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Abstract. Artificial Neural Networks have demonstrated the versatil-
ity to adapt to different problems while at the same time achieving
high predictive performance. A characteristic of these models is their
high-computation demands, which translates into high energy consump-
tion. Spiking Neural Networks (SNN) have been proposed as an energy-
efficient alternative with promising results in several tasks. Despite be-
ing a promising alternative that could motivate massive deployment,
research on the interpretation of these models is almost non-existent. To
address this problem, we propose SVEBI, a method that extracts in-
sights on the representation encoded by SNNs, via the analysis of sparse
relevant internal units that drive the decision-making process. In ad-
dition, we show the use of the relevant units as a means to justify, i.e.
explain, the predictions made by an SNN for a given input. In this expla-
nation/justification task, our experiments show SVEBI is comparable, if
not superior, to existing methods.
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1 Introduction

Artificial Neural Networks (ANNs) have demonstrated broad applicability, fre-
quently matching or even surpassing human performance. ANNs show their
strength in several topics including, but not limited to, speech recognition [3,
46], image/video recognition [5, 17, 31], natural language processing [21, 40] or
in domains like finance [13] or healthcare [33]. However, the computational cost
associated with ANNs is undeniably substantial, not only during training but
also during inference and deployment. As task complexity increases, so does the
complexity of the models, leading to higher computational demands in both
training and real-world usage [38]. A high computational cost implies a high en-
ergy consumption which leads to limitations regarding the applicability of ANNs.
This indicates that utilizing a more energy-efficient neural network design could
become necessary for continuous improvement in the field of AI.

In the biological neural networks found inside the brain, information is prop-
agated between neurons through spikes (i.e., discrete binary events). It is known
that these spikes are sparse in time, which means that individual spikes encode a
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Fig. 1: Overview of the proposed methodology for the interpretation and explana-
tion of SNNs. This includes identifying class-relevant filters, followed by the gen-
eration of average visualizations for interpretability and explanatory heatmaps.

high amount of information [2, 37]. The fact that just a few spikes are necessary
to convey information throughout the brain contributes to the observation that
the brain uses a low amount of energy in proportion to the tasks it can perform
when compared to ANNs [2, 39, 45]. Spiking Neural Networks (SNNs) are neural
networks whose design is inspired from the spiking nature of biological neural
networks. SNNs use spikes to propagate information through the network over
time. It has been demonstrated that SNNs, when implemented through neuro-
morphic hardware, can achieve significantly higher energy efficiency compared to
traditional ANNs. Intel’s Loihi neuromorphic chip has demonstrated energy con-
sumption up to 16 times lower than AI models running on conventional hardware
[9, 28]. Likewise, IBM’s TrueNorth processor achieves a remarkable efficiency
gain, using up to 100,000 times less energy per synaptic operation compared
to traditional CPU/GPU-based neural networks [1, 6]. Moreover, SNNs have
proven capable of achieving competitive results in various tasks, such as image
classification [15, 41, 48].

As SNNs are proposed as a possible replacement for traditional ANNs, there
is demand for the interpretability of SNNs, i.e. understanding its inner-workings.
Understanding what an SNN learns comes down to discovering what is exactly
encoded in the SNN after training. Due to the opaque characteristics of neural
networks this is not an obvious task. Despite the fact that there exist numer-
ous works dedicated to investigating the encoded features in non-spiking ANNs,
a similar analysis in the context of SNNs remains limited. In this study, we
endeavor to find a means for determining what a trained SNN has actually
learned, i.e., the interpretation of SNNs. Towards this goal, we leverage existing
well-studied interpretation methods (namely [25]) for non-spiking ANNs, while
taking into account the fundamental differences between SNNs and traditional
ANNs. Furthermore, comparable to the traditional ANNs, the need for justifi-
cations (explanations) towards the decisions made by a model also applies for
SNNs. This introduces our secondary goal where we also aim for the explanation
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of SNNs. Targeting these goals, this work proposes a new approach, SVEBI, for
the interpretation as well as explanation of SNNs trained on image classification
problems (see Fig. 1). In summary, we develop a method that provides insights
on the representation encoded by an SNN via the analysis of filters that are crit-
ical for the performance of the classification problem addressed by the model.
This method results in our two main contributions, which can be outlined as
follows: (i) Considering the identified filters, we achieve interpretation of SNNs
through visualizations that reveal the features that were learned by the model
(ii) In addition, these identified filters are used as a basis for the generation of
visual explanations in the form of heatmaps. Apart from three notable works
[4, 16, 24], there has been limited direct research focused on the interpretability
and explainability of SNNs.

This paper is organized as follows: Section 2 summarizes existing literature
related to our work. Section 3 explains some fundamental concepts related to the
contributions of this work. Then in Section 4, we present the proposed method
and describe its operation. In Section 5 we validate the proposed method and
discuss the corresponding results. Section 6 outlines its limitations. We provide
closing remarks in Section 7.

