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Abstract. Binary Neural Networks (BNNs) offer a highly efficient al-
ternative to traditional deep learning models by drastically reducing
memory and computational demands, making them well-suited for de-
ployment in resource-constrained environments like edge devices. De-
spite their efficiency, BNNs are often limited by inaccurate and unsta-
ble gradient estimation using traditional Straight Through Estimator
(STE) methods, which disrupt gradient flow and impede convergence.
BinaryConnect introduced STE to approximate the gradients of the sign
function; however, this approximation causes significant inconsistencies,
ultimately compromising training stability. While various methods have
been proposed to address these issues, many fail to consider that mini-
mizing estimation error can inadvertently reduce gradient stability. Such
highly divergent gradients can increase the risk of vanishing or exploding
gradients, thereby hindering effective training. In this paper, we propose
two novel Adaptive Blended Straight Through Estimators (AB-STE):
AB-ArcTan-STE and AB-Tanh-STE. Unlike previous methods, AB-STE
blends a linear component with a non-linear function to provide both sta-
bility and expressiveness during training, addressing key challenges faced
by BNNs. By combining the simplicity of linearity with the representa-
tional power of non-linearity, AB-STE maintains a balanced gradient
flow throughout training, ensuring both stability and effective learning.
Extensive experiments on CIFAR-10 and ImageNet demonstrate that
AB-STE achieves superior performance, surpassing existing state-of-the-
art methods. Specifically, our AB-Tanh-STE achieved an accuracy of
94.60% on ResNet-18 for CIFAR-10, and a Top-1 accuracy of 67.96%
on ImageNet, demonstrating the effectiveness of our adaptive blending
strategy in enhancing training stability and accuracy. Notably, the pa-
rameters were binarized to achieve efficiency while maintaining stable
gradient flow.

Keywords: Binary Neural Networks (BNNs) - Straight Through Esti-
mator (STE) - Gradient Estimation - Quantization - Deep Learning.

1 Introduction

Deep neural networks (DNNs), particularly convolutional neural networks (CNNs),
have achieved remarkable success across a wide range of computer vision tasks,
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Fig. 1: Proposed framework for AB-STFE

such as image classification |2L|3], object detection [4,/5], and semantic segmen-
tation [6]. Despite their success, the deployment of these models on resource-
constrained edge devices, like mobile phones, smartwatches, and cameras, is
challenging due to their large number of parameters and high computational de-
mands. To address these challenges, binarizing DNNs has emerged as a promising
approach, providing a significant reduction in memory footprint and computa-
tional costs [7]. Binarizing the parameters of DNNs makes them easier to deploy
on hardware since convolution operations can be implemented as efficient bit-
wise operations |9]. However, a major challenge in binarization is the inability to
propagate gradients effectively through binary activations, which leads to poor
model accuracy and hinders the training of deep architectures [10L[11].

BinaryConnect [7] and BinaryNet [8] were among the first approaches to bina-
rize both weights and activations. These methods employed the straight-through
estimator (STE) to approximate the gradients of the sign function during back-
propagation, which led to significant improvements in training binarized net-
works. However, the inconsistency between the forward pass (binarizing weights
and activations) and the backward pass (approximating gradients) introduces a
critical problem, leading to poor gradient flow and reduced accuracy in deeper
networks. To mitigate the issues caused by traditional STE, ReSTE |[1]| proposed
a balanced approach to stabilize gradients similar to STE, while incorporating
flexibility through a power function. However, ReSTE’s effectiveness is limited
near zero values, resulting in gradients that are not sufficiently smooth. Although
previous methods attempted to narrow the estimation error, they often led to



Adaptive Blended Gradient Estimation 3

divergent gradients. This motivated our design of AB-STE, which introduces an
adaptive approach to ensure both stability and effective gradient flow.

