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Abstract. Given a set of graphs from some unknown family, we want
to generate new graphs from that family. Recent methods use diffusion
on either graph embeddings or the discrete space of nodes and edges.
However, simple changes to embeddings (say, adding noise) can mean
uninterpretable changes in the graph. In discrete-space diffusion, each
step may add or remove many nodes/edges. It is hard to predict what
graph patterns we will observe after many diffusion steps. Our proposed
method, called GraphWeave, takes a different approach. We separate
pattern generation and graph construction. To find patterns in the train-
ing graphs, we see how they transform vectors during random walks. We
then generate new graphs in two steps. First, we generate realistic ran-
dom walk “trajectories” which match the learned patterns. Then, we find
the optimal graph that fits these trajectories. The optimization infers
all edges jointly, which improves robustness to errors. On four simulated
and five real-world benchmark datasets, GraphWeave outperforms ex-
isting methods. The most significant differences are on large-scale graph
structures such as PageRank, cuts, communities, degree distributions,
and flows. GraphWeave is also 10x faster than its closest competitor.
Finally, GraphWeave is simple, needing only a transformer and stan-
dard optimizers.

Code is available at https://github.com/rahulnanda1999/GraphWeave.
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1 Introduction

Suppose that we have a set of molecules with some desirable property. For ex-
ample, these molecules bind to a target protein to treat a disease. Our goal is to
find other molecules that have this property. We can formalize this as a graph
generation problem. Each molecule is a graph of atoms connected by bonds. The
desirable property corresponds to some unknown patterns common to the given
graphs. We want to generate new graphs that possess these patterns automati-
cally. As another example, suppose we want to detect bots in a social network.
Bots and regular users have different linkage patterns. However, we may have
too few examples of bots to train a classifier. To augment the training data, we
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Fig. 1: Overview of GraphWeave: (a) Given one or more training graphs, we
generate random walk trajectories (RWTs) from various starting vectors. (b) We
learn to predict the previous step of a trajectory. (c) To generate a new graph,
we first apply the reverse predictor several times on an “ending” vector (shown
by ⊗). We show that the ending vectors are simple to generate (Theorem 1).
(d) Second, we find the optimal graph that fits the generated RWTs. The process
works even with one training graph. Indeed, we generated the three graphs on
the right from the single graph on the left (colors are added for clarity).

can generate synthetic graphs whose link patterns match those of the known
bots. This can improve classification accuracy without increasing the cost.

In this paper, we tackle the problem of generating new graphs whose structure
matches a set of training graphs. We do not consider node or edge features, which
we can infer by a post-processing step. For instance, for molecule graphs, we can
infer a node’s feature (what atom it is) from its degree (number of bonds),
and this determines its edge feature (bond strengths). Now, even generating the
graph structure is a complex problem. Small-scale patterns (e.g., a benzene ring)
might be important for some cases. In other applications, large-scale patterns
may matter more (e.g., the ratios of various atoms, i.e., the degree distribution).
No method can match all possible patterns. Clarity about the patterns a method
tries to match improves its interpretability.

However, existing methods rarely make their choices explicit. One class of
methods creates graphs by diffusion on the space of graph embeddings. They
start from a random embedding, iteratively change it, and map the final embed-
ding to a graph [5, 20]. But even simple changes in embedding space (e.g., adding
noise) may mean complex and unintuitive modifications to the graph structure.
Hence, the generative process is hard to interpret.

Another class of methods changes the graph structure instead of its em-
bedding. For instance, some methods apply local changes to the graph in each
iteration [19, 16]. Each step might add or remove a few nodes and edges, so the
changes are intuitive. However, these local changes must add up to the desired
global patterns. The need for coordinated local changes makes the process sen-
sitive to errors. Other approaches make global changes to the graph structure
in each iteration [17, 2]. While this approach is very flexible, predicting what
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patterns will result from a series of complex changes is difficult. This affects the
interpretability of such methods.

How can we generate graphs matching multi-scale patterns in an
interpretable way?

We make two design choices to achieve this goal. First, we focus on patterns that
can be learned from random walks on graphs. Specifically, we construct Random
Walk Trajectories (RWTs) that track how vectors evolve over random walks.
We show that several standard graph families have unique RWT signatures.
Hence, RWTs can intuitively capture helpful patterns. Also, many applications
are based on random walks. So, graphs generated with the right RWT signatures
can immediately positively impact such applications.

Our second design choice is to generate graphs via optimization on RWTs. In
other words, we generate RWTs and find the optimal graph that fits these RWTs.
Our approach separates the matching of patterns (via RWTs) from the graph
construction (by optimization). This “division of labor” offers many benefits.
RWTs are easier to generate than graphs since RWTs are naturally in a vector
space. Graph construction via optimization increases flexibility. For instance, we
can impose constraints (e.g., sparsity) or add regularization for robustness.

Our contributions: Our proposed method, named GraphWeave, generates
Random Walk Trajectories (RWTs) and then optimally weaves them together
into a coherent graph. We discuss GraphWeave’s advantages below.

1. Formulation: We cast graph generation as a two-step problem: generate
realistic patterns and then optimize a graph to fit them. The patterns we
track are derived from random walk trajectories (RWTs). The optimized
graph is then helpful for any downstream tasks that rely on random walks.
GraphWeave’s separation of pattern generation from graph optimization
simplifies the generative process. To our knowledge, GraphWeave is the
first to demonstrate this optimization-based approach.