2 Related Work

Interpretation of Neural Networks In the field of computer vision, there
exist multiple interpretation methods that concern themselves with the extrac-
tion of features and concepts learned by a traditional ANN. These methods can
be split up into two categories, interpretable-by-design methods and post-hoc
methods. The interpretable-by-design methods (e.g., [8, 22]) are ANN models
that are designed and structured in such a way that after training it is automat-
ically possible to analyze and understand, to a certain degree, what they have
actually learned. The post-hoc methods (e.g., [25, 42]) are generally methods
that are applied on already trained "non-interpretable" ANN models, such that
this will yield some insights regarding internal encodings of these models.

Since SNNs use spikes to propagate information through the network over
time, instead of instantaneous continuous values as in traditional ANN de-
signs, these existing interpretation methods are not directly applicable to SNNs.
This motivates our objective, wherein we focus on developing an interpretation
method that considers both the spiking nature and temporal dimension of SNNs.
On this context, to the best of our knowledge, there is no method that provides
this capability for SNNs.

Explanation Techniques for Neural Networks. In general, explanation
of neural networks refers to justifying the outputs produced by the model. For
image classification tasks, this often comes down to finding and investigating
what information in the input was of greater importance for the model to gener-
ate a prediction for a specific input sample [27, 29, 32, 47]. Regarding this task,
we focus on explanation through visualizations in the format of heatmaps. There
exist model-agnostic methods like LIME [29] and RISE [27] that can be directly
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applied to SNNs as they do not depend on the internal workings or structure of
the model. However, methods like this require perturbing the input data where
each perturbation needs to be evaluated by the model. This approach can be
quite computationally expensive, which is not scalable. Moreover, their applica-
tion would come at the cost of the low-energy consumption benefits of SNNs.
While there are several heatmap methods available for the explanation of ANNs
that are more computationally efficient, such as CAM [47] or Grad-CAM [32], di-
rectly applying these to SNNs is not a straightforward task due to the difference
between the internal workings of traditional ANNs and SNNs. These methods do
not take the temporal dynamics of SNNs into account. On top of this, methods
like Grad-CAM require computing the gradient, which is not obvious for SNNs
considering their non-differentiable nature and the use of surrogate gradients.

However, there exists a work that adapts gradient-based methods using a
surrogate gradient [4]. These methods are presented in two distinct forms: one
tailored for event-driven data (SNN-Grad3D and SNN-IG3D) and the other de-
signed for 2D image classification data (SNN-Grad2D and SNN-IG2D). Following
our focus on 2D image classification problems, we only consider the 2D methods
in this work. SNN-Grad2D is inspired by the original saliency map from [34].
In SNN-Grad, the output attribution map represents the output class scores
with respect to the input. This results in an attribution map for each timestep
of the SNN. To convert this to the 2D matrix, the maps are summed over the
time dimension. SNN-IG2D is based on the integrated gradients approach from
[36]. This involves generating a monotonous path that gradually transforms a
baseline image into the original input image in a specific number of steps. They
start with a fully black image as baseline. Following this, they compute the SNN
gradients with respect to the input (using surrogate gradient) for each individual
step in the path, which are then integrated along the path. Here, to produce a
single attribution map, the maps computed at different time-stamps are added.

Different from the above, Spike Activation Map (SAM) [16] produces heatmap
visualizations per layer for each timestep. In contrast to SNN-Grad and SNN-IG,
it does not need any gradients to produce its visualizations, which is advanta-
geous because of the non-differentiable characteristics of the LIF neurons that
compose SNNs. SAM is based on the temporal dynamics of SNNs to assign neu-
ronal contribution scores in forward propagation using the history of previous
spikes. It does not use any class labels, which means that the generated expla-
nation visualization does not necessarily highlight regions of the image specific
to a predicted class. Instead, the generated heatmap highlights the regions that
the network focused on to generate a prediction given any image. This means
that the heatmaps do not necessarily guarantee that a region of interest relevant
to the predicted class is highlighted. Temporal Spike Attribution (TSA) [24] ex-
tends SAM by combining neuron spike timings, model weights, and output layer
information during a forward pass to compute a final score. In contrast to SAM,
TSA indirectly uses the prediction by including the membrane potentials of the
output layer which define the final prediction of an SNN. However, TSA was not
directly developed to be applied on convolutional neural networks, as where we
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specifically focus on 2D image classification tasks. Like SAM, but in contrast to
SNN-Grad2D and SNN-IG2D, we present a method that is capable of producing
explanation heatmaps without the need for computing gradients. However, our
method uses the predictions of the model to steer the generation of the expla-
nations. In contrast to SAM but similar to SNN-Grad2D and SNN-IG2D, our
method produces a single heatmap for all timesteps together based on the class
predicted by the model, which ensures that the highlighted region is relevant to
the predicted class.

3 Background

In this section, we first introduce key concepts essential for understanding the
contributions made by this work (Sec. 3.1). This is followed by background in-
formation on the post-hoc interpretation method proposed in [25] since our work
can be seen as an extension to the SNN domain of that method (Sec. 3.2).