The proposed Adaptive Blended Straight Through Estimator (AB-STE) em-
ploys a blend of two components: a linear component for stability and a non-
linear component for expressiveness, which approximates the sign function. This
adaptive blend evolves throughout training to maintain gradient stability while
enhancing the model’s representational capacity. In the initial phase, the forward
function, F'(x), behaves similarly to a linear function (y = x), providing stability
with low gradient magnitudes for the backward function, F’(x). As training pro-
gresses, F'(x) evolves to approximate the non-linear characteristics of the sign
function, resulting in higher gradient magnitudes through F’(z). This progres-
sion enhances the model’s ability to learn more complex representations while
maintaining a stable gradient flow. Fig. [I] illustrates the training framework of
AB-STE, highlighting how the adaptive evolution of F(x) and F’(z) helps im-
prove both stability and learning during different training stages. Our function
moves from a simple linear approximation to a more step-like behavior, while
maintaining smooth gradients throughout backpropagation to support effective
training. We further illustrate the forward and backward passes of the proposed
estimator in Fig.[2] The plots demonstrate how our function transitions from an
initial STE-like behavior to a more refined step-function approximation over the
course of training while maintaining smooth gradients throughout. This ensures
both effective approximation and stable gradient flow, facilitating robust and
efficient model training.

The main contributions of this paper are as follows:

Adaptive Blended Straight-Through Estimators (AB-STE): We pro-
pose two novel adaptive blended estimators, AB-Tanh-STE and AB-ArcTan-
STE, which combine linear and non-linear components to stabilize and improve
gradient flow during BNN training.

Enhanced Gradient Stability and Smoothness Our approach addresses
the inconsistency problem in traditional STE methods by balancing gradient
smoothness and stability, reducing the risk of vanishing or exploding gradients.

Blended Function for Forward and Backward Passes The proposed
blended function incorporates a linear component for stability and a non-linear
component for expressiveness, enabling the transition from STE-like behavior to
step-function approximation during training.

Extensive Experimental Validation Experiments conducted on CIFAR-
10 and ImageNet datasets demonstrate the superior performance of AB-STFE
compared to existing state-of-the-art estimators for BNNs.

Open-Source Implementation We provide an open-source implementa-
tion of AB-STE (https://github.com/sid-3dev/AB_STE) to encourage repro-
ducible research and further development in efficient neural network training.

The remainder of this paper is organized as follows: Section [2| reviews the
state-of-the-art techniques for DNN binarization. Section [3] introduces our pro-
posed methods and their theoretical analysis, followed by the results and analysis
in Section [d Finally, Section [5] provides concluding remarks and insights.
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Fig. 2: An intuitive illustration of adaptive blending of linear smooth components
to show how our function moves from STE to Sign function approximation while
keeping the gradient smooth during backpropagation for improved BNN training.

2 Related Work

Network binarization seeks to enhance the speed of neural network inference
while significantly reducing memory requirements, all with minimal accuracy
loss. One effective strategy to achieve this is by employing bitwise operations
in low-precision networks. By converting 32-bit parameters such as weights and
activations into binary form, computational efficiency is considerably boosted,
and memory consumption is greatly decreased. BinaryConnect [7] and Bina-
ryNet [8] were pioneering approaches that focused on binarizing network weights
and both weights and activations, respectively, for use during both training and
inference. These works utilized straight-through estimators to enable training
of deep neural networks with binarized parameters, particularly addressing the
non-differentiability issue that arises during the binarization process. In bina-
rized neural networks, weights and activations are often represented using a
sign function, which complicates gradient computation through standard back-
propagation due to its discontinuous nature. To circumvent this problem, STE
approximates the backward gradient, allowing effective network training. During
the forward pass, a binarization function such as the sign function is used:

xp = sign(x) = (1)

+1 ifz>0
-1 ifx<0

However, the gradient of this function is zero almost everywhere, making
it unsuitable for backpropagation. In STE, the gradient is approximated in a
simpler form, treating the forward binarization as an identity function during
the backward pass. This can be mathematically represented as:

0oL 0L

o ~ 8—% “1yz<1 (2)
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where L is the loss function, x; is the binarized version of x, and 1|,<; is
an indicator function that constrains the gradient to pass through values of = in
the range [—1, 1]. This simple approximation effectively allows gradients to flow
through the network, enabling the model to learn and adapt weights despite the
non-differentiable nature of the binarization step. Using STE, the model can be
trained to achieve comparable accuracy to its full-precision counterpart, while
greatly benefiting from reduced complexity and memory footprint.

Despite the use of STE, the accuracy of binary networks remains significantly
lower compared to their full-precision counterparts. Various strategies have been
proposed to address this issue. |12] introduced architectural changes to enhance
the expressiveness of binary networks, though these improvements depend heav-
ily on modifying network architecture. Other methods, such as knowledge distil-
lation and additional regularizations [13,/14], aim to improve training but often
result in increased computational costs during training.