2. Interpretability: RWTs track how random walks affect vectors. This basic
process underlies many graph-theoretic problems. For example, the vector
could represent people’s opinions in a social network. Then, the RWT would
show how opinions evolve dynamically. Hence, RWTs are easily interpretable.

3. Multi-scale structure: We show that RWTs can capture large-scale graph
structures. These include communities, flows, cut sizes, and degree distribu-
tions. By varying the RWT initializations, we can also explore local struc-
tures, such as the neighborhoods of high-degree nodes. Hence, the set of
RWTs of a graph can capture multi-scale structures.

4. Robustness: GraphWeave jointly optimizes all edges of the generated
graph. The optimization’s inputs come from multiple RWTs. Hence, the re-
sulting graph is robust to occasional errors in the RWT generation process.
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5. Simplicity: GraphWeave needs only a transformer to generate RWTs and
a standard optimizer to find the best-fit graph. Both of these are off-the-shelf
tools. Hence, GraphWeave’s implementation is simple and reliable.

6. Strong experimental results: On four simulated and five real-world datasets,
GraphWeave outperforms state-of-the-art methods. GraphWeave is par-
ticularly strong in matching large-scale graph structures like PageRank, cuts,
communities, degree distributions, and flows. Furthermore, GraphWeave
is 10x faster than its closest competitor.

2 Proposed Method

We are given a set G of undirected graphs, possibly of different sizes. We want to
generate new graphs that “look like” the graphs in G. For example, if G contains
stochastic block model graphs, the generated graphs should match that family.

To generate such graphs, we must identify patterns from the graphs in G.
Now, the space of all possible patterns is too large. So, we must choose a subset of
intuitive and widely applicable patterns. We focus on random walk patterns since
random walks underpin many graph applications. Specifically, GraphWeave
constructs random walk trajectories, as defined below.

Definition 1 (Smoothed Random Walk Trajectory (RWT)). An RWT
has four parameters: (a) an adjacency matrix A ∈ {0, 1}n×n of an undirected
graph on n nodes, (b) a function f : R+ → R+, (c) a smoothing parameter
α ∈ (0, 1), and (d) the number of steps k. Let di denote the degree of node i, and
d′i := (1− α)di + α the node’s smoothed degree. We assume that all nodes have
positive degree. Also, define the smoothed normalized adjacency matrix L ∈ Rn×n

and the “starting vector” v ∈ Rn as follows:

Lij :=
(1− α)Aij + α · 1i=j√

d′i · d′j
vi := n

f(di)∑
j f(dj)

. (1)

Then, the k-step Smoothed Random Walk Trajectory RWT (A, f, α, k) is the or-
dered sequence of vectors {v, Lv, L2v, . . . , Lkv}.

Remark 1. We use the normalized adjacency L in Definition 1 instead of the
random walk transition matrix D−1A since the symmetry of L simplifies later
steps. We note that both matrices have the same eigenvalues and closely related
eigenvectors.

We can construct several RWTs for any graph by varying the function f(·).
For example, if f(di) increases with di, the relative weight of high-degree nodes
in the starting vector increases. Then, the RWT explores the neighborhood of
such nodes in more detail.

The smoothing parameter α in Definition 1 adds “self-loops” to all the nodes.
The presence of self-loops slows down the random walk, leading to smoother
trajectories. The higher the value of α, the smoother the trajectory. We find
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that smoother trajectories are easier to predict and, hence, easier to generate.
Next, we show several examples of RWTs.

Example 1 (Erdos-Renyi Graphs). Suppose G contains Erdos-Renyi random graphs
with connection probability p. In other words, the jth graph has n(j) nodes, and
each node pair is linked with probability p. For simplicity, we ignore smooth-
ing (α = 0). Then, all nodes in the jth graph have degree ≈ n(j)p if n(j) is
large enough. Hence, for smooth f(·), every entry of this graph’s starting vec-
tor is ≈ 1. In other words, all Erdos-Renyi graphs, irrespective of their sizes,
start their RWTs close to the all-ones vector 1. Furthermore, we can show that
L(j)1 ≈ 1 for the normalized adjacency matrices L(j) of such graphs. So, the
RWTs of random graphs start near 1, fluctuate around that point, and eventually
converge.

Example 2 (Stochastic Blockmodel (SBM)). Suppose G contains graphs sampled
from an SBM with the following parameters. There are two communities with
sizes in the ratio β : 1− β. The probability of an edge between two nodes is p if
they are from the same community and q otherwise. Suppose we choose f(x) = 1
for all x. Then, the starting vectors v(j) equal 1 for all graphs. We can show that
for large enough k, the random walk vector (L(j))kv(j) converges to a vector w
with clustered entries. Specifically, let

κ1 := βp+ (1− β)q, κ2 := p+ q − κ1, ν :=
β
√
κ1 + (1− β)

√
κ2

βκ1 + (1− β)κ2
.

Then, wi =
√
κ1/ν if node i belongs to the first community, and

√
κ2/ν otherwise

(via Theorem 1 proved later). Thus, the RWT evolves from 1 to the vector w
with clustered entries, irrespective of the graph’s size.