3.1 Spiking Neural Networks

Artificial Neural Networks (ANNs) were originally inspired by the biological neu-
ral networks present in the brain [20, 30]. However, significant differences exist
between traditional ANNs and biological neural networks in terms of structure,
neural computations, learning rules, and the way information propagates be-
tween neurons [37]. These differences result in traditional ANNs consuming sig-
nificantly more energy, which motivates the development of designs that align
more closely with the biological counterpart. One of the most prominent ex-
amples of this are Spiking Neural Networks (SNNs), which use spikes (discrete
events) to propagate information over time, emulating the spiking nature of bio-
logical neurons. A spike can be represented as a 1, and the absence of a spike as
a 0. In SNNs, time is defined by timesteps T over which a single input is fed to
the network. In this work, feeding a single input to an SNN means recurrently
presenting the input to the network at each timestep. In our case, the input can
be regarded as an image as we focus on image classification. These concepts are
implemented through a spiking neuron model. Various spiking neuron models
exist, but in this work the Leaky Integrate-and-Fire (LIF) model is used [18].
Leaky Integrate-and-Fire Neuron: Similar to neurons in non-spiking ANNs,
LIF neurons operate by summing weighted inputs. However, instead of pushing
it through an activation function, the weighted sum is added to an internal state
called the membrane potential U [t]. When this potential reaches a threshold θ, an
output spike is generated. This behaviour can be described by the Heaviside step
function, where the input is the membrane potential minus the threshold value
(U [t]− θ). Considering that Sout[t] denotes the output spike value at timestep t,
this function can be reformulated regarding the spiking neuron as:

Sout[t] =

{
1, if U [t] > θ

0, otherwise
(1)
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After spiking, the membrane potential experiences a reset which can be a soft
reset (subtraction by some defined value) or a hard reset (set to zero). In our case,
we use a soft reset. Inherent to the LIF neuron model, the membrane potential
leaks over time as well. The behaviour of the membrane potential with regard
to the previous timestep can be characterized by the following discrete formula:

U [t] = βU [t− 1] +WX[t]− Sout[t− 1]θ (2)

where β determines the leakage and WX[t] denotes the weighted input. See
Fig. 2 for a schematic representation of the LIF neuron.

Fig. 2: Illustration of a LIF neuron. Input spikes are multiplied by their respective
synaptic weights before being added to the membrane potential. The membrane
potential progresses over time, where it produces a single output spike when
reaching a certain threshold value. After spiking, the membrane potential expe-
riences a reset [18]

Network structure: To form a network, multiple spiking neurons are grouped
together in a similar way as with traditional ANNs. The spiking neurons are
grouped together to form layers. Then, multiple layers can be stacked to pro-
duce a deep SNN.

Spike Encoding: When data is fed to an SNN, it needs to be converted
into a spike representation such that the information can propagate through
the network. There are several ways to do this [11], here we choose to not use
an explicit input encoding technique. On the contrary, we feed our input data
(continuous values) directly to the network and in this way let the network come
up with its own encoding strategy in the input layer. Regarding the output
of an SNN, it is necessary to convert the output of the last layer such that it
represents the format of the expected output. We follow the common approach
of having the number of output neurons to be equal to the number of output
classes and then the neuron with the highest membrane potential after the last
timestep represents the final output of the SNN [15, 19, 41]. Here, the membrane
potentials of the last layer do not experience a reset after exceeding θ such that
they do not emit any spikes. The loss of a prediction with regard to a target
can be computed through the same loss functions used for training non-spiking
ANNs. In our case, we used the cross-entropy loss.
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Surrogate Gradient: At last, training SNNs can be challenging due to the
non-differentiable nature of the Heaviside step function. In this work, we use the
surrogate gradient method [23] to handle this. This means using the Heaviside
step function in the forward pass, but replacing it by a differentiable function
for computing the gradient in the backward pass. Similarly to [15], we use a
sigmoidal approximation of the derivative of the step function.

3.2 ANN Interpretation and Explanation Method

When designing an interpretation method or an explanation method, it is im-
portant to base the method on attributes derived directly from the model. As
explained in Sec. 3.1, the non-differentiable nature of the LIF-neuron prevents
us from computing the gradients of the model. While computing gradients using
a surrogate gradient function during training has shown to be effective, these
are not the actual gradients of the model. This motivates our decision to adopt
an activation-based approach, as the activations can be easily obtained from
an SNN. In addition to this, it has been shown that SNNs following architec-
tures and topologies inspired from non-spiking ANNs can achieve reasonable
results [15, 37, 41, 44, 48]. Consequently, we opt to develop a post-hoc interpre-
tation method, as it eliminates the need to design a new SNN architecture.

The Visual Explanation By Interpretation (VEBI) method, proposed in [25],
is capable of both achieving a level of interpretation as well as explanation of
ANNs. Both the interpretation and explanation are based on a post-hoc approach
to identify a set of internal relevant filters per class for a given pretrained model.
This method consists out of two main steps. First, the extraction of the input-
wise internal responses from the network F for all N images, where N denotes
the number of images used to train the model F . The second step includes
using these image-wise responses to obtain a matrix W ∈ Rm×C that indicates
what layer-filter pairs are relevant to what class by solving a µ-lasso problem
(Equation 3). Here, m denotes the total number of considered filters (or features
in general) and C the total number of classes.

W ∗ = argminW ∥XTW − LT ∥2F (3)

Here, X is a matrix containing the input-wise responses for all N images
where X ∈ Rm×N . L is a matrix containing the predicted labels (in one-hot
encoding format) for all N inputs where L ∈ {0, 1}C×N . In order to enforce
that only a subset of the most relevant features are selected by W , a sparsity
constraint µ is added in the following manner ∥wj∥1 ≤ µ,∀j ∈ {1, 2, ..., C}. This
makes it a µ-lasso problem.