Many studies have focused on improving gradient estimation in binary neu-
ral networks (BNNs). For instance, Bi-Real-Net |12] employs a piece-wise poly-
nomial, DSQ [15] introduces a tanh-based function, IR-Net uses an error decay
estimator function, and FDA [16] applies Fourier series to improve gradient com-
putation. While these methods have demonstrated good performance, they often
overlook the importance of gradient stability. Reducing estimation error too ag-
gressively can lead to highly divergent gradients, increasing the risk of gradient
vanishing or exploding, which ultimately impairs effective training.

The authors of ReSTE [1| proposed a method for stable gradient calculation;
however, the resulting gradient space is not smooth, which limits training capa-
bility during binarization. To address these challenges, we propose an Adaptive
Blended Straight-Through Estimator (AB-STE). Compared to other es-
timators, our approach provides stable training with smooth gradients, resulting
in better overall performance. Extensive experiments show that our method sur-
passes existing state-of-the-art methods, effectively addressing both the gradient
stability and smoothness challenges in binarized networks.

3 Proposed Techniques

3.1 Adaptive Blended Straight Through Estimator (AB-STE)

The authors of ReSTE [1] demonstrate that the sign function and STE represent
two extremes in terms of gradient stability. The sign function has zero gradients
almost everywhere and an infinite gradient at the origin, leading to either van-
ishing or exploding gradients, resulting in high gradient instability. In contrast,
STE approximates the gradients of the sign function using a linear function,
which does not alter the backward gradient during estimation.

Considering these characteristics, we designed an estimator for gradients that
balances stability and expressiveness. Therefore, we introduce a blend of linearity
and non-linearity in the estimator that aims to reduce the discrepancy between
forward and backward computations. Eq. represents the forward pass for the
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Fig.3: Showing the behaviour of Advaptive Blended Tanh based Straight
Through Estimator (AB-Tan-STE) with different factor (f) values

proposed AB-STE. By incorporating a blending factor f and a tunable scaling
parameter k, the model can adaptively adjust the ratio between the linear and
tanh components based on the training dynamics, allowing a more flexible and
accurate representation of the gradients.

F(z)=(1—-f)-x+ f-tanh(kx) (3)

where f controls the blend between the linear and non-linear parts, and
k is a scaling factor for . When f = 0, this blending function behaves as a
standard STE, and when f = 1, it functions similarly to the tanh function (as
an approximation of the sign function). During training, we start with low values
of f and gradually increase it as the number of epochs progresses. This approach
allows us to initially leverage the stability of STE and gradually incorporate the
expressiveness of the tanh function. In Fig. [3] we illustrate the changes in the
function as f changes. It can be observed that F'(z) behaves more like an STE
when f is small and more like a sign function as f increases.

backward pass function F'(x) is given by:

F'(z) = (1— f)+ f - k- sech?(kx) (4)

Fig. [3 also shows the derivative F'(z). As f increases, F'(x) provides a high
and smooth peak near zero, indicating the function’s ability to effectively cal-
culate gradients throughout training, thereby ensuring gradient stability and
reducing the risk of gradient vanishing or exploding. Furthermore, we introduce
another adaptive blended function for straight-through estimation called AB-
ArcTan-STE. This estimator blends a linear function with an arctan function,
as defined in Eq. . The use of the arctan function in this blend aims to extend
the range of the resulting function, which allows the model to retain gradient
information over a broader spectrum of input values. This makes the estimator
more effective, particularly when handling larger values of . The arctan function
also provides a more gradual gradient decay, contributing to increased stability
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Algorithm 1 Adaptive Blended Straight-Through Estimator (AB-STE)

Input:Training dataset: X, epochs: NN, learning rate: 7, initial blending factor: fo,
scaling parameter: k

Initialize model parameters 6

forepoch =1... N

forbatch B C X

Forward Pass: Compute activations using the sign function:

y < sign(z)

Calculate loss L(0) using output y
Backward Pass: Compute gradient of the loss with respect to parameters using the
blended gradient function:

F'(z) < (1 — f)+ f - k-sech®(kz) (for AB-Tanh-STE)
F'(x) + 1 ; f + arctan(Qk)f' (f+ D) (for AB-ArcTan-STE)

Use F'(x) to compute parameter gradients (not applied to activations)
Update model parameters using stochastic gradient descent:

0 0—n-VoL(0)

Update blending factor f (e.g., linearly or exponentially increase f with epochs)

and smoother gradient flow during training. The backward pass of AB-ArcTan-
STE is presented in Eq. @

17 f
Fz) = 2 T arctan(2k) “arctan(k - 7) )

= 1S L
F (l‘) = 5 + arctan(Qk) . (1 + (k . .’17)2) (6)

arctan(z) is the angle between —% and 7 radians whose tangent is .