Example 3 (Preferential Attachment). Suppose G contains graphs created from
the Barabasi-Albert model [1]. Then, for any graph, the distribution of node
degrees follows a power-law with exponent 3. As in the SBM example, take
f(x) = 1 for all x, so the starting vectors equal 1. The ending vectors of the
random walks are proportional to the square roots of the degrees (Theorem 1
later). These follow a power-law distribution with exponent 5.

Example 4 (Expected-degree Random Graphs). Suppose G contains random graphs
whose expected degrees match those of SBMs. Then, the starting and ending
vectors will be the same as in Example 2, but the intermediate vectors will be
different.

The above examples show that graphs from different families have different
RWT signatures. In all cases, the RWTs started from the all-ones vector. But,
they traced trajectories with different ending vectors. For other choices of f(·),
RWTs can explore (say) high-degree nodes and their neighborhoods. Graph-
Weave automatically exploits such patterns to generate new graphs from the
same family.
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Main Idea: GraphWeave has three steps. First, we construct RWTs from the
graphs in G. From these, we learn to reverse RWTs. In other words, given a vector
from an RWT, GraphWeave learns to predict the previous vector. Second, we
use this reverse predictor to generate new RWTs. To do this, we need an “ending”
vector. All the generated RWTs share the same ending vector but trace different
trajectories. We show how to construct a realistic ending vector, and why we
can think of the generated RWTs as being from the same graph. Third, from the
generated RWTs, GraphWeave infers the underlying graph. Crucially, we infer
all edges of this graph jointly. We can generate multiple graphs by repeating the
second and third steps from different ending vectors. Next, we provide details
for each of the three parts of GraphWeave.

2.1 Learning to Reverse RWTs

Given a set G = {Ai} of graphs and a set F = {fℓ(·)} of functions, we construct
the set of all RWTs R := {RWT (A, f, α, k)}A∈G,f∈F . Recall that each RWT is
a sequence of vectors v1,v2, . . . ,vk, where a pair (vj ,vj+1) represents one step
of a random walk on some graph in G.

Next, we learn to reverse the RWTs, that is, to predict vj given vj+1 and
f(·). The predictor must know f(·) since two different RWTs may arrive at the
same vj+1 via different paths. Each path is determined by its starting vector,
which depends on f(·). To build the predictive model, we face two challenges.

– Arbitrary length input/outputs: The length of the vectors vj and vj+1 is the
number of nodes in the graph. Since the graphs in G can have different sizes,
the lengths of vectors in R can vary.

– Permutation invariance: The model must be invariant to permutations of
the components of vj and vj+1 since a permutation is just a reordering of
the nodes. Such reordering should not affect the model’s predictions.

Our solution is simple and elegant: we use a transformer. Transformers can
adapt to inputs of arbitrary context length. In our case, the input vector is vj+1 ∈
Rn, where the graph size n varies between the graphs in G. For a transformer, this
means a context of length n, where each item in the context is one-dimensional.
Given such an input, the transformer’s output is also of length n, like the desired
output vector vj . So, the same transformer can work for input/output vector
pairs of all sizes. Also, a transformer without position embeddings or causal
masking is invariant under permutations. Thus, a vanilla transformer matches
our desiderata.

However, we can significantly improve this transformer using embeddings.
Formally, we construct a binning function B : R+ → [K] and an embedding
E : [K] → Rm. For vectors, we apply these functions elementwise. In other words,
B(v) is the vector formed by applying B(·) to each element of v; E(v) is defined
similarly. The user chooses the number of bins K and the embedding dimension
m. Higher values for K and m lead to more flexibility in the transformer.

Now, we preprocess the data to use these embeddings. Specifically, in the
RWTs, we replace each vector v with v ⊗ E(B(v)). We further augment each
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Fig. 2: Training the reverse predictor: For every pair of successive vectors
(vj ,vj+1) from a path i of an RWT, we compare vj against a predicted vec-
tor v̂j obtained from vj+1. To create v̂j , the elements of vj+1 are first converted
into a sequence of embeddings. Then, we add embeddings reflecting the function
f used for the starting vector of path i, and the step j+1 within path i. Finally,
we transform these embeddings and project them to generate v̂j .

input vector with an embedding that encodes the choice of f(·) and the current
step in the RWT. Specifically, we define an embedding E ′ such that E ′(f, j) ∈ Rm,
for all functions f ∈ F and steps j ∈ [k]. Given an input vector vj+1 at step
j + 1 for function f(·), we define

TΦ(vj+1, f, j + 1) := TransformerΦ(vj+1 ⊗ E(B(vj+1))

+1⊗ E ′(f, j + 1)),

where Φ represents the transformer’s parameters. The transformer’s input is now
a length-n sequence of m-dimensional embeddings, as is the output. Finally, we
add a linear projection layer to convert the output back to Rn:

PΦ,Ψ (vj+1, f, j + 1) := ProjectΨ (TΦ(vj+1, f, j + 1)) to Rn,

where Ψ are the projection parameters. Given an input vj+1, this projected
output is our prediction for vj . We train the transformer to minimize the mean-
squared error between the predicted and actual values of vj .

Φ, Ψ, E , E ′ = argmin
∑

(vj ,vj+1)

(PΦ,Ψ (vj+1, f, j + 1)− vj)
2
.

