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Abstract. With the increasing prevalence of graph-structured data,
graph anomaly detection has emerged as a crucial research domain. Mo-
tivated by the realistic challenge that many practical problems are con-
strained by limited sample data, this study proposes a semi-supervised
setting, unlike conventional unsupervised and supervised learning meth-
ods, where only a subset of normal samples is available. A key challenge
in this context is the absence of anomalous samples, which can lead to
model bias and compromise detection performance. To address this issue,
we introduce a novel model, Homophily-Aware Generative Adversarial
Network (HAGAN), which leverages a generative adversarial network to
generate high-quality anomalous nodes. These generated nodes are seam-
lessly integrated into the real graph using a transformer-based graph au-
toencoder. Furthermore, the discriminator employs a GNN architecture
enhanced with an edge homogeneity identification mechanism to improve
anomaly detection. The proposed model is evaluated on four large-scale
real-world benchmark datasets, and experimental results demonstrate
that HAGAN consistently achieves state-of-the-art performance across
multiple evaluation metrics.
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1 Introduction

In the context of the growing prevalence of graph-structured data, graph anomaly
detection (GAD) has emerged as a significant research focus [16]. Unlike tradi-
tional anomaly detection [25], graph anomaly detection seeks to identify anoma-
lous patterns within complex relationships and structures. It has been widely
applied in various fields, including social networks [18], network security [3], and
financial systems [6].

In recent years, a wide array of research has emerged in the field of GAD, pri-
marily focusing on two key approaches: unsupervised and supervised methods.
Although these researches have demonstrated promising results, they overlook a
critical challenge: the inherent imbalance between normal and anomalous sam-
ples in real-world datasets [15]. Unsupervised methods assume that the labels of
all nodes are unknown. However, the overwhelming prevalence of normal samples
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makes it relatively easy to identify normal nodes, which results in unsupervised
methods not fully leveraging these normal samples. Supervised methods typically
rely on a subset of nodes labeled as anomalous. However, anomalous patterns in
real-world data are both diverse and scarce, making the labeling process costly.
Furthermore, this rarity may not offer enough information for the model to ef-
fectively learn discriminative features.

Based on the above discussion, we assume a semi-supervised setting in which
labels for only a subset of normal samples are available. In this context, an im-
portant issue arises from the lack of anomalous samples. Anomalous samples
often exhibit significant differences in features or connectivity structures com-
pared to normal samples, and relying solely on normal samples may not provide
sufficient information to accurately identify anomalies. In order to address the
above problem, this paper proposes Homophily-Aware Generative Adversarial
Network (HAGAN) for GAD. Our objective is trying to alleviate the lack of
anomalous samples by generating high-quality anomaly nodes.

However, some challenges arise here: 1. How to ensure the high-quality
of the generated anomaly nodes? A common approach is random generation;
however, this often leads to suboptimal node quality. To address this limitation,
we employ a generative adversarial network (GAN) [14] to generate anomalous
nodes, leveraging adversarial training to produce realistic and high-quality re-
sults. 2. How to integrate the generated nodes with the original graph
? Since the generated nodes are isolated, it is imperative to establish structural
relationships between the generated nodes and the original nodes. A simple ran-
dom connection approach may disrupt the inherent characteristics of the original
graph structure. Therefore, we utilize a pre-trained graph autoencoder (GAE) to
reconstruct the graph structure and seamlessly achieve integration. 3. How to
alleviate the problem that generated nodes will introduce noise? GNN
is chosen as the discriminator due to its effectiveness. However, in GAD tasks,
GNNs are vulnerable to noise from heterophilic edges [19], where information
from normal and anomalous nodes interferes during aggregation. To address this,
we integrate an edge homophily identification module that reduces noise from
generated nodes and helps the model better capture heterophilic edges inherent
in the graph.

To sum up, the main contributions of this paper are as follows:

– We propose HAGAN, a novel framework that accomplishes the semi-supervised
GAD task by generating high-quality anomaly nodes.

– We propose a Transformer-based GAE to integrate the generator-produced
nodes into the original graph, thereby preserving its inherent structural in-
tegrity.