Further, we present an Algorithm [I]that utilizes the Adaptive Blended Straight-
Through Estimator (AB-STE) for training binarized models. In the forward pass,
activations are computed using the sign function to maintain binarized represen-
tation. During the backward pass, a blended gradient function F’(x), combin-
ing linear and non-linear components, is used to compute parameter gradients,
enabling smooth and adaptive gradient updates. The blending factor f is grad-
ually increased throughout training to transition from stable linear gradients to
more expressive non-linear gradients, effectively balancing stability and learn-
ing capacity. This approach helps mitigate gradient instability, ensuring efficient
training of binarized models.
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3.2 Theoretical Analysis of Adaptive Blended Straight-Through
Estimator (AB-STE)

We provide a theoretical analysis of the proposed Adaptive Blended Straight
Through Estimator, focusing on stability, convergence, and gradient properties.
Specifically, we analyze the impact of the blending factor f and scaling parameter
k on gradient flow, stability, and convergence.

Gradient Stability and Variance Lemma 1 (Gradient Stability): The
variance of the gradient F’(x) decreases as the blending factor f increases from
0 to 1, resulting in a smoother gradient update.

Proof:

1. Consider the derivative function F’(x). The variance Var(F’(x)) depends on
the value of f and the distribution of the input x.

. When f =0, F'(x) = 1, which results in no variance in gradient values.

3. When f > 0, the variance of F’(z) depends on the contribution of the term
f -k -sech?(kx).

4. Since sech?(kz) is bounded between 0 and 1, the variance of the gradient
is limited and depends on f and k. As f increases, the contribution of the
non-linear term becomes more prominent, resulting in a more stable and
smoothed gradient.

[\V]

Implication: This analysis indicates that increasing the blending factor f results
in a more stable gradient update, which is crucial for reducing the risk of sudden
changes in gradient values, thus improving overall training stability.

Smoothness of Gradient Flow The smoothness of the gradient is crucial to
avoid vanishing or exploding gradients during training. The smoothness property
of the proposed estimator is analyzed using the second-order derivative of F'(z).
Lemma 2 (Smoothness of Gradient Flow): The gradient F’(z) of AB-
STE is Lipschitz continuous with a Lipschitz constant that depends on the blend-
ing factor f and the scaling parameter k.
Proof:

1. The second derivative of F(z) is given by:
F"(z) = f- k% sech®(kz) - tanh (k)

2. The Lipschitz constant L for F’(x) can be bounded by the maximum value
of |[F"(x)]:
L<f K
3. Since f € [0,1] and sech?(kz) < 1, the Lipschitz constant depends linearly on
f and quadratically on k. This implies that the smoothness of the gradient
increases with smaller values of k, while larger values of k can result in
sharper changes in gradient, potentially causing instability.

Implication: Ensuring that the Lipschitz constant is appropriately controlled
helps maintain smooth gradient flow, thereby reducing the risk of gradient ex-
plosion or vanishing, particularly in deep networks.
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Gradient Flow Improvement Furthermore, when f — 1, the gradient F”'(x)
has a peak near zero that helps maintain sufficient gradient flow through the lay-
ers, especially during backpropagation. This prevents gradients from vanishing
in deeper layers and improves convergence.

In summary, the theoretical analysis shows that AB-STE effectively main-
tains gradient stability and smoothness through careful control of the blending
factor f and the scaling parameter k. The variance of the gradient F’(x) is re-
duced as f increases, ensuring stable updates, while the Lipschitz continuity of
F'(z) guarantees smooth gradient flow, reducing the risk of vanishing or ex-
ploding gradients. By gradually increasing f, AB-STE ensures effective gradient
flow throughout the network, leading to improved convergence during training,
particularly for deep binarized models.

