
A Complementarity-Enhanced Mixture of
Human-AI Teams for Decision-Making⋆

Hefei Liang1, Jiaqi Liu1 (�), Bin Guo1, and Zhiwen Yu2,1

1 School of Computer Science, Northwestern Polytechnical University, China
2 Harbin Engineering University, China

craneflyliang@mail.nwpu.edu.cn
{jqliu, zhiwenyu, guob}@nwpu.edu.cn

Abstract. With the rapid development of deep learning, Artificial In-
telligence (AI) has evolved from a mere tool to a collaborator in decision-
making, sparking increasing attention to the human-AI cooperation. The
Mixture of Experts (MoE) framework, originally proposed to capture
domain-specific expertise and now widely adopted in large-scale mod-
els, naturally aligns with the requirements of human-AI teams. How-
ever, deploying MoE in human-AI cooperation involves two challenges:
1) While machine experts can be continuously optimized during train-
ing, human experts remain fixed, significantly reducing the effectiveness
of traditional sparse activation strategies; 2) Some existing methods fuse
all expert predictions during training phase but select only the high-
est weighted expert during testing phase, thereby introducing incon-
sistencies between the two phases. To overcome this, we propose the
Complementarity-Enhanced Mixture of Human-AI Teams (CE-MoHAIT)
framework. Our approach decomposes the gating network’s output into
two branches, i.e., a human expert branch and a classifier branch, thereby
explicitly modeling the complementarity between human and AI capa-
bilities. Moreover, we introduce a method called Adaptive and Comple-
mentary Construction (ACC) that directly optimizes the gating network
by constructing weighted labels, enabling the classifier model to compen-
sate for the deficiencies of human experts and ensuring consistent task
allocation across training and testing. Experiments on CIFAR-100 and
two real-world medical image datasets show that our approach surpasses
the existing methods, improving test accuracy by up to 20%, especially
with larger teams and weaker experts. Code is available in the repository
at https://github.com/H-F-Liang/CE-MoHAIT.

Keywords: Human-AI Collaboration in Classification · Human-AI Teams
· Human-in-the-Loop.

1 Introduction

With the rapid development of advanced deep learning technologies [2, 3], AI has
already achieved or even surpassed human-level performance in many specific do-
mains [1]. However, in some real-world scenarios, especially in high-risk domains
⋆
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such as healthcare [4, 5], AI still exhibits inherent shortcomings such as limited
generalization ability, noise immunity, and interpretability, which underscores
the growing need for human-AI collaboration. In human-AI collaboration, how
to leverage the complementary capabilities of humans and AI, and assign tasks
to the appropriate human or machine based on task characteristics is impor-
tant [6–8]. Mixture of Experts (MoE) [29] is a framework initially proposed and
widely adopted in Large Language Model (LLM), characterized by its ability to
perceive knowledge differences across domains or expertise among individuals.
This makes MoE potentially well-suited for human-AI collaboration scenarios.

The MoE framework consists of multiple multilayer perceptrons with differ-
ent knowledge, called machine experts, and a gating network that decides which
machine expert to activate according to the task’s characteristics. In the train-
ing phase, MoE adopts a sparse activation strategy due to the large scale of the
model parameters [30], where only a few, or even just one, machine expert is
activated during each forward pass. However, When applying MoE to human-AI
collaboration scenarios, some machine experts are replaced by human experts
and therefore the sparse activation strategy can lead to difficulties in conver-
gence. This is because that the abilities of human experts are fixed, and thus
they cannot learn the corresponding knowledge even if activated during training.
Moreover, due to the lack of targeted optimization for the gating network, it is
challenging for the gating network to leverage the complementary capabilities
between humans and machines.

Hemmer et al. [13] proposed a solution that adopts a weighted aggregation
of predictions from all experts during the training phase and selects only one
expert during the testing phase. However, this weighted aggregation approach in-
troduces inconsistency: during the training phase, multiple predictions are fused
by their weights to compute loss, whereas during the testing phase, only the
highest-weighted prediction is used, potentially degrading performance and lim-
iting the generalizability of the method. To overcome this limitation, we propose
a novel Adaptive and Complementary Construction (ACC) method. It directly
optimizes the output of the gating network in MoE by constructing weighted
labels, rather than aggregating expert predictions. Specifically, the method di-
rectly constructs labels corresponding to the gating network’s output weights
and allows the machine expert to complement the deficiencies of human experts,
significantly enhancing the complementarity between humans and AI models in
the MoE framework.