– We integrate an edge homophily identification method into the GNN dis-
criminator to enhance its discriminative ability.

– We evaluate the effectiveness of HAGAN on four real-world benchmark
datasets. The experiments demonstrate that our approach delivers state-
of-the-art performance.
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2 Related Work

Traditional methods such as LOF [2] and isForest [25] struggle to effectively cap-
ture both local and global structural information. With the increasing prevalence
of graph-structured data, several shallow methods based on graph structures
have emerged, such as Radar [23] and ANOMALOUS [30]. However, these shal-
low techniques typically lack the expressive power that deep learning possesses.
In recent years, the rapid advancement of GNN has positioned deep learning
methods based on graph structures at the forefront of research.

2.1 Unsupervised Methods

DOMINANT [8] uses GNN to capture both structural and attribute information
for anomaly detection in attributed networks. DONE [1] employs deep one-class
classification to detect anomalies via distributional deviation. OCNNN [37] op-
timizes a one-class objective function to distinguish normal and anomalous in-
stances. TAM [31] leverages the stronger affinity among normal nodes compared
to anomalous ones. CoCo [36] introduces a method based on the correlation
discrepancy between local and global contextual information of nodes.

Besides, Self-supervised methods based on contrastive learning have also
emerged as a key research focus in recent years. Notable examples include CoLA
[26], ANEMONE [17], SL-GAD [41], Sub-CR [39], CONAD [38] and GRADATE
[10]. The core principle of these methods is to enhance the model’s discrimina-
tive ability by performing contrastive learning at various scales, bringing similar
node representations closer together while pushing dissimilar ones further apart.

2.2 Supervised Methods

Current research on supervised methods primarily focuses on edge homophily.
Edges between nodes can be classified into two types: homophilic (connecting
nodes with the same labels) and heterophilic (connecting nodes with differ-
ent labels). By identifying edge homophily, these methods optimize the graph
structure or design novel aggregation strategies, thereby reducing noise dur-
ing model training. H2-FDetector [33] enhances fraud detection by transmitting
similar information over homophilic edges and dissimilar information over het-
erophilic edges. GDN [11] mitigates structural distribution shift in GAD by iso-
lating and constraining key anomalous features. SpareGAD [13] simplifies graph
structure through sparsification, removing task-irrelevant edges and employing
a heterophilic-aware aggregation scheme. HedGe [40] reduces excessive distribu-
tional differences by generating homogeneous edges, modifying the loss function
to suppress heterogeneous edge formation.

2.3 Generative Anomaly Detection

Early methods, such as AnoGAN [32] and GAN-AD [22], achieve notable success
in their respective domains. However, these methods are not designed for graph
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data. AdONE [1] is the first approach to use adversarial training for this task,
helping to further minimize the influence of outliers while generating the em-
beddings. GAAN [5] and AEGIS [7] both employ GAN architectures for graph
anomaly detection. GAAN generates fake graph nodes from Gaussian noise and
learns latent representations via an encoder, while its discriminator determines
whether connected node pairs originate from the real graph. AEGIS, on the other
hand, enhances generalization by generating information-rich potential anoma-
lies and training a discriminator to distinguish them from normal data.

3 Preliminaries

3.1 Definition 1. Graph

In this paper, we focus on anomaly detection in attributed graphs with labeled
normal nodes, while the number of anomalous labels is extremely sparse. An
attributed graph is denoted by G = (V, E ,X), where V = {v1, v2, ..., vN} denotes
the node set, N = |V|, E ⊆ V × V with e ∈ E denotes the edge set, Xorigin ∈
RN×d denotes the node features with xorigin(vi) ∈ Rd being the attribute vector
of vi and d denotes the attribute dimension in the original data. The adjacency
matrix of G is denoted as A ∈ {0, 1}N×N and Aij = 1 if and only if eij ∈ E .

3.2 Definition 2. Graph Anomaly Detection

Given a graph G mentioned above, the objective of anomaly detection is to
calculate an anomaly score f(v) ∈ (0, 1), where f is an anomaly score function
and v ∈ V. The anomaly score reflects the extent of the abnormality of the node,
which means that a higher f(v) indicates a higher probability of anomalous of
the node v.