Figure 2 illustrates this process. After training, we have a reverse predictor PΦ,Ψ

(henceforth, P ) such that

P (vj+1, f, j + 1) ≈ vj for all vj → vj+1 in the RWTs of G. (2)

2.2 Generating RWTs

Suppose we have learned an accurate reverse predictor. Then, given an “ending”
vector v̄k and a choice of f(·), we can work backward by repeatedly predicting the
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previous vector: v̄k → v̄k−1 → . . . → v̄1. Different choices of f(·) yield different
sequences for the same v̄k. We call the sequence {v̄1, . . . , v̄k} a generated RWT.

A generated RWT will only be realistic for special choices of v̄k. In particular,
we want v̄k to be the ending vector for some graph from the same family as the
graphs in G. Formally, we want v̄k = L̄kv̄1, where L̄ is the smoothed normalized
adjacency of such a graph. But we do not know v̄1 or L̄. The following theorem
shows how to select v̄k.

Theorem 1. Consider an n-node graph with degrees {di}, smoothed degrees
{d′i}, starting vector v ∈ Rn

+ built using a function f(di), and smoothed nor-
malized adjacency L, as in Definition 1. Let w be a vector with entries

wi := γ ·
√

d′i

where γ =
n
(∑

j f(dj)
√
d′j

)
(∑

j f(dj)
)(∑

j d
′
j

) .
Then, we have:

lim
k→∞

∥Lkv −w∥ = 0.

Proof. From Lemma 1 in the Appendix, the largest eigenvalue of L is 1 with
eigenvector u1 having components u1;i =

√
d′i/(

∑
j d

′
j). The matrix L is ir-

reducible (since the graph is connected) and aperiodic (since α > 0 induces
self-loops). Hence, no other eigenvalue has absolute value 1. Next, we observe
that vTu1 > 0, since both v and u1 are in the positive orthant. Hence, Lkv
tends to the vector (vTu1)u1, which is seen to be the vector w.

Theorem 1 shows that a realistic ending vector v̄k must be close to w, and
w only depends on the degrees {di}. So, to construct v̄k, we must generate
a realistic degree distribution that matches the family G. One approach is to
sample a graph G ∈ G and perturb its degree distribution. Another option is to
fit a model to the degree distributions of the graphs in G. For example, we can
fit a power law or a lognormal since they are widely observed in real-world data.
Then, we can sample a new degree distribution from this fitted model. Either
way, we get a realistic degree distribution {di}.

Now, we generate an RWT as follows. Using {di} and a choice of f ∈ F , we
construct the ending vector v̄k (Theorem 1). Next, we use the reverse predictor
P from Section 2.1 to predict v̄k−1 := P (v̄k), v̄k−2 := P (v̄k−1), and so on.
Proceeding this way, we construct all the vectors {v̄1, . . . , v̄k}. This sequence of
vectors is the generated RWT.

By repeating these steps with the same v̄k but different f ∈ F , we can
generate several RWTs. We must now construct the sparse graph corresponding
to the generated RWTs. The following section shows how.
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Remark 2 (Differences from traditional diffusion). Like diffusion models, Graph-
Weave has forward and reverse processes. However, in diffusion, the forward
process adds random noise. In GraphWeave, the forward process is determin-
istic. It represents the evolution of a vector during random walks. Now, a forward
process is only useful if it converges to an easy-to-sample stationary point. In
diffusion models, this point is often the standard Gaussian distribution (“100%-
noise”). Theorem 1 shows that GraphWeave’s forward process also converges.
But our stationary vector represents the convergence of random walks, not noise.
Since random walks are widely used in applications, learning their patterns via
RWTs can be more beneficial than learning a noise process on graphs.

Remark 3 (Single ending vector in Figure 1). Theorem 1 shows that the ending
vector is the same for all starting vectors after normalization by the appropriate
γ. Figure 1 shows this visually. However, Definition 1 uses unnormalized starting
vectors so that we can discuss Examples 2- 4 using the same starting vectors.

2.3 Inferring the Graph

Given a set of generated RWTs, we want to find one graph that generates them.
Suppose v̄j and v̄j+1 are successive vectors in one of the generated RWTs. Then,
the smoothed normalized adjacency matrix L for this graph must satisfy Lv̄j =
v̄j+1. This relation holds for every pair of successive vectors. Formally, let V1 be
a matrix with rows {v̄j} and V2 a matrix with rows {v̄j+1}. Then,

V1L = V2. (3)

From Definition 1, the matrix L is of the form

L = (D′)−1/2((1− α)A+ αI)(D′)−1/2, (4)

where A is the adjacency matrix of the desired graph, D′ is a diagonal matrix
with entries D′

ii = (1−α)di+α and di is the degree of node i. Note that we know
the {di} since we generated the degree distribution as the first step in creating
RWTs (Section 2.2).