Based on the MoE framework, we propose a Complementarity-Enhanced
Mixture of Human-AI Teams (CE-MoHAIT) framework for human-AI collabo-
ration in classification tasks. CE-MoHAIT jointly trains a gating network and
one classifier model, i.e., the machine expert, where the gating network deter-
mines the weight of each team member, and the task is ultimately assigned to
the member with the highest weight. To explicitly consider the complementarity
between humans and AI models, we decompose the output weights of the gat-
ing network into two branches: a human expert weight branch and a classifier
weight branch. The classifier model is designed to complement the deficiencies
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of human experts. During the training phase, we use the ACC to encourage the
gating network to assign tasks that human experts are less competent to the
classifier model for learning, thereby maximizing team complementarity. Fur-
thermore, since the task is always assigned to the member with the highest
weight during both the training and testing phases, the behavioral consistency
between training and testing enhances the performance of the team. Overall, our
contributions are as follows:

– We propose a novel framework called Complementarity-Enhanced Mixture of
Human-AI Teams (CE-MoHAIT), which explicitly considers the complemen-
tarity between humans and AI models by decomposing the output weights
of the gating network into a human expert weight branch and a classifier
weight branch.

– We introduce a new team loss function that utilizes Adaptive and Comple-
mentary Construction (ACC) to construct team weight labels, optimizing
two weight branches. This approach enables the classifier to better learn
from and complement for the weaknesses of human experts, explicitly maxi-
mizing human-AI complementarity and ensuring optimal team performance.

– We conduct comprehensive experiments on the classical CIFAR-100 dataset
and two real-world medical image datasets [14, 15], demonstrating the ef-
fectiveness and applicability of our method. Our method achieves up to a
20% performance improvement, especially in scenarios where human experts
possess lower individual capabilities.

2 Related work

Traditional deep learning methods mainly focus on optimizing AI systems in
isolation, rather than considering human-AI collaboration. As a result, recent
research [23–25] has proposed various approaches to coordinate humans and AI
models, offering advantages in efficiency, interpretability, and ethical considera-
tions.

Currently, most human-AI collaboration methods fall under the broader con-
cept of Human-in-the-Loop (HITL) [32], which emphasizes continuous human
participation and feedback throughout the operation of the system. The core
idea of HITL is to integrate expert feedback with data-driven learning strate-
gies to compensate for the limitations of traditional automation in data-scarce
or noisy environments, while also providing additional prior knowledge during
model optimization. For example, some researchers have embedded human pref-
erences into the reward function [33], achieving significant improvements in pol-
icy optimization in deep reinforcement learning. Based on this, many other op-
timization methods based on human preferences have also been derived [34–37].
In high-risk domains such as finance and healthcare, the complete autonomous
decision-making by AI models often lacks transparency and interpretability [39].
Selectively delegating decision-making power to humans can also enhance trust
and the interpretability of human-AI collaboration [26–28].
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One common approach in this domain is Learning to Defer, which assumes
that humans are highly capable but costly decision-makers [9–12]. Its objective
is to learn how to defer tasks that the AI model finds uncertain or challenging
to human experts. For instance, some work [18] focuses on scenarios with cost
constraints and limited expert workload. Other studies emphasize combining the
predictions of AI models with those of human experts. For example, Steyvers
et al. [19] introduced a Bayesian framework that attempts to integrate human
and AI predictions to improve the overall performance of human-AI systems.
Many existing Learning to Defer studies focus on single-expert settings, where
difficult samples are deferred to one expert. However, this approach can impose
a significant workload on the human expert and is impractical in real-world
scenarios where a single expert cannot handle all tasks. Consequently, some work
has explored deferring challenging samples to multiple experts. For example,
Verma et al. [20] built on earlier research by Verma and Nalisnick [21] and
refined the softmax surrogate loss introduced by Mozannar and Sontag [22] to
propose consistent and calibrated surrogate losses for multi-expert settings. More
recently, Zhang et al. [12] combined learning to complement with learning to
defer, achieving superior performance in multi-expert settings with noisy labels
compared to standalone human experts or AI models.