4 Method

In this section, we introduce the details of HAGAN, as presented in Fig. 1.
HAGAN consists of two stages: the first stage involves pretraining a Transformer-
based Graph Autoencoder, while the second stage focuses on training GAN.

4.1 Transformer-based GAE

GAE demonstrates significant advantages in reconstructing graph structures
[24]. However, their effectiveness typically relies on the assumption that the input
data inherently exhibit a graph structure, while generated nodes are typically
isolated, posing a challenge for integration.

To overcome this limitation, we introduce anchor-based encoding, which plays
a role similar to positional encoding [35] by injecting structural information into
the generated isolated nodes. The real and generated nodes are treated as a uni-
fied sequence. Leveraging the Transformer’s powerful sequence modeling capa-
bility along with the encoded structural information, we propose a Transformer-
based GAE to obtain expressive node embeddings.
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Fig. 1: The overall architecture of HAGAN, which consists of two stages. In Stage
1, a Transformer-based GAE is pretrained on real data. In Stage 2, the generator
synthesizes anomalous nodes, which are integrated with the original graph via the
pretrained GAE. The integrated graph is then processed by the discriminator, a
GNN equipped with an edge homogeneity identification mechanism. Specifically,
for each edge (i, j), their features along with the global average feature are fed
into an MLP to compute a homophily probability, which is then used to guide
the attention coefficient computation.

Anchor-based Encoding Given a graph G = (V, E ,X), we select k anchor
points, denoted as VAnchor = {a1, a2, ..., ak} ⊂ V. For node v ∈ V, we define its
anchor-based encoding (structural features) Xstruct as:

Xstruct = [d(v, a1), d(v, a1), ...d(v, ak)] (1)

where d(v, ai) represents the shortest path distance between node v and anchor
point ai.

Based on the above definition, a crucial aspect of anchor-based encoding is
the selection of anchor points. Here, we employ graph diffusion techniques [12].
Formally, given an adjacency matrix A, the graph diffusion matrix S ∈ RN×N
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is defined by:

S =

∞∑
k=0

θkTk (θk ∈ [0, 1] and

∞∑
k=0

θk = 1) (2)

where T ∈ RN×N denotes the generalized transition matrix, θk denotes the
weighting coefficient determining the ratio of global-local information. The row
si in S represents the connectivity of node vi, and its row sum is used to deter-
mine each node’s connectivity strength, allowing us to select the top k nodes as
anchors.

In practice, we use Personalized PageRank (PPR) [28] which choose T =
AD−1 and θk = α(1− α)k:

SPPR = α(I − (1− α)D−1/2AD−1/2) (3)

where I denotes the identity matrix, D ∈ RN×N denotes the diagonal degree
matrix and α ∈ (0, 1) denotes the teleport probability.

Autoencoder We concatenate Xstruct and Xorigin to leverage their comple-
mentary information. Furthermore, linear transformation are applied to obtain
the fusion representation Hfusion:

Hfusion = Wr[WsXstruct ∥WoXorigin ] (4)

where || is the concatenation operation and Wr,Ws,Wo denotes three distinct
learnable parameter matrices.

For encoder, we consider the set of nodes as a sequence and input it into the
Transformer’s encoder to obtain the node embeddings:

H′(l) = LayerNorm(H(l−1) +MultiHeadAttention(H(l−1))) (5)

H(l) = LayerNorm(H′(l) + FFN(H′(l))) (6)

where H(l) and H(l−1) respectively denotes the output of the l-th layer and
(l-1)-th attention layer. The input H(0) is Hfusion and the output of the final
attention layer H(L) is denoted as the output node embeddings Z.

For decoder, we choose the widely used inner product method due to its
simplicity and effectiveness:

Z̃ = g(Z) (7)

Ã = σ(Z̃Z̃
T
) (8)

where g denotes a normalization function to prevent gradient explosion and
vanishing and Ã denotes the reconstructed adjacency matrix.