Plugging Eq. 4 into Eq. 3, we find A by solving:

minimizeA
∑

i,j∈[n]

|Xij | (5)

where X = V1(D
′)−1/2((1− α)A+ αI)(D′)−1/2 − V2,

Aij ∈ {0, 1} for all i, j ∈ [n],

A = AT ,Trace(A) = 0, A1 = d,

where d is the vector with entries di. The constraints ensure that A is an un-
weighted graph with degrees d. Eq. 5 is an Integer Linear Program that can be
solved by standard tools such as Gurobi.
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Remark 4. An alternative to Eq. 5 is to relax the requirement Aij ∈ {0, 1} to
Aij ∈ [0, 1]. This results in a convex problem:

minimizeÃ
∑
ij

|Xij | (6)

where X = ∥V1(D
′)−1/2((1− α)Ã+ αI)(D′)−1/2 − V2∥2F ,

0 ≤ Ã ≤ 1,Trace(A) = 0, Ã = ÃT , Ã1 = d.

This results in a weighted graph Ã. We can construct A by rounding the entries
of Ã as follows:

Aij := 1Ãij>a⋆+b⋆ log di
, (7)

where a⋆, b⋆ = argmin
a,b

1

n

n∑
i=1

∣∣∣∣∣
∑

j 1Ãij>a+b log di

di
− 1

∣∣∣∣∣ .
The choice of (a⋆, b⋆) minimizes the relative error between the node degrees of A
and the desired degrees {di}. We can select (a⋆, b⋆) by grid search over a chosen
range. While this approach offers no guarantees for the objective of Eq. 5, it
often works well in practice.

2.4 Overall Algorithm

Algorithm 1 shows the pseudocode for GraphWeave. We first build the RWTs
for the graphs in G. Then, we train a transformer to reverse each step of the
observed RWTs. To generate a graph, we first generate a realistic degree dis-
tribution. The degree distribution gives us the ending vector v̄k (Theorem 1).
Starting from v̄k, we generate RWTs in reverse order by repeatedly applying the
transformer (Eq. 2). Finally, we infer the graph corresponding to the generated
RWTs by solving Equation 5. We can generate multiple graphs by reusing the
transformer with different degree distributions.

Implementation details: For the binning function, we use B(v) := ⌊c(v −
µ)/σ⌋, where µ and σ are the mean and standard deviation of all vector entries
in the training set, c is a parameter that controls the number of bins, and the
binning function is applied elementwise to v. In our experiments, we set c = 3,
α = 0.9, and k = 10. For the set of functions F , we use power laws: F = {f :
R+ → R+; f(d) = dβ , β ∈ {±1,±2}}. We also simplify the form of E ′(f, j) by
adding an embedding of f(·) and and embedding of j.

Computational complexity: We first consider the cost of training. We con-
struct |F|×|G| RWTs. For each RWT, the main cost is the k sparse-matrix-vector
multiplications Lvj . This takes O(kE) time, where E is the maximum number
of edges in any graph in G. Hence, creating RWTs takes O(|F||G|kE) time. To
train the transformer, we have k|F||G| input vectors from the RWTs. For each
vector, the attention mechanism considers O(n2) pairs, where n is the maximum
number of nodes. Each pair has a cost proportional to the embedding dimension
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Algorithm 1 GraphWeave
1: function GraphWeave(G,F , α, k)
2: R← ∪A∈G ∪f∈F RWT (A, f, α, k)
3: D ← {(vj ,vj+1);vj → vj+1 in some RWT in R}
4: Define B : R→ [K] ▷ Binning function with K bins
5: Define B(v) := [B(v1), B(v2), . . . , B(vn)]

T for any v ∈ Rn

▷ Learn to reverse RWTs
6: Define E : [K]→ Rm ▷ value embedding function
7: Define E ′ : |F| × k → Rm ▷ setting embedding function
8: Define TΦ ← Transformer : Rn×m → Rn×m for any n
9: PΦ,Ψ (v, j, f)← ProjectΨ (TΦ(v ⊗ E(B(v)) + 1⊗ E ′(f, j)))

10: Φ, Ψ, E , E ′ ← argmin
∑

(vj ,vj+1)∈D (PΦ,Ψ (vj+1, f, j + 1)− vj)
2

▷ Generate degree distribution
11: G← sample graph from G
12: {di} ← Perturbed degree distribution of G
13: d′i ← (1− α)di + α for all nodes i

▷ Generate RWTs
14: V1, V2 ← ϕ
15: for all f ∈ F do
16: v̄k ← γ

√
d′ ▷ d′ has entries d′i; γ is from Theorem 1

17: v̄k−j ← PΦ,Ψ (v̄k−j+1, f, k − j + 1) for j = 1, 2, . . . , k − 1
18: V1 ← V1 ∪ {v̄j ; j = 1, . . . , k − 1}
19: V2 ← V2 ∪ {v̄j+1; j = 1, . . . , k − 1}
20: end for

▷ Infer graph
21: A← solve Equation 5 using V1 and V2

22: return unweighted graph with adjacency matrix A
23: end function

m. We assume that the transformer’s size is fixed (i.e., O(1) layers and heads).
So, the cost of training the transformer is O(|F||G|kn2m), and this is also the
overall cost of training.

To generate a graph, we create its RWTs via k|F| passes of the transformer.
Each pass takes O(n2m) time. Since Integer Linear Programs (Eq. 5) can have
variable costs, we instead analyze the convex optimization (Eq. 6). To generate a
graph of n nodes requires O(n2) parameters. The main cost is in computing the
matrix-matrix product of V1 (size k|F| × n and (D′)−1/2Ã(D′)−1/2 (size n× n)
in the objective. Assuming we run gradient descent for a fixed number of steps,
the convex optimization takes O(MatMult(k|F|×n, n×n)) time. The threshold
step (Eq. 7) costs O(n2) for grid search. Hence, the total cost of generation is
O(k|F|n2m+ MatMult(k|F| × n, n× n)) = O(k|F|n2m).