Another highly relevant yet often overlooked direction in this context is Mix-
ture of Experts (MoE). Initially proposed for modularizing multilayer supervised
networks, MoE can be seen as a system composed of multiple independent net-
works, where each network processes a subset of training data. A gating net-
work is used to determine which model should learn from each data sample
[29]. This process closely resembles task allocation in human-AI collaboration.
Later, to enable the model to dynamically select a small number of machine
experts for computation and reduce computational costs, introduced a sparse
gating mechanism-based MoE structure has been proposed [30] , which remains
the most mainstream MoE architecture to date. However, dynamically selecting
a small number of experts may result in the gating network frequently favor-
ing the more capable experts. To mitigate this issue, another work proposed an
auxiliary loss [31] . Inspired by MoE, Hemmer, P., et al. [13] was the first to pro-
pose Human-AI Teams, consisting of one classifier and multiple human experts.
This approach leverages the classifier to learn tasks that humans struggle with,
thereby improving team performance. However, the strategy of using weighted
averaging during training while adopting the argmax function during testing is
not entirely appropriate, as it creates a significant gap between training and
testing, negatively impacting generalization.

3 Methodology

In this section, we first present the problem formulation, and then illustrate
the proposed Complementarity-Enhanced Mixture of Human-AI Teams (CE-
MoHAIT) framework.
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Fig. 1. The framework of the proposed CE-MoHAIT. The left part of the figure il-
lustrates the structure of the gating network and how it generates the team weight
W. The right part of the figure demonstrates how we construct the weight label g to
optimize the team weight W.

3.1 Problem Formulation

A human-AI team for a k-class classification task consists of one classifier and
m human experts. The classifier outputs a prediction denoted by f(x) ∈ Rk,
where f(x) represents the predicted probability distribution over the k possible
classes. Each human expert provides a prediction in the form of a k-dimensional
one-hot vector h ∈ H, indicating their chosen class. Given a training sample
xi ∈ X with ground truth label yi ∈ Y and related human prediction hi ∈ H,
the training dataset is presented as D = {(xi, yi,hi)}ni=1 ∼ P, where n = |D| is
the total number of samples and P is an unknown data distribution.

The final prediction is selected from these m+1 candidates through a gating
network g : Rk × Rd × X → Rm+1, Its input consists of three components: the
prediction of classifier f(x) ∈ Rk, the d-dimensional feature vector extracted by
the classifier ϕ(x) ∈ Rd, and the original data sample x ∈ X , formally expressed
as g(f(x), ϕ(x), x). The network outputs a (1 + m)-dimensional vector W =
[p,w], where p ∈ R denotes the confidence in the prediction of classifier, and
w = [w1, . . . , wm] ∈ Rm are the scores assigned to the human experts.

The final team prediction ŷteam is determined by selecting the team member
with the highest weight. Our goal is to minimize the team loss defined as

Lteam(f, g, x, y,h) = E(x,y,h)∼P [l (y, ŷteam)] . (1)

To minimize team loss, it is essential to consider the differences in capabilities
among human-AI teams members, especially the complementary characteristics
between humans and AI.

3.2 Implementation

The overall framework of the proposed framework is shown in Figure 1. The
system can be considered as a collaborative decision-making team consisting of
one classifier and m human experts. First, the sample x is input to the classifier,
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which outputs the extracted hidden layer features ϕ(x) and the predicted result
f(x). These outputs, along with the sample x, serve as inputs to the gating
network. The function of the gating network is to coordinate task allocation. It
outputs a weight vector for the team members W, and based on W, we select
the most suitable member of the team to make the final decision.

In human-AI collaboration methods, expert predictions cannot directly com-
pute loss for backpropagation. These methods typically obtained a weighted vec-
tor through fusion and calculated the loss between the weighted vector and the
true labels for backpropagation. However, this approach often relies on predic-
tions from multiple members, which can lead to dependency on certain members.
Furthermore, during testing, if only the prediction from the member with the
highest weight is selected, this results in an inconsistency between the training
and testing phases. To address this issue, we propose an approach called Adaptive
and Complementary Construction (ACC), which directly optimizes the member
weights W and explicitly considers the complementarity between humans and
AI, thereby improving the team performance.