4 Experimental Setup and Results

4.1 Datasets and Training Setup

This study uses two popular datasets commonly employed in the binary neural
network literature: CIFAR-10 [18] and ImageNet ILSVRC-2012 [17].

The CIFAR-10 dataset consists of 50,000 training images and 10,000 testing
images across 10 categories, with each image having a resolution of 32 x 32 and
three RGB color channels. The ImageNet ILSVRC-2012 dataset is a large-scale
dataset with over 1.2 million training images and 50,000 validation images, each
at a resolution of 224 x 224, covering 1,000 categories.

To ensure a fair comparison with existing methods, we adopted similar train-
ing settings as other binary methods |14/19/20]. We used pre-processing techniques
such as RandomCrop, RandomHorizontalFlip, and Normalize for both CIFAR-
10 and ImageNet. The models were trained using Stochastic Gradient Descent
(SGD) with an initial learning rate of 0.1, and a cosine learning rate decay
schedule was employed to gradually reduce the learning rate during training.

For CIFAR-10, the models were trained for 1,000 epochs, while for ImageNet,
training was conducted for 250 epochs. The hyperparameter k, which controls
the iterative nature of the adaptive blending, was fixed at 10 throughout the
experiments. We varied the blending factor f between 0.2 and 0.8 to study its
impact on training performance and gradient stability. Importantly, parameter
quantization was employed during training, whereas activations were kept at
full precision to maintain expressive feature representations and ensure stable
gradient flow.

4.2 Results and Analysis

The proposed Adaptive Blended Straight-Through Estimators (AB-STE) were
evaluated using the CIFAR-10 and ImageNet datasets, focusing on both accu-
racy and training stability compared to the existing state-of-the-art methods.
In these experiments, we applied parameter binarization while retaining full-
precision activations, which allowed us to effectively maintain gradient stability
and minimize the impact of quantization on the training dynamics.
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Results on CIFAR-10 Table [Il summarizes the results of the CIFAR-10 ex-
periments across different architectures, including VGG-small, ResNet-18, and
ResNet-20. We compare our proposed AB-Tanh-STE and AB-ArcTan-STE with
other established methods like DoReFa-Net [20], IR-Net [19], and ReSTE [1]. Our
AB-Tanh-STE and AB-ArcTan-STE consistently demonstrated performance that
was comparable to or better than the current state-of-the-art methods.

The AB-Tanh-STE method, in particular, achieved the highest accuracy
across all three architectures, with an accuracy of 93.16% on VGG-small and
94.60% on ResNet-18, which were very close to their floating-point counterparts.
This highlights the effectiveness of our adaptive blending strategy in maintaining
stability while achieving high accuracy, despite parameter binarization.

Table 1: Accuracy Comparison on CIFAR-10 Across Different Architectures.
The proposed AB-Tanh-STE and AB-ArcTan-STE methods consistently achieve
competitive accuracy compared to floating-point and state-of-the-art binary
methods, using parameter quantization while keeping activations at full pre-
cision.

Architecture Method Accuracy (%)
VGG-small Floating Point 93.30
DoReFa-Net [20] 92.13
IR-Net [19] 90.92
ReSTE 1] 92.53
AB-Tanh-STE (ours) 93.16
AB-ArcTan-STE (ours) 93.00
ResNet-18 Floating Point 94.86
DoReFa-Net [20] 94.13
IR-Net [19] 94.33
ReSTE [i] 93.68
AB-Tanh-STE (ours) 94.60
AB-ArcTan-STE (ours) 94.18
ResNet-20 Floating Point 91.74
DoReFa-Net [20] 90.79
IR-Net [19] 91.03
ReSTE 1] 91.32
AB-Tanh-STE (ours) 91.54
AB-ArcTan-STE (ours) 91.12

Results on ImageNet The results on the ImageNet dataset are presented in
Table 2] For ResNet-18, our methods show clear improvements in Top-1 and
Top-5 accuracy compared to previous estimators. Specifically, AB-Tanh-STE
achieved a Top-1 accuracy of 67.96% and AB-ArcTan-STE achieved a Top-
5 accuracy of 87.66%, surpassing the ReSTE baseline. For ResNet-34, AB-
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Tanh-STE achieved a Top-1 accuracy of 71.31% and a Top-5 accuracy of
89.98%, which outperformed ReSTE and demonstrated the effectiveness of our
proposed method on larger architectures.