Note that the dominant costs are training a transformer, matrix multiplica-
tion, and convex optimization. There are fast off-the-shelf libraries for all three.
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3 Experiments

We ran experiments to compare the quality of graph generated by GraphWeave
against state of the art competing methods.

Comparison metrics: We consider measures of node centrality (degree and
Pagerank), local neighborhoods (clustering coefficient and ORBIT scores), qual-
ity of random partitions (cut-size, conductance, and modularity), connectivity
between random node pairs (max-flow and resistance), and overall connectivity
(if the graph is connected or not). Apart from overall connectivity, each measure
results in a vector ϕ(G) for any graph G (e.g., the vector of node degrees, or the
modularities of 100 random partitions). We then compute the relative error

errorϕ(Ggen | Gtest) :=

∣∣∣∣∣
∑

Gi∈Ggen,Gj∈Gtest
distance(ϕ(Gi), ϕ(Gj))∑

Gi,Gj∈Gtest
distance(ϕ(Gi), ϕ(Gj))

× |Gtest|
|Ggen|

− 1

∣∣∣∣∣ ,
(8)

where Ggen is the set of generated graphs, Gtest the set of test graphs from the
same family as the training data, and the distance function is the Wasserstein
metric between any two vectors ϕ(Gi) and ϕ(Gj). If the generated graphs fit the
test distribution, the error is close to 0.

Competing methods: We compare GraphWeave against several state of the
art methods: DiGress [17], GSDM [11], GRASP [14] GDSS [8], and GraphRNN [19].
Apart from GraphRNN, which is an autoregressive model, all the others use dif-
fusion. These methods are recent, and have been shown to outperform older
methods. Hence, we compare GraphWeave against these methods.

Simulated datasets: We consider four types of simulated graphs: (a) a stochas-
tic blockmodel with 3 communities containing 50%, 30%, and 20% of the nodes,
and a connection probability of 0.8 for nodes in the same community and 0.3
otherwise, (b) a Watts-Strogatz model with 4 edges per node and a rewiring prob-
ability of 0.3, (c) a Barabasi-Albert preferential attachment model, and (d) a
expected-degree random graph model, whose degrees are the same as the Stochas-
tic Blockmodel.

Real-world datasets: We also tested our method on five real-world benchmark
datasets. These include (a) Cora (b) Citeseer, and (c) Pubmed, where the nodes
represent documents and edges represent citation relationships from which we
extract 3-hop ego networks [15]. We also use (d) Proteins, containing molecular
graphs with 100 to 500 nodes in each graph [4], and (e) QM9, comprising stable
organic molecules with up to nine heavy atoms [18].

Experimental settings: For each dataset and each method, we train on 100
graphs and then generate (at least) 40 graphs. We compute various comparison
metrics for each of the generated graphs, and compare them against unseen test
graphs from the same dataset using Eq. 8.

Quality of graph generation: Table 1 compares all competing methods for
the simulated datasets. We find that GraphWeave generally outperforms the
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DiGress 0.10 0.42 ✓ 3.15 0.14 0.11 1.16 2.90 1.50 1.74
GSDM 18.14 11.77 × 35.78 8.67 24.15 31.13 19.65 19.29 791.98
GDSS 2.66 0.34 ✓ 23.79 0.53 4.13 22.14 16.54 11.79 28.65
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Table 1: Comparison on simulated datasets: The quality of the generated graphs
is measured via Eq. 8 (lower is better). GraphWeave outperforms other meth-
ods, especially for the large-scale metrics like degree distributions, cut sizes,
conductance, and max-flow. Also, GraphWeave and GDSS are the only meth-
ods that always generate connected graphs.

competing methods in measures of large-scale graph structures. For example,
GraphWeave excels are predicting node degrees and cut sizes. GraphWeave
is also the best or close to the best for other metrics such as modularity, max-
flow, and resistance. The closest competing method is DiGress, but DiGress
sometimes generates disconnected graphs. In contrast, GraphWeave always
generates connected graphs. Also, GraphWeave is significantly faster than Di-
Gress, as we show later.

GraphWeave does particularly well for the Stochastic Blockmodel family
of graphs. This is because such graphs show large-scale community structure,
and random walks can pick up such structure.

Table 2 compares the quality of all competing methods on the real-world
datasets. The results mirror those for the simulated datasets. For large-scale
measures such as the distribution of cut sizes, GraphWeave is the best on
all datasets. Furthermore, it is either the best or close to the best for degree
distributions, Pagerank centrality distributions, conductance, and modularity.