Gating Network As shown in Figure 1, the gating network takes the feature
vector as input and outputs the team member weights W. Its primary function is
to perceive the differences and complementarities between human and machines.
To achieve this, we employ two attention layers to extract features from human
experts and the classifier separately. We begin by extracting the topic features
related to expert capability

zw = AttentionLayer(x, f(x), ϕ(x)), zw ∈ Rdh , (2)

where dh denotes the dimension of the hidden layer. Meanwhile, to explicitly
leverage human-AI complementarity, we need to obtain a topic feature associated
with human-AI complementarity

zp = AttentionLayer(x, g(x),M(x), zw), zp ∈ Rdh . (3)

The topic feature zp is used to represent the capability differences between the
classifier and the human experts. In the attention layer, multi-dimensional fea-
tures are mapped to Q, K, and V

Q = WQ · z, K = WK · z, V = WV · z, (4)

where Q,K, V ∈ Rh×dk , h is the number of attention heads, dh is the hidden
layer dimension, and dk = dh/h. Attention weights are then computed and used
to obtain the weighted output

Z = Softmax
(
QKT

√
dk

)
V. (5)

Finally, after passing through the linear layer, p and w are concatenated to
obtain the output:

w = MLP(zw), p = MLP(zp),
W = Concat(p,w). (6)
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Team Loss To leverage MoE for instance allocation in a human-AI collab-
oration team, the loss computation of MoE needs to be modified. In MoE, a
sparse activation strategy is typically used, where only the selected networks are
trained. However, in a human-AI collaboration team, the predictions provided by
selected human experts are non-differentiable, indicating that the weights out-
put by the gating network are difficult to optimize. Therefore, in [13], a weighted
fusion strategy was adopted during training to obtain the final team prediction,
ensuring that gradients propagate back to the gating network. Following this
work, we have

ŷteam = f(xi)w1 +

1+m∑
i=2

wihi−1. (7)

However, this leads to a dependency of the prediction results of the team on
multiple members. In real-world scenarios, due to considerations of collaboration
efficiency and cost, we only select the best member to make the prediction. Thus,
using the above strategy for training may affect the robustness and generaliza-
tion of team predictions. In contrast, our method mitigates the inconsistency
between training and testing behaviors and explicitly accounts for human-AI
complementarity during the training phase by constructing weight labels.

First, in both training and testing phases, we select only the best-performing
member. For each sample, we take the member with the highest weight, obtaining
its predicted logits vector tj where j = argmaxW, and compute the cross-
entropy loss with the ground truth label yi as follows

LCE = −
N∑
i=1

k∑
j=1

y
(i)
j log

(
exp(t

(i)
j )∑k

j=1 exp(t
(i)
j )

)
. (8)

But it should be noted, that when the member represented by j is a human
expert, the predicted label does not have a gradient; hence, the loss cannot be
backpropagated. This loss works only when j corresponds to a classifier, meaning
it is used exclusively for optimizing the classifier.

Next, we consider the team weight vector W output by the gating network.
It consists of two branches, i.e., the human expert weighting branch w and
the classifier weighting branch p, as in Equation (6). This addresses the issue
that the predictions provided by human experts are non-differentiable, so we
need a method to construct target labels for W during the training phase and
this method is the Adaptive and Complementary Construction (ACC) that we
mentioned earlier.

In the ACC method, for the human expert weight branch, during the training
phase, we know the predictions of all experts, and therefore we can determine
whether the prediction of human expert for the current sample is correct, denoted
as

gij = 1{hi,j = yi}. (9)

Then, for the classifier weight branch, we have illustrated two cases in Figure
2 for an intuitive explanation. To enhance the complementarity between the



8 H. Liang and J. Liu et al.

Classifier

Expert 1

Expert 2

Expert 3

1

0

0

1

h1=[Truck]

h2=[Truck]

h3=[Bus]

Classifier

Expert 1

Expert 2

Expert 3

0

1

0

0

h1=[Train]

h2=[Train]

h3=[Bus]

The case where the expert can solve the task The case where the expert cannot solve the task

Inactivated

Activated
Inactivated

Activated

= =
+

Fig. 2. An intuitive explanation of constructing weight labels. We illustrate two differ-
ent cases: the left part of the figure presents the case where experts can solve the
task, while the right part of the figure shows the case where experts cannot solve
the task.

classifier and human experts, it is essential to ensure that when all human experts
make incorrect predictions, the classifier should be selected and learn the current
sample, denoted as

gi1 = 1


1+m∑
j=1

δi(j) = 0

 , (10)

where δi(j) = gij = 1{hi,j = yi}. Thus, the target label vector constructed for
the gating network using the ACC method is

gi = (gi1, . . . , gi(1+m)) ∈ {0, 1}1+m. (11)

Then, we use binary cross-entropy to calculate the weight loss for the gating

Lweight = − 1

N

N∑
i=1

1+m∑
j=1

(
gij log σ(Wij) + (1− gij) log(1− σ(Wij))

)
, (12)

where σ(z) = 1
1+exp(−z) .