To facilitate the subsequent use of the generator, we pre-train TGAE using
reconstruction loss function:

Lrecon = ∥A − Ã∥22 (9)
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4.2 GAN Architecture

Fence [27] demonstrated that GAN can achieve superior performance in anomaly
detection by modifying the traditional loss function to encourage the generator
to produce data at the edges of the normal data distribution. Inspired by this
work, we adopt a similar architecture.

Generator In our generator, we utilize gaussian noise as the standard input and
employ a dual-branch architecture to produce structural features and original
features. We define the model as follows:

Gstruct(zi) = g(σ(fstruct(zi))) (10)

Gorigin(zi) = g(σ(forigin(zi))) (11)

where fstruct and forigin denote different 3-layer feedforward neural networks, σ
denotes the activation function, g denotes a normalization function, Gstruct(zi) ∈
Rk denotes the generated structural features and Gorigin(zi) ∈ Rd denotes the
generated original features.

The loss function Lgen is designed to comprise three components. Ldist guides
the generator to produce samples with a discriminator score of α, positioning
them at the boundary of normal nodes to enhance high-quality. Ldivr enhances
diversity in generated nodes, addressing GANs’ susceptibility to mode collapse
by maximizing their average distance from the mean. Lkl promotes the dispersion
of generated data in a multidimensional space, preventing the generator from
concentrating samples in specific dimensions during training. Formally, the loss
function is defined as:

Lgen = β1Ldist + β2Ldivr + Lkl (12)

Ldist = − 1

M

M∑
i=1

log(1− (|α−D(G(zi))|)) (13)

Ldivr =
1

1
M

∑M
i=1(∥G(zi)− µ∥2)

, µ =
1

C

C∑
i=1

G(zi) (14)

Lkl = KL(Gstruct(zi)∥
1

C
) +KL(Gorigin(zi)∥

1

C
) (15)

where α ∈ [0, 1] is a hyperparameter, β1 and β2 are weight hyperparameters, D(·)
denotes the discriminator, M denotes the number of generated nodes, G(zi) =
[Gstruct(zi)∥Gorigin(zi)] denotes the output of the generator, C = k + d and
KL(P∥Q) denotes the KL divergence.

After obtaining the output from the generator, we employ the pre-trained
TGAE to integrate the generated nodes into the original graph:

X̃struct =

[
Xstruct

Gstruct(zi)

]
, X̃origin =

[
Xorigin

Gorigin(zi)

]
(16)
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Ã = TGAE(X̃struct, X̃origin) (17)

Next, we select the edges in Ã that are related to the generated nodes and add
them to the original graph, while preserving the inherent edges. The resulting
graph serves as the input to the discriminator.

Notably, we denote the ratio of generated nodes to real nodes as pG = M
N .

As a hyperparameter, pG will be explored further in our experiments.

Discriminator In our discriminator, we utilize a GNN architecture due to
its superior capability in processing graph-structured data. However, traditional
GNNs indiscriminately aggregate features from all neighboring nodes, which can
lead to undesirable feature smoothing: the features of anomalous nodes may be
overwhelmed by dominant normal nodes, and normal nodes may also incorporate
noisy information from anomalous neighbors.

GraphCAD [4] suggests that normal and anomalous nodes can be effectively
distinguished by leveraging the global context of the graph. Inspired by this in-
sight, we introduce an edge homophily identification mechanism based on global
context to address this issue.

First, we obtain the fusion representation H̃fusion:

H̃fusion = Wr[WsX̃struct ∥WoX̃origin ] (18)

where || is the concatenation operation and Wr,Ws,Wo denotes three distinct
learnable parameter matrices.

Next, we employ a multilayer GNN to process the graph structure. Specifi-
cally, at the l-th layer of GNN, the global context h(l)

g is computed to aggregate
information from all nodes within the graph. In this context, to identify the edge
eij , we leverage nodes vi, vj and h(l)

g to estimate the homophily probability c
(l)
ij :

h(l)
g =

Ñ∑
i=1

W(l)h(l−1)
i (19)

d
(l)
ij = W(l)h(l−1)

i − W(l)h(l−1)
j (20)

d
(l)
ig = W(l)h(l−1)

i − h(l)
g (21)

d
(l)
jg = W(l)h(l−1)

j − h(l)
g (22)

c
(l)
ij = MLP ([ d

(l)
ij ∥d(l)ig ∥d(l)jg ]) (23)

where Ñ = N+M , W(l) is learnable parameter matrices of the l-th and MLP is
a two-layer multilayer perceptron with a sigmoid activation function, ensuring
that c

(l)
ij is constrained within the range (0, 1).