Effect of optimization: We compared our two optimization approaches: the
Integer Linear Program of Eq. 5 (Integer), and the convex relaxation with round-
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DiGress 1.73 0.10 0.99 0.12 0.09 1.06 0.25 1.63 0.05
GSDM 0.34 0.13 7.53 0.20 0.38 1.40 5.37 41.11 2.13
GDSS 0.01 0.11 32.23 0.35 0.60 1.70 95.62 117.72 2.26

GRASP 0.03 5.30 0.71 0.85 1.27 1.14 0.47 7.15 0.77
GraphRNN 13.13 0.02 0.20 0.44 0.07 1.08 0.30 3.26 7.18

GraphWeave 0.01 0.02 0.18 0.11 0.07 0.67 0.16 0.18 0.69
DiGress 10.25 0.04 0.36 0.07 0.45 0.43 0.45 1.06 0.18
GSDM 0.37 0.16 4.04 0.02 0.06 1.02 4.07 15.79 1.42
GDSS 0.00 0.28 14.71 0.05 0.20 1.65 80.79 51.05 1.57

GRASP 0.02 17.31 0.21 2.65 3.45 1.45 0.98 0.67 0.21
GraphRNN 11.50 0.15 0.26 0.13 0.04 0.38 0.20 1.07 6.83

GraphWeave 0.07 0.07 0.03 0.11 0.07 0.26 0.03 0.06 0.01
DiGress 8.87 0.04 0.60 0.02 0.08 1.19 0.24 0.99 0.64
GSDM 0.21 0.13 3.71 0.02 0.10 1.49 8.30 20.45 1.41
GDSS 0.11 0.13 11.42 0.09 0.27 2.02 90.31 54.23 1.54

GRASP 0.08 0.79 2.45 0.23 0.32 1.87 16.37 13.13 0.75
GraphRNN 14.09 0.10 0.24 0.17 0.00 1.32 0.05 1.91 3.95
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DiGress 0.06 0.01 0.11 0.27 0.23 0.35 0.08 0.14 0.04
GSDM 0.25 0.03 2.60 0.98 0.76 1.76 4.09 3.19 0.91
GDSS 0.09 0.20 0.85 0.61 0.48 0.94 1.22 1.01 0.30

GRASP 0.01 0.11 0.06 0.54 0.39 0.03 0.12 0.19 0.03
GraphRNN 0.01 0.09 0.22 0.63 0.38 0.64 0.39 0.29 0.03

GraphWeave 0.03 0.00 0.02 0.39 0.31 0.47 0.06 0.33 0.07
DiGress 5.94 0.33 1.03 1.87 3.41 7.19 4.64 4.17 0.61
GSDM 0.74 0.00 10.20 0.10 0.75 3.74 2254.53 35.68 1.63
GDSS 0.78 0.01 36.58 0.19 1.11 2.95 22210.10 96.64 1.69

GRASP 0.89 31.57 2.51 14.43 8.98 5.40 1010.18 10.48 0.60
GraphRNN 2.30 0.16 0.24 0.19 0.06 4.88 1.51 4.01 12.04

GraphWeave 0.01 0.03 0.00 0.04 0.06 5.62 2.33 0.66 3.25
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Table 2: Comparison on real-world datasets (lower is better). GraphWeave is
best, or close to best, for most measures and datasets.

ing of Eqs. 6 and 7 (Convex). We also considered a baseline (Random) that picks
a random graph with the same degrees as Integer. The comparison metric is
the objective function of Equations 5 and 6, which measures how closely the
generated graph matches the desired RWTs.

Table 3 shows that Integer is between 20% − 55% better than Convex, and
both are significantly better than Random. The difference between Integer and
Convex is because the latter needs to threshold edges from [0, 1] to {0, 1}. This
thresholding step (Eq. 7) can increase the error in RWT reconstruction.

Wall-clock time: Figure 3 compares the wall-clock times for the various meth-
ods. We see that GraphWeave has the fastest training time, and has reasonable
generation time. Furthermore, GraphWeave is 10x faster than its closest com-
petitor (DiGress).
Sensitivity Analysis: We investigate the sensitivity of our measures to vari-
ations in the hyperparameters c, α, and k. Recall that c controls the num-
ber of bins in the binning function B(v), α smoothes the RWTs, and k is the
length of an RWT. All the previous experiments used the baseline setting of
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Improvement of Stochastic Blockmodel Preferential Attachment
Integer over 50 nodes 100 nodes 200 nodes 50 nodes 100 nodes 200 nodes

Convex 31% 57% 18% 58% 47% 21%
Random 80% 91% 82% 79% 67% 55%

Table 3: Fidelity: of RWT reconstruction: The graph generated by the Integer
Linear Program (Eq. 5) is significantly better than the alternatives.

(a) Training time (b) Generation time

Fig. 3: Wall-clock times: GDSS is much slower, and is not shown.

(c = 3, k = 10, α = 0.9). We ran experiments varying one hyperparameter at a
time. We report all metrics normalized relative to their values in the baseline
setting. Hence, a normalized value greater than 1 implies worse performance
than the baseline, and lower than 1 implies better performance.

Figure 4 summarizes these results. In each plot, the horizontal red line at
1 indicates the baseline level. Deviations from this line indicate how strongly a
given metric is affected by changing the corresponding parameter. Overall, no
hyperparameter setting dominates the baseline setting. We also observe that:

– Varying c mainly affects cut sizes and resistance. Higher the value of c,
better the performance for cut sizes.

– Varying α has a more pronounced effect, particularly at α = 0.99, where
several metrics (e.g., pagerank, resistance) exhibit large deviations from base-
line. Thus, too much smoothing can negatively affect GraphWeave’s per-
formance.