Finally, the overall team loss in Equation (1) can be expressed as the sum of
Equation (8) and Equation (12):

Lteam = LCE + Lweight. (13)

4 Experiments

In this section, we evaluate our proposed approach on three datasets. First, we
simulate the performance of our approach under different team member abil-
ities and team sizes using the classic CIFAR-100 dataset, explaining how our
approach optimizes team performance. Next, we further validate our approach
on two real-world medical image datasets, NIH and Chaoyang. Particularly, the
NIH dataset includes annotations from 22 radiologists, providing comprehensive
human expert labeling.
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4.1 Experimental Setup

Datasets We evaluated our approach on three datasets. The first is the CIFAR-
100 dataset, used for simulation experiments. The other two are real-world med-
ical image datasets, NIH and Chaoyang, containing annotations from multiple
human experts.

– CIFAR-100: This dataset consists of 60,000 32×32 color images across 100
classes, with 600 images per class. It is split into 50,000 training images and
10,000 testing images;

– NIH: This dataset, collected by the National Institutes of Health (NIH)
Clinical Center, includes chest X-ray images with annotations from 22 ra-
diologists. It contains 4,374 chest X-ray images with up to three possible
symptoms per image, making it a multi-label classification dataset;

– Chaoyang: This dataset consists of 6,160 colon slide patches, each with a
resolution of 512×512. Each patch includes three noisy labels provided by
pathologists, and each image belongs to one of four categories.

Since the CIFAR-100 dataset does not contain annotations from multiple
human experts, we simulated experts with different levels of expertise to generate
corresponding expert labels. For a team of m human experts, we assume that
each expert can perfectly classify a subset of categories. Specifically, we sample
the capability value of each expert as ci ∼ N (cmean, cstd), where i ∈ {1, ...,m}, ci
denotes the number of categories that expert i specializes in, cmean represents the
average number of categories an expert is proficient in, and cstd is the standard
deviation of expertise distribution. In our experiments, we set different values of
m, cmean, and cstd to simulate the performance of teams with varying sizes and
levels of expertise.

The NIH and Chaoyang datasets contain human expert annotations, and
thus we directly use them in our experiments. The Chaoyang dataset features
comprehensive expert annotations, allowing us to form an expert team with
two experts and train on the full dataset. However, in the NIH dataset, not
every sample is annotated by all experts. To ensure reliability and consistency,
we selected pairs of experts and retained samples with the most overlapping
annotations.

Baselines We compared the performance of our approach, CE-MoHAIT, with
six baseline methods.

– One Classifier: Single classifier model;
– Classifier Team: A team consisting of m classifier models;
– Random Expert: A team consisting of m experts, where each instance is

randomly assigned to one expert for prediction;
– Expert Team: A team consisting of m experts, where the expert with the

highest weight selected by a gating network makes the prediction;
– JSF: A team consisting of one classifier and m experts, with separate loss

calculations for the classifier and the expert team [38];
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Table 1. Team accuracies of our approach and the baselines on the CIFAR-100 dataset.
To evaluate the impact of different expert ability settings on method performance, we
sample the number of categories each expert can classify from a normal distribution
N (cmean, cstd), where cmean represents the average number of categories an expert can
classify, and cstd represents the variance of expert abilities.

Method
CIFAR-100

N (25, 5) N (50, 5) N (75, 5)

One Classifier 78.50(±0.20) 78.50(±0.20) 78.50(±0.20)

Classifier Team 77.06(±0.49) 77.06(±0.49) 77.06(±0.49)

Random Expert 27.13(±1.38) 51.80(±1.01) 76.81(±0.79)

Expert Team 40.02(±1.83) 65.94(±1.65) 87.80(±0.88)

JSF 63.39(±0.93) 54.25(±1.33) 78.75(±1.37)

HAIT 57.95(±1.60) 69.52(±2.12) 90.38(±0.71)

CE-MoHAIT(Ours) 80.31(±0.46) 85.08(±0.67) 94.62(±0.46)