Model Interpretation: This is achieved by producing via visualizations
that aim to depict the visual patterns encoded by the extracted relevant features.
In [25], these visualizations are produced via average images computed from
the top-k 100 images for which the identified relevant filters have the highest
responses. Prior to the average operation, these images are cropped to the size
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of the receptive field of the relevant filter centered at the location that has the
maximum activation in the filter response.

Model Explanation: This is achieved by accompanying the class label pre-
dicted by the model with heatmap visualizations derived from the set of relevant
filters supporting the prediction. Since in [25] the generation of these explana-
tions involves computing the gradient through backpropagation — a process not
directly feasible for SNNs, as outlined in Sec. 3.1—we have not further extended
the explanation method presented in [25]. Instead, we have come up with our
own method for generating visual explanations (Sec. 4.2).

4 Proposed Method

We propose SVEBI, a pipeline capable of both achieving interpretability and ex-
plainability of SNNs. It is composed out of two core elements. First, a method for
the identification and inspection of features that are of importance to the classes
of interest. This is achieved by finding the relationship between internal activa-
tions and predicted class labels (Sec. 4.1). Second, an approach for estimating
layer-level responses which can serve as means for explanation by aggregating
the average activation maps of filters relevant to the predicted class (Sec. 4.2).
SVEBI can be considered an SNN counterpart of VEBI.

4.1 Identifying Class-Relevant Filters

We devise a method for identifying class-relevant filters by extending the method
from VEBI [25] (see Sec. 3.2). Our method is an adaptation that allows for
producing the W matrix that indicates the relevant layer-filter pairs per class
by taking into account the disparities between non-spiking ANNs and SNNs.

The main difference lies in the first step, the extraction of input-wise re-
sponses xi for every ith training image which involves the collection of the in-
ternal responses of each filter in the architecture. For non-spiking ANNs, this
means collecting a single activation map containing continuous values for each
filter. However, an SNN uses spikes over time to propagate information through
the network. This means that the filter responses of a single filter are activation
maps consisting of binary events. Furthermore, passing a single image through
the network is done over a number of timesteps T . Thus, when passing a single
image through an SNN G, each filter in G produces an activation map for each
timestep. We approach this difference in the following manner: When passing
the ith image through G, we collect T activation maps for each filter. We de-
note an activation map as Sf

it per filter f , where t ∈ {1, 2, 3, ..., T}. We squeeze
the resulting T activation maps by defining a single average activation map S̄i

f

for filter f . As the activation maps can be seen as matrices, we obtain this by
computing the element-wise mean as follows:

S̄i
f
=

1

T

T∑
t=1

Sf
it (4)
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This is done for each filter, followed by the subsequent steps described in
VEBI [25]. Consequently, this average activation map forms the SNN equivalent
for the single activation map that is collected per filter for non-spiking ANNs. As
before, the above is repeated for all N training images which is followed by using
the N input-wise responses to define the matrix X ∈ Rm×N and then estimate
W ∈ Rm×C by solving the µ-lasso problem (see Equation 3). As described in
Sec. 3.2, sparsity is enforced via the constraint µ.

4.2 Generating Explanatory Heatmaps

We generate visual explanations for SNNs in the form of heatmap visualizations
using the relevant filters identified by our method (Sec. 4.1) as a basis. The
heatmap visualization is based on the spiking behaviour within the identified
relevant filters of a layer with respect to a single input image belonging to a
specific class.

This begins by passing an image i through the SNN G and collecting the
output activation map Sf

it of the specific relevant filter f for all t ∈ {1, 2, 3, ..., T}.
Analogous to the previous sections, this is followed by producing a single average
activation map S̄i

f (via Equation 4). This is then repeated for all class-relevant
filters of a single layer for the predicted class, after which we add all resulting
average activation maps together. We can produce the heatmap explanation by
upscaling the summed activation map to the size of the input image i, applying
normalization, and then superimposing on the input image i.

4.3 Computational Considerations

The most significant computational cost introduced by our method arises during
the identification of relevant filters, as this step requires processing the entire
training set with the model. The generation of explanation heatmaps at inference
time results in only minimal overhead, comparable to a standard forward pass
through the model, as it involves collecting activation maps and executing a set
of lightweight computations.

5 Evaluation

We evaluate our methods by conducting several experiments. First, we investi-
gate the impact of the identified relevant filters on the performance of the model.
This experiment serves as a fundamental sanity check that determines whether
the identified filters are indeed critical for the decision-making process (Sec. 5.2).
Secondly, we assess the layer-wise distribution of the identified relevant filters of
the model (Sec. 5.3). This is followed by a qualitative analysis of the identified rel-
evant filters by generating visual feedback. The objective of this experiment is to
understand what the model has learned, thereby achieving model interpretation
(Sec. 5.4). Then, we present our explanatory heatmaps, which we qualitatively
evaluate by comparing to the maps produced by SNN-Grad2D and SNN-IG2D
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(Sec. 5.5) [4]. At last, we perform a quantitative evaluation of our explanation
method by using the insertion/deletion evaluation protocol [27] where we again
compare to SNN-Grad2D and SNN-IG2D (Sec. 5.6).