We incorporate c
(l)
ij into the computation of attention coefficients, with the

intention that c(l)ij approaches 0 for heterogeneous edges. This enables a pruning-
like effect during message passing, effectively preventing information exchange
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between normal and anomalous nodes. The attention coefficient a
(l)
ij and the

message aggregation process of the GNN are designed as follows:

a
(l)
ij =

c
(l)
ij∑Ñ

k=1 c
(l)
ik

(24)

h(l)
i = σ(

∑
j∈N (i)∪{i}

a
(l)
ij W(l)h(l−1)

j ) (25)

where N (v) denotes the neighbors of i and σ denotes an activation function.
The input H(0) is H̃fusion and the output of the final attention layer H(L) is
denoted as the output node embeddings Z.

Finally, we employ a simple detector to obtain the anomaly probability pv of
node v:

pv = sigmoid(Wpzv + b) (26)

where Wp and b denote the weight and bias parameters respectively.
The loss function Ldis is designed to comprise two components. Lnode is node

discrimination loss. Ledge is edge discrimination loss. Formally, the loss function
is defined as:

Ldis = Lnode +

L∑
l=1

L(l)
edge (27)

Lnode = − 1

Nt

Nt∑
i=1

(γ1log(1−D(xi)) + γ2log(D(G(zi)))) (28)

L(l)
edge = − 1

|Et|
∑

eij∈Et

(yij log(c
(l)
ij ) + (1− yij)log(1− c

(l)
ij )) (29)

where γ1 and γ2 are weight hyperparameters, Nt denotes the number of training
nodes and Et denotes the edges whose both endpoints are within the set of
training nodes. For each eij ∈ Et, if node i and node j have the same label (eij
is homophilic), yij = 1, otherwise (eij is heterophilic) yij = 0.

5 Experiments

5.1 Experiment Setup

Datasets We conduct comprehensive evaluations of HAGAN on four large-scale
real-world benchmark datasets, including Amazon [9], Reddit [21], YelpChi [21]
and TFinance [34], covering four domains: e-commerce, social media, business
reviews, and finance. The key statistics are presented in the appendix.
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Dataset Amazon Reddit YelpChi TFinance
Metric AUC AP AUC AP AUC AP AUC AP
Radar 0.5684 0.1701 0.5826 0.0858 0.5557 0.2906 0.0587 0.0458

ANOMALOUS 0.5205 0.1788 0.5900 0.0883 0.5824 0.3195 0.0579 0.0459
DOMINANT 0.2662 0.0839 0.5722 0.0743 0.4799 0.2549 0.8077 0.4715

DONE 0.7302 0.3653 0.6102 0.0859 0.5188 0.2737 0.8962 0.6910
AdONE 0.7746 0.5003 0.6178 0.0849 0.5199 0.2828 0.8960 0.6035
GAAN 0.6558 0.1672 0.5589 0.0822 0.5319 0.2711 0.6481 0.1579
AEGIS 0.8022 0.4998 0.5474 0.0950 0.4785 0.2557 0.8424 0.6036
CoLA 0.5803 0.1931 0.5488 0.0508 0.4619 0.1718 0.6148 0.2263

OCGNN 0.8602 0.7647 0.5247 0.0655 0.5973 0.3131 0.9049 0.7645
CONAD 0.2646 0.0838 0.5714 0.0744 0.4801 0.2545 0.8072 0.4555

TAM 0.8699 0.7454 0.5927 0.0871 0.5819 0.2916 0.9314 0.4612
CoCo 0.8620 0.8048 0.5724 0.0747 0.5836 0.3211 0.8790 0.5411

HAGAN(Ours) 0.9038 0.8238 0.6223 0.0994 0.5940 0.3638 0.9193 0.7838

Table 1: The AUC and AP results across four real-world GAD datasets are
presented. The best performance in each row is boldfaced, with the second-best
underlined.