– HAIT: A team consisting of one classifier and m experts, with overall system
loss computed through weighted fusion of all member predictions [13];

Training Details For all the experiments, we adopted ResNet-18 [16] pre-
trained on ImageNet-1K [17] as the feature extraction network. The Adam op-
timizer and a cosine annealing scheduler were used, with the cosine annealing
period set to one-fifth of the total training epochs. On CIFAR-100, we used
40,000 images for training, 10,000 for validation, and 10,000 for testing. The
initial learning rate was set to 2× 10−4, the batch size was 512, and the model
was trained for 50 epochs. On the NIH and Chaoyang datasets, due to their
smaller scales, we employed 10-fold cross-validation with an initial learning rate
of 2 × 10−4, a batch size of 64, and 20 epochs per fold. All the reported ex-
perimental results were obtained by repeating training five times with fixed but
different random seeds.

4.2 Experimental Results and Analysis

In Table 1, we present the results on the CIFAR-100 dataset. we fixed the number
of experts in the team to 2 and reported the team performance when the expert
capability cmean was set to 25, 50, and 75. More detailed experimental results on
the CIFAR-100 dataset are illustrated in Figure 3. The three subfigures illustrate
controlled experiments that investigate the effects of team size and individual
human expert capability. Specifically, we vary the team size from 2 to 12 with
a step of 2. The average human expert capability cmean is set to 25, 50, and
75, with a figixed standard deviation cstd of 5. The results demonstrate that our
approach consistently outperforms the current state-of-the-art Human-AI Teams
(HAIT) across different team sizes and human expert capabilities. Notably, when
the average human expert capability is low (cmean = 25), our approach achieves
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Table 2. Team accuracies of our approach and the baselines including standard errors
on the NIH and Chaoyang datasets. In the NIH dataset, each radiologist participating
in the annotation process has a unique ID. We select two experts to form an expert
team, with four different pairs used for the experiment.

Method Chaoyang
NIH

ID=(357,121) ID=(249,124) ID=(357,117) ID=(249,296)

One Classifier 78.23(±0.28) 84.70(±0.13) 84.59(±0.12) 83.13(±0.21) 83.63(±0.08)

Classifier Team 76.88(±0.25) 85.09(±0.17) 84.83(±0.23) 83.44(±0.16) 83.69(±0.27)

Random Expert 83.88(±0.23) 88.04(±0.48) 88.30(±0.49) 89.15(±0.37) 84.58(±0.62)

Expert Team 90.57(±0.12) 90.98(±0.12) 88.54(±0.50) 95.34(±0.00) 91.34(±0.05)

JSF 86.30(±0.01) 90.90(±0.19) 88.26(±0.25) 94.94(±0.69) 90.52(±1.08)

HAIT 90.39(±0.05) 91.01(±0.16) 88.76(±0.50) 95.34(±0.00) 91.36(±0.06)

CE-MoHAIT(Ours) 91.05(±0.29) 91.50(±0.75) 88.79(±0.41) 95.41(±0.13) 91.60(±0.43)

an improvement of 15% to 18% over HAIT [13], depending on the team size.
These results highlight the robustness of our approach across varying team sizes
and expert capabilities. Additionally, we observe that the gating network retains
significant potential for improvement in expert assignment when human experts
have lower individual capabilities.

In Table 2, we further present the validation results on two real-world medical
image datasets, NIH and Chaoyang. We focus on one class in the NIH dataset
called airspace opacity, which accounts for 49.5% of the data. It is a common
pulmonary manifestation indicating pneumonia or other fluid-related patholo-
gies. We selected experts with a larger amount of data, forming four groups of
paired experts, and annotated the ID of each expert. For the Chaoyang dataset,
we construct teams using two out of three available experts, as the remaining
expert serves as the ground truth standard of dataset. Compared to the syn-
thetic dataset results, the performance gains on real-world datasets are relatively
smaller. This observation aligns with the results shown in Figure 3, where the
performance gap diminishes as individual expert capabilities increase. However,
in real-world scenarios, considerations such as expert workload and cost often
lead to situations where experts specialize in a narrow range of tasks, resulting
in lower average expert capabilities. This further underscores the advantage of
our approach in practical applications.