5.1 Experimental Setup

We evaluate our methods using a shallow SNN consisting of 2 convolutional layers
and 2 fully connected layers trained on MNIST [10]. From here on, we refer to
this as the shallow SNN. In addition, we also consider a spiking equivalent of the
popular CNN architecture VGG19 [35], which we refer to as SVGG19. For this,
we consider the classification task on the AwA2 dataset [43], where the goal is to
predict which animal is present in each image. AwA2 consists of 50 animal classes
which comes down to 37.322 images (resized to 224x224). We used an 80/20 split
for training and testing. For the shallow SNN, we trained for 5 epochs using 10
timesteps, a batch size of 100 and a learning rate of 0.3, resulting in a training
accuracy of 98.96% and a best test accuracy of 98.79%. As an initial step for
the SVGG19, we used the pre-trained weights provided by PyTorch [26], derived
from training a non-spiking VGG19 on the ImageNet dataset [17]. Since SVGG19
shares an identical topology (in terms of layer and neuron structure) with the
non-spiking VGG19, these pre-trained weights can be seamlessly transferred to
SVGG19. This was followed by a training phase consisting of 50 epochs without
freezing any layers, using 25 timesteps, a batch size of 8 and a learning rate of
0.003, achieving a training accuracy of 99.89% and a test accuracy of 89.83%. For
both models, a spiking threshold (θ = 1) is used, and the input is fed directly into
the network, allowing it to autonomously develop an encoding strategy within
the input layer (see Sec. 3.1). Our implementation is publicly available in our
Github repository1.

5.2 Impact of Identified Relevant Filters

To measure the impact of the identified filters on the model performance, we an-
alyze the magnitude of the contributions of the identified filters to the model’s
classification accuracy. We do this by inspecting the classification results of the
models when ablating the filters and comparing this to the full model perfor-
mance per class. We ablate filters from a specific class and compute performance
for that class, then average the results over all classes. Ablating filters is done
by setting their output to zero. To verify whether the impact of a relevant filter
is greater than just any filter, we compare to the classification results of the
model when ablating randomly selected filters per class. The number of ran-
domly selected filters is equal to the number of identified relevant filters. For
this experiment, we do not narrow down to a specific sparsity constraint (µ),
but instead identify the relevant filters for all µ ∈ {1, 2, ..., 50} and use these
results for our analysis. We then repeat the above for all the values considered
for the µ sparsity parameter. The average classification results over all classes of
1 https://github.com/JasperDeLaet/SVEBI
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Fig. 3: (a,b) Classification results for shallow SNN and SVGG19 over different µ
values, respectively. This includes the accuracy when all filters in the model are
considered (green), when the output of relevant filters is ablated (blue) and when
the output of random filters is ablated (orange). (c) Layer-wise distribution of
the identified relevant filters over the 16 convolutional layers of the SVGG19.

this experiment can be found in Figures 3 (a,b). We observe for both models that
for all µ, the accuracy when ablating relevant filters is always substantially lower
than when ablating randomly selected filters. This suggests that our method is
capable of identifying filters that have a greater impact on the decision-making
process of the model than just any filter. The sparsity constraint µ can be con-
sidered a tunable hyperparameter, for which we use µ = 2 for the shallow SNN
and µ = 20 for the SVGG19 in all subsequent experiments.

5.3 Layer-wise Distribution of Identified Relevant Filters

We assess the distribution of the identified relevant filters over the layers of the
model. For the shallow SNN, relevant filters are found in the first convolutional
layer for classes 0, 1, 4 and 6 and are present in the second convolutional layer for
all classes. Figure 3 (c) shows that the identified relevant filters for the SVGG19
exhibit a skewed distribution, with a high concentration in the later layers of
the model, while there are fewer relevant filters in the earlier and middle layers.
This is in line with observations in the literature that state that earlier layers
learn more generic features (edges, textures, and basic shapes), and that later
layers focus on more complex class-specific features.

5.4 Qualitative Interpretation Feedback

Following the previous experiment, we perform a qualitative analysis in which
we aim to determine what features the identified relevant filters have learned. In
this way, we develop an understanding of what the model has actually learned,
i.e. interpretation of the model. This qualitative analysis is performed by gener-
ating interpretation feedback in the form of average visualizations for multiple
relevant filters which are resized to the input image size (Sec. 3.2). This exper-
iment is conducted only for the SVGG19 model on the AwA2 dataset, as the
low resolution of MNIST results in overly coarse visualizations that do not yield
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Fig. 4: Average visualizations (resized to input image size) for multiple identified
relevant filters of the SVGG19 over the AwA2 dataset.

meaningful insights into the learned filter representations. Representative exam-
ples of the resulting visualizations for the identified relevant filters are shown in
Figure 4. We observe that the average visualizations generally depict features
that are specific to the classes for which the identified filters are relevant. For ex-
ample, the average visualizations for animals with distinctive fur patterns clearly
show some representation of these patterns (tiger, zebra, leopard, and dalma-
tian). For the ox, a head with horns can be discerned, while for the chimpanzee,
a silhouette emerges. In addition to the animal-specific features, we notice that
some average visualizations show characteristics of the environment in which
the corresponding animal is often encountered (e.g., the polar bear or dolphin).
These results generally confirm the suggestion made in Section 5.3, as the average
visualizations show quite complex features.

