8)
z,yeD

where UR represents Uncertainty Reduction, 7;(x) denotes the transformation
process that masks feature 4, and x—; is the resulting output. We use h € V such
that E[—log, h[X](Y)] = Hy(Y|X). Higher UR values for feature ¢ indicate its
importance for models in V to accurately predict the target variable. Notably,
we use the same infimum of V for PVE with both 7;(x) and the unmasked input
to avoid the computational overhead of determining a separate infimum for each
masked feature. While this simplification has limitations, which will be discussed
in Section 5, the primary goal here is to demonstrate how DispaRisk extends
beyond identifying risky models to offer deeper insights into potential disparities.
In the following paragraphs we apply this approach to all ML pipelines.

In DF44 the positive DPL indicates higher labeled positive rates for the ad-
vantaged group, a disparity replicated in Vg;gmoiq due to its lower DR. Thus,
we compute UR on D,. Figure 3 shows the top 15 most relevant features by
UR for Vgigmoid, the highest-risk family. The main contributors to disparity risks
are education, capital_gains, weeks_worked_in_year, age, and occupation,
with education and capital_gains providing the greatest uncertainty reduc-
tion. Thus, complementing (Q.1), uncertainty differences are largely attributed
to these variables in Vgigmoia- This might suggest insights such as careful pre-
processing of these features to mitigate bias or further considerations on these
variables during model constructions.



DispaRisk: Assessing Fairness Through Usable Information 13

w*gga
c*ons
f*ggots
n*ggers
c*on
n*ggah
r¥dnecks
p*ssies
f*ggot
n*gger
g
c*nts
b*tch
ritards
h*es

0 1 2 3 4 5

Uncertainty Reduction

masked variable

Fig. 4. Top 15 UR of words over the advantaged group (Not-African-American dialect)
for the Vaeverta family in the D** ML pipeline. Words are modified to avoid exposition
of inappropriate text.
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Fig.5. UR of feature person and background over the disadvantaged group (Female)
for the Viensenet and Vus: families in the DF et ML pipeline.

For the D"* pipeline, we analyze two word sets: (1) the most relevant words
for each target class identified by Ethayarajh et al. [6] and (2) a manually cu-
rated list of problematic words for D"*. For each word 4, we compute UR using a
subsample of texts containing ¢, capturing its impact on uncertainty reduction
when present versus absent. Given the DR values and following the approach for
Dk we compute UR on the advantaged group due to the positive DPL. Fig-
ure 4 presents the top 15 words in Vyeperta, identified as the highest-risk family
in (Q.1). The analysis shows that racial and homophobic slurs most signifi-
cantly reduce uncertainty in Vgepertq for the advantaged group. This indicates
that a specific set of biased terms largely drives uncertainty differences and,
consequently, disparity risks in this predictive family.

Finally, for the Dfec¢* dataset, we focus on the disadvantaged group, which
had the highest average PVE in the estimated DR. We analyze Vyensenet and Ve,
identified as the highest-risk families for the lawman and nurse classes, respec-
tively. We examine the image background and the person to determine which
contributes more to uncertainty reduction, explaining the disparity risks identi-
fied earlier. Figure 5 shows that in both families, the background has the highest
uncertainty reduction. This reinforces that image backgrounds significantly im-
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pact the elevated uncertainty of the disadvantaged group, driving disparity risks.
These findings help narrow the focus on key features when analyzing biases.

5 Discussion

DispaRisk bridges the gap between data-focused and model-focused bias detec-
tion methods. While it operates on datasets like data-focused techniques, it also
provides insights that are both data-centric and model-family-aware, making it
distinct from traditional approaches. A key difference from model-focused metrics
is its broader applicability. Model-focused metrics evaluate bias based on a spe-
cific model’s output, limiting generalizability. In contrast, DispaRisk estimates
metrics over an entire model family V (Definition 3), enabling a more general-
izable assessment earlier in the ML pipeline. Another advantage of DispaRisk
is its scalability to high-dimensional data. Unlike mutual information, which
struggles with high-dimensional variables, empirical V-metrics remain tractable
as dimensionality increases [32]. This is especially useful in modern ML, where
high-dimensional data is common.

The utility of DispaRisk depends on choosing a model family V that mean-
ingfully spans the hypothesis space of interest. A narrowly defined V may miss
key biases, while an overly broad one can dilute signal. We therefore recommend:
(i) to select a variety of families by using criteria such as Vapnik-Chervonenkis
(VC) dimension or model capacity tiers, (ii) remove models that under- or over-
fit relative to targets, ensuring V reflects realistic candidates, and (iii) ensure V
matches anticipated production pipelines.

As we described, the accuracy of V-entropy estimates depends on the size
and representativeness of held-out data: small datasets yield higher variance in
pointwise entropy measurements. We recommend using an enough size of dataset
in line with PAC-style bounds on entropy estimation, or employing techniques
like bootstrap resampling to quantify confidence intervals. For Uncertainty Re-
duction (UR) in high-dimensional settings (e.g. large vocabularies), computing
average PVE for every feature can be prohibitive. In such cases, practition-
ers can apply pre-filtering strategies such as: (i) grouping similar words or (ii)
performing expert-domain-driven pre-selection of interpretable feature subsets.
These approaches maintain UR’s explanatory power while keeping computation
tractable.

However, DispaRisk has limitations. Computing pointwise V-entropy requires
training or fine-tuning each candidate in V. While this cost exceeds that of
simpler data-centric metrics, it can be substantially reduced in practice by (i)
sampling )V by capacity tier, selecting one representative per group of similar
architectures, or (ii) applying early-stopping on a small held-out slice, aborting
models whose PVE curves fall below a baseline threshold. These strategies re-
tain the ability to detect relative uncertainty disparities while cutting training
iterations.
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6 Conclusions

DispaRisk enhances bias assessment in ML pipelines by addressing veracity and
value challenges in large datasets. Using the V-entropy framework, it reveals
how different model families may amplify societal biases, bridging data-focused
and model-focused metrics while considering computational constraints. Illustra-
tive experiments across diverse datasets demonstrate DispaRisk’s effectiveness
in identifying disparity sources and explaining bias propagation. By pinpointing
areas where biases are amplified, it helps improve dataset quality and fairness
in ML applications. Its context-specific assessments make it a valuable tool for
regulatory compliance and internal use, ensuring fairness in ML-based systems.

Future research on DispaRisk can explore several key directions to enhance
its applicability and impact. One promising avenue is refining its estimation
methods to improve efficiency, enabling faster assessments in large-scale ML
pipelines. Another important direction is adapting DispaRisk for evolving ML
architectures, ensuring its relevance as models become more complex and di-
verse. Finally, investigating its role in Al governance and regulatory compli-
ance can help establish standardized fairness auditing practices, fostering greater
transparency and accountability in machine learning systems. While our rules
of thumb in Section 3.2 provide intuitive guidance, we do not yet offer a full
formal proof under minimal assumptions. Developing rigorous guarantees (e.g.
via PAC-Bayesian bounds or VC-dimension arguments) to bound the error of
disparity predictions remains an important direction for future work. We defer a
complete theoretical treatment to a follow-up study. Finally, DispaRisk’s main
novelty lies in integrating pointwise V-entropy gaps with fairness evaluation and
demonstrating its empirical utility across modalities. We acknowledge, however,
that the core metric is an adaptation of existing usable-information measures.
Deriving new theoretical insights—such as generalization bounds for disparity
estimates, tighter links to information-bottleneck principles, or capacity-based
criteria for model-family selection—would substantially strengthen the concep-
tual contribution. We plan to explore these avenues in future research.
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