In Table 3, we analyze the influence of two key factors on our method
using the CIFAR-100 dataset: 1) the removal of the weight loss, defined in
Equation (12) and computed from the weight labels constructed by the ACC
method; and 2) the investigation of the effect of the ratio between the two weight
branches—the classifier weight branch and the human expert weight branch—on
team performance. When Equation (12) is removed, the method no longer ex-
plicitly accounts for the complementarity between humans and AI, resulting in a
significant decline in team performance. Moreover, even with an increased num-
ber of human experts, tasks cannot be appropriately allocated to the suitable
members, sometimes leading to even worse performance. Additionally, under
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Fig. 3. Team test accuracy of our approach (CE-MoHAIT) in different expert
ability(cmean) with increasing team size on the CIFAR-100. Shaded regions display
standard errors.

Table 3. The experimental results on CIFAR-100. We conducted experiments under
the settings where the number of human experts (m) is 2 and 12, and the human
expert capability (cmean) is 25, 50, and 75, respectively, and analyzed the influences
of removing the weight loss and varying the ratio between the classifier and human
expert weight branches on team performance.

Method
m=2 m=12

N (25, 5) N (50, 5) N (75, 5) N (25, 5) N (50, 5) N (75, 5)

CE-MoHAIT9:1 80.00(±0.51) 83.76(±0.39) 93.80(±0.33) 81.95(±1.16) 92.18(±0.38) 97.66(±0.18)

CE-MoHAIT7:3 80.29(±0.24) 84.81(±0.77) 94.55(±0.45) 83.92(±0.65) 92.35(±0.42) 97.49(±0.15)

CE-MoHAIT3:7 80.41(±0.42) 85.04(±0.62) 94.59(±0.45) 84.26(±0.73) 92.34(±0.56) 97.74(±0.17)
CE-MoHAIT1:9 80.64(±0.25) 84.91(±0.72) 94.62(±0.42) 84.15(±1.00) 92.47(±0.42) 97.62(±0.17)

CE-MoHAITw/o WL 79.65(±0.31) 76.79(±1.35) 91.07(±1.34) 58.72(±5.08) 74.08(±6.71) 87.99(±1.99)

CE-MoHAIT 80.31(±0.46) 85.08(±0.67) 94.62(±0.46) 84.61(±0.69) 91.87(±0.75) 97.30(±0.31)

team sizes of 2 and 12, we sequentially adjusted the ratio between the classi-
fier weight branch and the human expert weight branch to 1:9, 3:7, 7:3, and
9:1. The results indicate that when the ratio is 1:9, that is, when the classi-
fier weight constitutes a lower proportion—the team performance tends to be
better. Intuitively, this is likely because, under the MoE framework, the gating
network’s task assignment is highly random during the early stages of training; if
the classifier weight branch’s proportion is too high, it may converge too rapidly
and mistakenly learn tasks that are better suited for human experts, thereby
undermining the intended human-AI complementarity.

Finally, to demonstrate the stability of our method, we further plotted the
training curves in Figure 4. We selected training processes with team sizes of 2
and 12 and expert capabilities of 25, 50, and 75, respectively. The experimen-
tal results show that our method exhibits a significant advantage in both final
performance and convergence speed, confirming its effectiveness and stability.
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Fig. 4. Team test accuracy during training under setting where the number of human
experts (m) is set to 2 and 12, and the expert ability (cmean) is set to 25, 50, and 75,
respectively. Shaded regions display standard errors.

5 Conclusion

In this paper, we propose a framework called Complementarity-Enhanced Mix-
ture of Human-AI Teams (CE-MoHAIT). Based on the MoE framework, CE-
MoHAIT is applied to human-AI collaboration scenarios to construct a human-
AI team consisting of one classifier model and m human experts. By splitting
the output weights of the gating network into two branches—the classifier weight
branch and the human expert weight branch—we enhance the complementarity
between humans and AI within the team. Moreover, we adopt an Adaptive and
Complementary Construction (ACC) method to specifically construct weight la-
bels that directly optimize the gating network’s output weights, thereby yielding
a novel team loss function. Experimental results demonstrate that our method
leads to a significant improvement in team performance.

However, the experimental results also reveal a potential shortcoming of CE-
MoHAIT. As the team size increases, the overall performance improvement re-
mains limited, indicating that a more fine-grained approach is still required to
perceive the differences in capabilities among team members, enhance their com-
plementarity, and thus better allocate tasks. In future work, we plan to introduce
more effective methods to address this issue.
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