Baselines HAGAN is compared with two shallow methods, Radar [23] and
ANOMALOUS [30], as well as ten GNN-based deep methods, including DOMI-
NANT [8], DONE [1], AdONE [1], GAAN [7], AEGIS [5], CoLA [26], OCGNN
[37], TAM [31], and CoCo [36].

Notably, many methods are originally unsupervised. To ensure fairness, we
modify these methods according to our semi-supervised setup. For supervised
methods, which require anomalous labels, we exclude them from our baseline.

Metrics Following previous studies [31], we employ two widely recognized and
complementary evaluation metrics for anomaly detection: Area Under the Re-
ceiver Operating Characteristic Curve (AUC) and Area Under the Precision-
Recall Curve (AP). Higher AUC/AP indicates better performance.

Implementation Details Our semi-supervised setting use a portion of nodes
labeled (50%) as normal for training, while the remaining nodes are used for
validation and testing. HAGAN is implemented using pytorch 2.2.0+cu118 with
Python 3.10, running on two NVIDIA GeForce RTX 3090 (24GB). All datasets
are optimized using the Adam optimizer. The number of anchor nodes k is
set to 64, the dimensions of each feature in the hidden layers are set to 64,
and the number of layers of GNN is set to 2. Besides, the settings for other
hyperparameters are presented in the appendix.

5.2 Performance Comparison

The results are presented in Table 1. HAGAN demonstrates consistently strong
performance across all datasets, maintaining stable results, whereas many other
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models exhibit significant fluctuations in certain datasets. For instance, OCGNN
performs poorly on the Reddit dataset, and DONE struggles with the Amazon
dataset. Notably, HAGAN excels in the AP metric, achieving the best perfor-
mance across all datasets. In particular, on the YelpChi dataset, it outperforms
the second-best model, CoCo, by a significant margin of 13.29%. While HAGAN
does not achieve the highest AUC scores on the YelpChi and TFinance datasets,
it still ranks second, further highlighting its robustness. These results suggest
that HAGAN demonstrates strong generalizability and robustness in GAD tasks.

5.3 Transformer-based GAE Analysis

In this analysis, we focus on evaluating the performance of TGAE. Specifically,
we implement a GCN-based GAE and a GCN-based VGAE, and modify the
TGAE model to separately utilize only the original features (TGAEorigin) and
only the structural features (TGAEstruct) for evaluation. The reconstruction loss
Lrecon is used as the evaluation metric.

As presented in Table 2, TGAE performs similarly to other common graph
autoencoders on most datasets, achieving the best results on the YelpChi dataset.
Moreover, TGAEstruct outperforms TGAEorigin. These experimental results demon-
strate the effectiveness of both the anchor-based encoding and TGAE in graph
reconstruction tasks.

Model Amazon Reddit YelpChi TFinance
GAE 0.2134 0.2499 0.2429 0.2459

VGAE 0.2512 0.2508 0.2515 0.2717
TGAEstruct 0.2382 0.2509 0.2192 0.2257
TGAEorigin 0.2540 0.2509 0.2613 0.2614

TGAE 0.2312 0.2504 0.2147 0.2466

Table 2: Reconstruction loss of GAEs.

5.4 Ablation Analysis

In this analysis, we focus on the necessity of three modules. Specifically, we mod-
ify HAGAN as follows: 1. NoGEN that replace the generator with a random
feature generation approach. 2. NoGAE that randomly establish connections
between generated nodes and real nodes. 3. NoEHI that remove the edge ho-
mophily identification from the discriminator and replace with GCN.

As presented in Table 3, NoGEN exhibits the poorest performance, which
can be attributed to the inability of the random feature generation method
to ensure the quality of the generated samples. This further underscores the
necessity of our motivation to generate high-quality samples. NoGAE achieves
relatively better results, suggesting that the removal of TGAE’s influence has
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a limited effect. However, it still fails to match the full model, likely due to
the disruption of the original graph structure caused by the random connection
establishment method. NoEHI performs poorly, which aligns with the Challenge
3 discussed in Section 1, and further validates the rationale behind our proposed
edge homogeneity identification mechanism.