5.5 Qualitative Assessment of Explanation Feedback

We examine the visual quality of our explanation heatmaps and compare them
to the output of SNN-Grad2D and SNN-IG2D. Since SVEBI is capable of pro-
ducing explanations for any identified relevant filter regardless of which layer the
filter belongs to, we can explain the internal activations of the model for multiple
layers. This provides deeper insights into how the model arrives at a specific pre-
diction, leading to enhanced explainability. However, since not all layers contain
relevant filters, we present SVEBI explanations for only a subset of the layers in
Fig. 5. The explanations generated for the MNIST samples by SVEBI tend to
highlight regions corresponding to parts of the digits. For example, the results for
class 6 clearly show higher focus towards the top curve of the number 6. For the
SVGG19, the explanations produced by SVEBI coming from later layers clearly
show a region of interest highlighted in a manner that effectively differentiates it
from the surrounding regions. Evidently, the explanations from the earlier layers
show a focus on larger and less specific regions. For example, the explanations
for the dolphin class sample indicate a high importance attributed to the water
in the background in the first and second layers of the model. However, when
considering the explanations from the final layer, it becomes evident that the
model focuses on parts of the dolphin itself. Similarly for the leopard, we observe
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that in layer 12 the model has an interest for patches of the fur pattern of the
leopard, where in layer 16 the focus lies on the full head of the leopard.

Compared to the gradient-based explanations produced by SNN-Grad2D
and SNN-IG2D, the SVEBI output is more widespread and smooth, while the
gradient-based explanations are notably sparse. This trend is most clearly ob-
served in the explanations generated for SVGG19. This aligns with existing
literature, where it is commonly found that gradient-based heatmaps tend to be
sparse [34, 36].

5.6 Quantitative Evaluation of Explanation Techniques

There are different approaches for quantitatively evaluating heatmap explana-
tions, [7, 12, 14, 27]. However, we use the two automatic evaluation metrics (in-
sertion/deletion) proposed by [27]. These evaluation metrics can be applied to
a single heatmap, producing quantitative values that reflect the quality of the
heatmap—specifically, whether it effectively highlights regions with high contri-
bution to the model’s prediction. In short, insertion operates by starting from
a baseline image and gradually inserting pixels from the input sample based on
decreasing importance determined by the heatmap. For every insertion, the per-
formance of the model is measured. Essentially, after this procedure, the AUC
of the obtained model predictions scores forms the quality score. Deletion works
in a similar fashion but starts from the full input image and gradually deletes
pixels from this image based on pixel importance determined by the heatmap.
Again, the AUC of the model prediction scores forms the quality score. For in-
sertion, a higher AUC score indicates better performance, as it means that the
most important pixels are inserted first. Conversely, for deletion, a lower AUC
score is preferred, as it suggests that the most important pixels are deleted first.
In our case, the insertion baseline for AwA2 was a blurred version of the original
input sample, whereas for MNIST, we used a black image (all-zero pixels). For
the deletion protocol in both datasets, pixels were ‘deleted’ by replacing them
with black pixels (i.e., setting the pixel values to zero).

To quantitatively evaluate our method and compare it to the existing SNN-
Grad2D and SNN-IG2D approaches, we compute the average insertion and dele-
tion scores over 9,920 test samples from the MNIST dataset and 7,056 test
samples from the AwA2 dataset. Fig. 6 shows the performances of the mod-
els over the complete insertion and deletion procedures. Table 1 presents the
corresponding AUC scores. Regarding the shallow SNN on MNIST, we observe
that SVEBI outperforms the gradient-based methods in the insertion metric.
For deletion, SVEBI performs comparably to SNN-Grad2D but is outperformed
by SNN-IG2D. In the case of SVGG19 on AwA2, SVEBI significantly surpasses
the gradient-based methods in terms of insertion scores. For deletion, SVEBI
shows comparable performance, with SNN-IG2D yielding the best result. For
the SVGG19-AwA2 explanations, the poor insertion results, but rather good
deletion results for SNN-Grad2D and SNN-IG2D compared to SVEBI could
be attributed to the sparsity of the gradient-based explanations. During the
insertion procedure, this sparsity causes the model to be first presented with
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—————————————–

Fig. 5: Explanation heatmaps examples for a shallow SNN trained on MNIST
(top) and SVGG19 trained on AwA2 (bottom). SVEBI Explanations for MNIST
focus on layer 2 while those for AwA2 come from those where the relevant fea-
tures/filters with highest activation are located.
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Fig. 6: Insertion/deletion scores for models trained on the MNIST (a,b) and
AwA2 (c,d) datasets.

Table 1: Insertion and Deletion AUC scores over MNIST and AwA2 datasets.