The adaptive blending strategy enables our models to maintain a stable train-
ing process, even on a challenging dataset such as ImageNet, where the vast
number of categories and high resolution of images pose significant challenges
for binary neural networks. By using parameter quantization with full-precision
activations, our methods demonstrate that adaptive blending not only stabilizes
training but also provides an effective means to achieve high accuracy.

Table 2: Accuracy Comparison on ImageNet ILSVRC-2012 Across Different Ar-
chitectures. The proposed AB-Tanh-STE and AB-ArcTan-STE methods show
improvements in Top-1 and Top-5 accuracy while using parameter quantiza-
tion and full-precision activations, highlighting their effectiveness on large-scale
datasets.

Architecture Method Top-1 Acc (%) Top-5 Acc (%)
ResNet-18 Floating Point 69.58 89.19
ReSTE 1] 67.66 87.48
AB-Tanh-STE (ours) 67.96 87.64
AB-ArcTan-STE (ours) 67.68 87.66
ResNet-34 Floating Point 73.32 91.27
ReSTE 1] 70.66 89.43
AB-Tanh-STE (ours) 71.31 89.98
AB-ArcTan-STE (ours) 71.18 89.71

4.3 Effect of Blending Factor

During training, the blending factor f was linearly increased from 0.2 to 0.8.
This approach allowed the model to benefit from stable training in the initial
epochs while gradually introducing non-linearity to enhance representational ca-
pacity. Our results indicate that such adaptive blending, combined with parame-
ter quantization and full-precision activations, is crucial for achieving an optimal
balance between gradient smoothness and model expressiveness, leading to con-
sistent improvements in both CIFAR-10 and ImageNet benchmarks.

The experiments on CIFAR-10 and ImageNet demonstrate that the proposed
AB-STE methods outperform traditional binary neural network training tech-
niques by effectively balancing gradient stability and expressiveness. The use of
a blended function allows us to avoid the gradient vanishing and exploding issues
that often hinder STE-based training methods.
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4.4 Computational Resources Analysis

Table 3: Comparison of FLOPs and Training Time Across Methods

Method FLOPs CIFAR-10 ImageNet CIFAR-10 ImageNet
etho per Input Time (s/epoch) Time (mm:ss/epoch) Acc. (%) Acc. (%)
10 (5 for power,
ReSTE 4 for comparisons, 16 10:56 93.68 67.66

1 for sign)

6 (2 for tanh,
4 for blending)
7 (3 for arctan,
4 for blending)

AB-Tanh-STE 14 10:33 94.60 67.96

AB-ArcTan-STE 12 10:22 94.18 67.68

To evaluate computational efficiency, we conducted a FLOP (floating point
operations) analysis for backpropagation and measured the training time per
epoch for each method. These analyses help assess the computational cost of the
proposed approaches in comparison to ReSTE. Table [3| summarizes the FLOP
requirements per input element during backpropagation, alongside training time
per epoch on CIFAR-10 and ImageNet using the ResNet-18 architecture. As
observed, AB-Tanh-STE and AB-ArcTan-STE require fewer FLOPs per input
compared to ReSTE, resulting in notable speedups in training time. The re-
duction in FLOPs is achieved by eliminating power operations and reducing
conditional checks, thereby improving computational efficiency.

ReSTE’s backpropagation operation includes multiple conditional checks and
power operations, leading to higher computational cost and longer training times.
In contrast, AB-Tanh-STE and AB-ArcTan-STE leverage simpler mathematical
functions such as tanh and arctan, which require fewer computations. Opti-
mized gradient flow reduces unnecessary computations while preserving accu-
racy. Efficient FLOP reduction enables 14% and 25% speedups on CIFAR-10
and 4% and 6% speedups on ImageNet, respectively. These results highlight
that AB-Tanh-STE and AB-ArcTan-STE not only improve accuracy but also
significantly reduce computational costs, making them more efficient for large-
scale BNN training. To balance hardware efficiency and accuracy, we chose to
binarize only weights during training while keeping activations in full precision.
Binarized weights are well-suited for accumulation-based hardware accelerators
such as YodaNN |21] and FINN [22|, which replace multiplications with bitwise
operations (XNOR + popcount), reducing computation and memory require-
ments. Previous studies, such as XNOR-Net [23], have shown that binarizing
both weights and activations during training severely impacts accuracy, par-
ticularly on complex datasets like ImageNet. Keeping activations full-precision
during training preserves gradient information and improves accuracy. Activa-
tions can still be binarized during inference, ensuring computational efficiency
without retraining.