Metric Variants Dataset
Amazon Reddit YelpChi TFinance

AUC

NoGEN 0.6477 0.4275 0.5253 0.8726
NoGAE 0.7859 0.5935 0.5548 0.9090
NoEHI 0.7525 0.4345 0.5365 0.8893

HAGAN 0.9038 0.6223 0.5940 0.9193

AP

NoGEN 0.3191 0.0518 0.2675 0.6441
NoGAE 0.5230 0.0943 0.3096 0.7559
NoEHI 0.3545 0.0547 0.2775 0.7077

HAGAN 0.8238 0.0994 0.3638 0.7838

Table 3: The AUC and AP of variants.

5.5 Generated Sample Analysis

In this analysis, we focus on the performance with respect to α and pG. We eval-
uated the performance of HAGAN across various values of α, specifically: 0.3,
0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, and 0.7. As presented in Fig. 2, both metrics
exhibit an initial increase followed by a decrease, with the extrema occurring
around α = 0.5. This is because α represents the probability that a generated
sample is classified as anomalous by the discriminator, and a value of 0.5 indi-
cates a state where normal and anomalous instances are difficult to distinguish,
aligning with our definition of high-quality anomalies. Furthermore, after reach-
ing the peak, the performance significantly declines, as the generated anomalies
become overly distinct, limiting the discriminator’s learning efficiency.

(a) Amazon (b) Reddit (c) YelpChi (d) TFinance

Fig. 2: The AUC (blue) and AP (green) with respect to α.
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We evaluated the performance of HAGAN across various values of pG, testing
values within the 0% to 50% range and visualizing the values near the extrema.
As presented in Fig. 3, both metrics exhibit an initial increase followed by a
decrease, and the optimal pG values vary significantly across different datasets.
We believe that an excessively high proportion of anomalous nodes may disrupt
the underlying graph structure, deviating from real-world scenarios, while a pro-
portion that is too low may lead the model to overly focus on learning from
normal nodes.

(a) Amazon (b) Reddit (c) YelpChi (d) TFinance

Fig. 3: The AUC (blue) and AP (green) with respect to pG.

5.6 GAN Adversarial Analysis

In practice, we observe that as training progresses, the generator’s performance
lags behind the discriminator, leading to a decline in the quality of generated
samples. This issue has been addressed in prior research [20, 29], where a com-
mon solution is to train the discriminator multiple times within a single epoch.
However, while conventional GANs focus on optimizing the generator, our goal is
to enhance the discriminator. To this end, we adopt a training strategy (Strat-
egy 1) that involves training the generator multiple times within a single epoch.
Fig. 4 presents the results of training the generator and discriminator at different
ratios on the Amazon dataset, specifically 1:3, 1:1, 2:1, 3:1, 4:1, and 5:1. Fig. 4
(c) presents the variation in the anomaly probability of discriminator outputs
for the generated samples at each epoch, under different training ratios. It is
evident that when the training ratio is set to 1:3 or 1:1, the anomaly probabil-
ity rapidly approaches 1.0, indicating that the generator is unable to keep pace
with the discriminator, resulting in the generation of low-quality samples. This
observation is also reflected in Fig. 4 (a) and (b), where the AUC and AP met-
rics quickly reach their peaks and then begin to decline. In contrast, when the
generator undergoes multiple training iterations, overall performance improves,
with the best results observed at a 3:1 training ratio. Furthermore, as illustrated
in Fig. 4 (c), the average predicted probability of abnormality for the generated
samples by the discriminator hovers around 0.7, with the minimum reaching
0.5. This observation aligns with the objective of the generator in HAGAN to
produce samples that are difficult for the discriminator to distinguish from real
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anomalies, thereby demonstrating the reliability of the samples generated by the
generator.

(a) AUC (b) AP (c) p (d) Yelp

Fig. 4: The results of training the generator and discriminator at ratios 1:3 (blue),
1:1 (red), 2:1 (pink), 3:1 (green), 4:1(purple) and 5:1(orange).