Method MNIST AwA2
Insertion Deletion Insertion Deletion

SNN-Grad2D 0.8199 0.3285 0.2752 0.2088
SNN-IG2D 0.7814 0.1678 0.3590 0.1281
SVEBI (ours) 0.8459 0.3516 0.7582 0.1969

important pixels that are more spread out, which lowers the model’s ability to
capture spatial information. This results in the model not being able to perform
as well as opposed to when it is introduced with more smooth and continuous
patches of pixels, which is the case for the SVEBI explanations. However, dur-
ing the deletion procedure, the smoother nature of our explanation heatmaps
cause the deletion of pixels to more likely focus on one region before moving
to another location within the input image. Here, the sparsity of the explana-
tions of the gradient-based methods enables a better exploration of the spatial
extent of the image which results in attenuating more distinct regions. The dif-
ference between the results of MNIST and AwA2 could be attributed to the fact
that for AwA2 we use a much deeper model (SVGG19) compared the shallow
SNN used for MNIST. As the gradient-based methods use a surrogate gradient,
the increased model depth could negatively affect the output explanations, as
a deeper model requires additional operations when computing the surrogate
gradients. This may increase the cumulative error arising from the use of surro-
gate gradients, which approximate the model’s actual gradients. A more rigorous
analysis is needed to validate this hypothesis, suggesting possible future research
on the comparison of gradient-based and activation-based explanation methods
in SNNs.

6 Limitations

For both the identification of relevant filters and the generation of explanatory
heatmaps we obtain a single activation map per filter for each sample pushed
through the network by performing an averaging operation over the time dimen-
sion. Here, we assume equal importance for each timestep which could cause
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loss of temporal information. Possible future work could include combining this
averaging operation with some temporal weighting approach. In addition, we
focus solely on 2D image classification, which suggests possible future directions
for adapting SVEBI to classification/regression of neuromorphic datasets.

7 Conclusion

We proposed SVEBI, a method for the analysis of the representations learned
by SNNs (model interpretability) and the explainability of the outputs they pro-
duce. Our results suggest that on the interpretation side, the proposed method
is capable of accurately identifying the features learned by the SNN which are im-
portant for its decision-making process. On the explainability side, quantitatively-
speaking, the explanations produced by SVEBI seem to be superior to those of
existing methods. On the qualitative side, the visualizations produced by our
method are denser and smooth compared to the sparse heatmaps produced by
previous efforts. These results show the potential of SVEBI towards assisting the
study of the internal workings of existing and future SNN models. This opens
the door for deeper SNN studies regarding Bias Analysis, Fairness, and other
aspects that are critical for the deployment of AI technology.

Acknowledgments. This work is supported by the UAntwerp BOF DOCPRO4-NZ
Project (id 41612) "Multimodal Relational Interpretation for Deep Models".

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,
Imam, N., Nakamura, Y., Datta, P., Nam, G.J., Taba, B., Beakes, M., Brezzo,
B., Kuang, J.B., Manohar, R., Risk, W.P., Jackson, B., Modha, D.S.: Truenorth:
Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic
chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 34(10), 1537–1557 (2015)

2. Attwell, D., Laughlin, S.B.: An energy budget for signaling in the grey matter of
the brain. Journal of Cerebral Blood Flow & Metabolism 21(10), 1133–1145 (2001)

3. Bhushan, C., Kamble: Speech recognition using artificial neural network – a re-
view. International Journal of Computing, Communication and Instrumentation
Engineering 3 (2016)

4. Bitar, A., Rosales, R., Paulitsch, M.: Gradient-based feature-attribution explain-
ability methods for spiking neural networks. Frontiers in Neuroscience 17 (2023)

5. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: CVPR (2017)

6. Cassidy, A.S., Alvarez-Icaza, R., Akopyan, F., Sawada, J., Arthur, J.V., Merolla,
P.A., Datta, P., Tallada, M.G., Taba, B., Andreopoulos, A., Amir, A., Esser, S.K.,
Kusnitz, J., Appuswamy, R.e.a.: Real-time scalable cortical computing at 46 giga-
synaptic ops/watt with 100× speedup in time-to-solution and 100,000× reduction
in energy-to-solution. In: SC (2014)



SVEBI 17

7. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional
networks. In: WACV (2018)

8. Chen, C., Li, O., Tao, C., Barnett, A.J., Su, J., Rudin, C.: This looks like that:
Deep learning for interpretable image recognition. In: CVPR (2019)

9. Davies, M., Srinivasa, N., Lin, T.H., Chinya, G., Cao, Y., Choday, S.H., Dimou, G.,
Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C.K., Lines, A., Liu, R., Mathaikutty,
D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G., Weng, Y.H., Wild, A., Yang,
Y., Wang, H.: Loihi: A neuromorphic manycore processor with on-chip learning.
IEEE Micro 38(1), 82–99 (2018)

10. Deng, L.: The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29(6), 141–142 (2012)

11. Eshraghian, J.K., Ward, M., Neftci, E., Wang, X., Lenz, G., Dwivedi, G., Ben-
namoun, M., Jeong, D.S., Lu, W.D.: Training spiking neural networks using lessons
from deep learning. Proceedings of the IEEE (2023)

12. Gomez, T., Fréour, T., Mouchère, H.: Metrics for saliency map evaluation of deep
learning explanation methods. In: ICPRAI (2022)