These results demonstrate that AB-Tanh-STE and AB-ArcTan-STE improve
the accuracy of BNNs while significantly reducing training time and compu-
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Gradient Magnitude Comparison Over 1000 Epochs: ReSTE vs. AB-STE
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Fig. 4: Training of ResNet-18 with CIFAR-10 dataset

tational overhead, making them well-suited for efficient hardware deployment
without sacrificing model performance.

4.5 Gradient Analysis

In Fig. 4] we present a comparison of the mean gradient magnitude across train-
ing epochs for ReSTE (blue) and the proposed AB-Tanh-STE (red). The results
demonstrate that AB-STE maintains higher gradient magnitudes in the early
training phase, ensuring a stronger learning signal and preventing premature
convergence. In contrast, ReSTE exhibits a faster decay in gradient magnitudes,
potentially limiting the network’s ability to explore the optimization landscape
effectively during initial training.

As training progresses, AB-STE stabilizes the gradient magnitudes at a con-
sistently higher level compared to ReSTE, facilitating smoother and more struc-
tured training dynamics. The gradual decay of gradients in AB-STE ensures
that weight updates remain effective, preventing the issue of vanishing gradients
commonly observed in deep networks. In contrast, ReSTE experiences notable
fluctuations and sharp drops in gradient magnitude, particularly after epoch
200, suggesting less stable weight updates, which could impact model robustness
and convergence stability. Beyond epoch 400, AB-STE exhibits lower gradient
variance, indicating that it allows for more controlled and adaptive optimization
steps. The consistent gradient flow observed in AB-STE contributes to improved
training efficiency, ensuring that the network retains sufficient gradient mag-
nitudes for meaningful updates while avoiding instability. On the other hand,
ReSTE continues to show irregular oscillations throughout training, making the
optimization process less predictable.

The observed improvements in gradient behavior highlight the effectiveness of
the proposed AB-STE method in maintaining gradient stability while preserving
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representational capacity. By blending linear and non-linear components, AB-
STE ensures better gradient flow, reduced gradient saturation, and improved
robustness, making it a more effective approach for training binarized deep neural
networks in adversarial settings.

5 Conclusion and Discussion

In this work, we introduced two novel Adaptive Blended Straight-Through Esti-
mators (AB-STE): AB-Tanh-STE and AB-ArcTan-STE, aimed at improv-
ing the training of Binary Neural Networks (BNNs). Our approach addresses
the critical challenges of gradient instability and inaccurate gradient flow in tra-
ditional STE-based methods. By blending linearity and non-linearity, AB-STE
maintains both gradient stability and expressiveness, significantly enhancing the
overall convergence and training efficiency of BNNs. The extensive experimental
evaluation on CIFAR-10 and ImageNet demonstrates that our proposed estima-
tors outperform existing state-of-the-art methods, achieving superior accuracy
while preserving training stability. The adaptive nature of our blended estimator
provides a flexible mechanism to navigate the challenges of gradient estimation,
balancing simplicity and complexity in a manner that improves training out-
comes for BNNs. By progressively increasing the non-linearity throughout train-
ing, AB-STE effectively mitigates the risks associated with gradient vanishing
and exploding, leading to smoother and more stable training dynamics.

Our work also highlights potential directions for future research in multi-
bit quantization-aware training. The adaptive blending strategy introduced
in AB-STE could be extended beyond binary networks to more general quan-
tization schemes, offering a promising pathway to address gradient estimation
challenges in multi-bit quantization settings. Moreover, the success of AB-STE in
stabilizing gradient flow may provide insights into mitigating the effects of acti-
vation quantization during network training, further enhancing the applicability
of quantized neural networks to resource-constrained environments. In summary,
the proposed AB-STE offers an effective solution to the gradient-related chal-
lenges faced by BNNs, and its adaptive blended approach lays a foundation for
future advances in quantization-aware training for both binary and multi-bit
networks. We believe that this work paves the way for more robust and effi-
cient training methods for neural networks deployed on edge devices, potentially
broadening the scope of practical deep learning applications.
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