Unfortunately, when we applied Strategy 1 to the YelpChi dataset, the re-
sults were suboptimal. We hypothesize that this result can be attributed to the
discriminator initially making random predictions that prevented it from pro-
viding meaningful feedback to the generator. To address this issue, we propose
an alternative training strategy (Strategy 2), in which the discriminator is
first trained independently, without training the generator, and the generator is
subsequently trained multiple times within each epoch. Fig. 4 (d) presents the
anomaly probability of generated samples on the YelpChi dataset under differ-
ent training strategies. As presented, Strategy 2 effectively mitigates the rapid
degradation in the quality of generated samples. The performance of HAGAN
across four datasets under different training strategies is presented in Table 4.

Metric Strategy Dataset
Amazon Reddit YelpChi TFinance

AUC 1 0.9038 0.6123 0.5316 0.9174
2 0.8533 0.5941 0.5940 0.9188

AP 1 0.8238 0.0994 0.2728 0.7784
2 0.7168 0.0931 0.3638 0.7839

Table 4: The AUC and AP of Strategies.

5.7 Anchor Nodes Analysis

In this analysis, we focus on the performance with respect to k. Table 5 presents
the reconstruction loss under different numbers of anchor points. It can be ob-
served that the performance is relatively poor when the number of anchors k is
small. This aligns with our hypothesis, as a limited number of anchors increases
the likelihood that many nodes will have identical or similar distances to the



HAGAN: Homophily-Aware GAN for GAD 15

anchors, even if these nodes are structurally dissimilar in the graph. Such cases
hinder the ability to effectively capture structural characteristics.

Intuitively, increasing the number of anchors should provide richer and more
fine-grained structural representations. However, the experimental results show
that the performance does not continuously improve with more anchors. Instead,
it begins to decline after a certain point. We speculate that as k increases,
newly added anchors may be located close to existing ones or concentrated in
densely connected regions, leading to redundant structural information. This
redundancy can introduce noise and interfere with the model’s ability to make
accurate structural distinctions.

k Amazon Reddit YelpChi TFinance
8 0.2358 0.2507 0.2221 0.2346
16 0.2344 0.2508 0.2201 0.2415
32 0.2322 0.2505 0.2156 0.2252
64 0.2312 0.2504 0.2147 0.2466
96 0.2308 0.2508 0.2134 0.2465
128 0.2329 0.2509 0.2117 0.2422

Table 5: Reconstruction loss of k.

5.8 Complexity Analysis

Anchor-based Encoding Complexity The dominant computational cost
arises from performing BFS traversals to compute shortest path lengths. Specifi-
cally, for each of the k selected anchor nodes, a single-source shortest path is com-
puted. The total complexity of the BFS step across all anchors is O(k(n+m)),
where n is the number of nodes and m is the number of edges.

GAE Complexity The computational complexity of the GAE model is mainly
determined by the Transformer encoder and the inner product decoder. For a
graph with n nodes and embedding dimension d, the encoder requires O(Ln2d),
and the decoder plus loss computation costs O(n2d). Thus, the total complexity
per subgraph is O(n2d).

GAN Complexity Generator consists of multiple fully connected layers, where
the computation primarily involves feature transformation with a time complex-
ity of O(N), where N is the number of generated nodes. The discriminator em-
ploys a GNN, in which each layer models pairwise feature relationships and com-
putes attention weights. The overall time complexity is approximately O(N2d),
where d is the feature dimension. As the graph size increases, the discriminator
tends to become the computational bottleneck.
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6 Conclusion

This paper presents a semi-supervised approach for graph anomaly detection
and introduces HAGAN, a novel framework that generates high-quality anomaly
nodes using a GAN. By incorporating a pre-trained Transformer-based GAE,
HAGAN ensures seamless integration of the generated nodes while maintaining
structural integrity. The framework also uses a GNN discriminator with edge
homophily identification to reduce noise. Experimental results on benchmark
datasets show that HAGAN achieves state-of-the-art performance. Future work
will explore more effective anchor point selection strategies and investigate the
application of generative approaches to dynamic or heterogeneous graphs.
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