13. Huang, J., Chai, J., Cho, S.: Deep learning in finance and banking: A literature
review and classification. Frontiers of Business Research in China 14 (12 2020)

14. Jung, H., Oh, Y.: Towards better explanations of class activation mapping. In:
ICONIP (2023)

15. Kim, Y., Panda, P.: Revisiting batch normalization for training low-latency deep
spiking neural networks from scratch. Frontiers of Neuroscience 15 (2021)

16. Kim, Y., Panda, P.: Visual explanations from spiking neural networks using inter-
spike intervals. Nature Scientific Reports (2021)

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NeurIPS (2012)

18. Lapicque, L.: Recherches quantitatives sur l’excitation électrique des nerfs traitée
comme une polarisation. J. Physiol. Pathol. Gen. 9, 620–635 (1907)

19. Malcolm, K., Casco-Rodriguez, J.: A comprehensive review of spiking neu-
ral networks: Interpretation, optimization, efficiency, and best practices. In:
arXiv:2303.10780 (2023)

20. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics 5(4), 115–133 (1943)

21. Min, B., Ross, H., Sulem, E., Veyseh, A.P.B., Nguyen, T.H., Sainz, O., Agirre,
E., Heinz, I., Roth, D.: Recent advances in natural language processing via large
pre-trained language models: A survey. ACM Computing Surveys 56(2) (2023)

22. Nauta, M., van Bree, R., Seifert, C.: Neural prototype trees for interpretable fine-
grained image recognition. In: CVPR (2021)

23. Neftci, E.O., Mostafa, H., Zenke, F.: Surrogate gradient learning in spiking neural
networks. IEEE Signal Processing Magazine 36 (2019)

24. Nguyen, E., Nauta, M., Englebienne, G., Seifert, C.: Feature Attribution Expla-
nations for Spiking Neural Networks . In: 2023 IEEE 5th International Conference
on Cognitive Machine Intelligence. pp. 59–68 (2023)

25. Oramas, J., Wang, K., Tuytelaars, T.: Visual explanation by interpretation: Im-
proving visual feedback capabilities of deep neural networks. In: ICLR (2019)

26. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., et al.: Pytorch: An im-
perative style, high-performance deep learning library. In: NeurIPS (2019)

27. Petsiuk, V., Das, A., Saenko, K.: Rise: Randomized input sampling for explanation
of black-box models. In: BMVC (2018)



18 De Laet et al.

28. Plank, P., Rao, A., Wild, A., Maass, W.: A long short-term memory for ai appli-
cations in spike-based neuromorphic hardware. Nature Intelligence (2022)

29. Ribeiro, M.T., Singh, S., Guestrin, C.: "why should i trust you?": Explaining the
predictions of any classifier. In: KDD (2016)

30. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review 65 6, 386–408 (1958)

31. Sanghvi, K., Aralkar, A., Sanghvi, S., Saha, I.: A survey on image classification
techniques. SSRN Electronic Journal (01 2021)

32. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In-
ternational Journal of Computer Vision 128(2), 336–359 (2019)

33. Shahid, N., Rappon, T., Berta, W.B.: Applications of artificial neural networks
in health care organizational decision-making: A scoping review. PLoS ONE 14
(2019)

34. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
Visualising image classification models and saliency maps. In: ICLR (2014)

35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: arXiv:1409.1556 (2014)

36. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
ICML (2017)

37. Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.S.: Deep
learning in spiking neural networks. Neural Networks 111 (2019)

38. Thompson, N.C., Greenewald, K., Lee, K., Manso, G.F.: The computational limits
of deep learning. In: arXiv:2007.05558 (2022)

39. Tripp, C.E., Perr-Sauer, J., Gafur, J., Nag, A., Purkayastha, A., "et al".: Measur-
ing the energy consumption and efficiency of deep neural networks: An empirical
analysis and design recommendations. In: arXiv:2403.08151 (2024)

40. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)

41. Vicente-Sola, A., Manna, D.L., Kirkland, P., Di Caterina, G., Bihl, T.: Keys to
accurate feature extraction using residual spiking neural networks. Neuromorphic
Computing and Engineering 2(4), 044001 (2022)

42. Wang, Y., Su, H., Zhang, B., Hu, X.: Interpret neural networks by extracting
critical subnetworks. IEEE Transactions on Image Processing 29, 6707–6720 (2020)

43. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning—a comprehen-
sive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern
Analysis and Machine Intelligence 41(9), 2251–2265 (2019)

44. Yamazaki, K., Vo-Ho, V.K., Bulsara, D., Le, N.T.H.: Spiking neural networks and
their applications: A review. Brain Sciences 12 (2022)

45. Zambrano, D., Nusselder, R., Scholte, H.S., Bohté, S.M.: Sparse computation in
adaptive spiking neural networks. Frontiers in Neuroscience 12 (2019)

46. Zhang, Y., Chan, W., Jaitly, N.: Very deep convolutional networks for end-to-end
speech recognition. In: ICASSP (2016)

47. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization (2015)

48. Zhou, C., Yu, L., Zhou, Z., Ma, Z., Zhang, H., Zhou, H., Tian, Y.: Spikingformer:
Spike-driven residual learning for transformer-based spiking neural network. In:
arXiv:2304.11954 (2023)