– Varying k impacts cut sizes and resistance more than other metrics. This
is similar to the effect of varying c.

4 Related Work

Graphs can be generated by autoregressive models, normalizing flow-based mod-
els, VAEs, GANs, and diffusion-based methods. We discuss these below.
Autoregressive models: These generate graphs sequentially by adding one
node or edge at a time. Each step considers the previously generated structure.
The underlying method can be a recurrent neural network like GraphRNN [19]),
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Fig. 4: Sensitivity of normalized graph metrics to hyperparameter variations.
Each metric is normalized to 1 at the baseline (c = 3, k = 10, α = 0.9), and
deviations from 1 indicate sensitivity to the corresponding parameter.

or attention mechanisms like GRAN [10], or a combination with diffusion like
GraphARM [9]. However, autoregressive models are often sensitive to node or-
derings, and node permutations can lead to divergent generation paths.
Normalizing flows: These methods provide a reversible transformation be-
tween graphs and a latent distribution, enabling easy likelihood computation.
GraphNVP [12] uses flows for molecule generation. GraphAF [16] introduces
improvements to improve the quality and validity of the generated graphs.
VAEs and GANs: A VAE maps a graph to a latent space, and can recon-
structs the graph from a latent embedding via probabilistic decoders [7]. GANs
have also been applied to graph generation [2]. SPECTRE [13] integrates spec-
tral features to enhance the GAN’s expressivity. MolGAN [3] extends GANs for
molecular graph generation by incorporating reinforcement learning. However,
many GAN-based models suffer from training instability and mode collapse,
making them less reliable for diverse graph distributions. Also, the black-box
nature of adversarial training makes them hard to interpret [6].
Diffusion models: Buoyed by the success of diffusion for image generation,
these methods have come to the fore recently. GDSS [8] leverages a system of
stochastic differential equations to jointly learn node and edge distributions.
DiGress [17] introduces a discrete diffusion model that edits node and edge
attributes through Markov transitions. GSDM [11] applies diffusion on the spec-
trum of the adjacency matrix, while GRASP [14] focuses on the spectrum of the
Laplacian. While these methods are the state of the art, we show that Graph-
Weave outperforms them, particularly for large-scale structures like the dis-
tribution of cut sizes of random partitions and node Pagerank distributions.
Furthermore, GraphWeave is faster than its closest competitors.
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5 Conclusions

To the question “How can we generate a graph with the right patterns?”, we
give a two-step answer: first generate the patterns, then optimize the graph. We
choose to focus on patterns that we can learn from random walks. The reason
is that many downstream applications use random walks, so graphs generated
this way can have a significant impact. The optimization step makes the graph
robust to noise in the generated patterns. It also lets us impose constraints on
the graph, such as desired degree distributions.

GraphWeave puts this idea into practice via a fast, interpretable, and sim-
ple algorithm. GraphWeave learns to predict random walk trajectories, which
show how random walks transform a vector of node attributes. Then, using this
predictor, we generate new trajectories. Finally, we find the optimal graph that
fits these trajectories. The algorithm only requires a transformer and an op-
timizer. Experiments on several simulated and benchmark datasets show that
GraphWeave outperforms the state of the art, and is among the fastest meth-
ods.
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A Smoothed Normalized Adjacency Matrix

Lemma 1. Let A, d′i, and L be defined as in Definition 1. Let D′ = diag(d′i).
Let β1 ≥ · · · ≥ βn be the eigenvalues of L. Then, β1 = 1 with the corresponding
eigenvector being (D′1/21)/∥D′1/21∥, and βn > −1.

Proof. We have L = D′−1/2 ((1− α)A+ αI)D′−1/2. Since A1 = D1, we have
LD′1/21 = D′−1/2((1− α)A+ αI)1 = D′−1/2((1− α)D + αI)1 = D′1/21. So, 1
is an eigenvalue of L with eigenvector (D′1/21)/∥D′1/21∥. To show that it is the
largest eigenvalue, we show that I − L is positive semidefinite. We have

I − L = D′−1/2(D′ − (1− α)A− αI)D′−1/2 = (1− α)D′−1/2(D −A)D′−1/2

= (1− α)D′−1/2D1/2(I −D−1/2AD−1/2)D1/2D′−1/2.

Now, D and D′ are positive definite, and so is I −D−1/2AD−1/2, since

xT (I −D−1/2AD−1/2)x =
∑
i

x2
i −

∑
(i,j)∈E

2x(i)x(j)√
d′id

′
j

=
∑

(i,j)∈E

 x(i)√
d′i

− x(j)√
d′j

2

≥ 0,

for any x. So I −L is positive semidefinite. Similarly, we show that L’s smallest
eigenvalue is greater than −1 by showing that I + L is positive definite.

I + L = D′−1/2(D′ + (1− α)A+ αI)D′−1/2 = (1− α)D′−1/2(D +A)D′−1/2 + 2αD′−1

= (1− α)D′−1/2D1/2(I +D−1/2AD−1/2)D1/2D′−1/2 + 2αD′−1.

The second term is positive definite. The first term is positive semidefinite since

xT (I +D−1/2AD−1/2)x =
∑

(i,j)∈E

 x(i)√
d′i

+
x(j)√
d′j

2

≥ 0.


