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Abstract. Scoring rules are an established way to compare predictive
performance between model classes. In the context of survival analy-
sis, they require adaptation in order to accommodate censoring and
other aspects specific to survival tasks. This work investigates the use
of scoring rules for model training rather than evaluation. Doing so,
we establish a general framework for training survival models that is
model-agnostic and can learn event time distributions parametrically or
non-parametrically. In addition, our framework is not restricted to any
specific scoring rule. Although we focus on neural network-based im-
plementations, we also provide proof-of-concept implementations using
gradient boosting, generalized additive models, and trees. Empirical com-
parisons on synthetic and real-world data indicate that scoring rules can
be successfully incorporated into model training and yield competitive
predictive performance with established time-to-event models.

Keywords: Proper Scoring Rules · Survival Analysis · Neural Networks.

1 Introduction

Survival analysis (SA) is an important branch of statistics and machine learning
that deals with time-to-event data analysis. Let Y ą 0 be a random variable
representing a time-to-event of interest (e.g., time-to-death after operation) and
y its realization. In many studies, Y cannot be observed in all cases due to
censoring C ą 0. Thus, in the presence of right-censoring, we can only observe
realizations of T :“ minpY,Cq and status indicator D :“ IpY ď Cq. Observed
data is then given by tuples pti, di,xiq, i “ 1, . . . , n, where ti is an observed event
or censoring time, di the status indicator and xJ

i “ pxi1, . . . , xipq a p-dimensional
feature vector.

Notably, while we are interested in inference about Y , we only have realiza-
tions of (T , ∆). Therefore, the usual metrics for evaluating predictive perfor-
mance based on the difference in the true and observed value (yi ´ ŷi) cannot
be calculated for the censored data from time to event. For the same reason,
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most survival models do not generate predictions ŷ, but rather probabilistic
predictions F̂Y pτq “ PpY ď τq, τ P R`

0 , or equivalently the survival function
ŜY pτq “ 1 ´ F̂Y pτq. At the estimation stage, censoring must be accounted for
to obtain unbiased estimates of SY pτq. Common approaches include parametric
models that assume a specific distribution for the event times with a censoring-
adjusted likelihood (e.g., accelerated failure time models) as well as non- and
semi-parametric approaches that partition the follow-up into intervals and esti-
mate the (baseline) hazard rate within each interval (e.g., Kaplan-Meier, Cox,
discrete-time approaches).

For predictive modeling, dedicated evaluation metrics that consider the data’s
survival nature have been proposed in the literature (see [26] for an overview).
Such metrics are often model-agnostic to allow comparison of predictive perfor-
mances across model classes. While concordance-based metrics [e.g. Harrell’s C,
14] are popular in practice, they only allow for evaluating how well the model
ranks the risk for an event. On the other hand, (strictly proper) scoring rules
have been proposed as suitable tools to evaluate probabilistic (distribution) pre-
dictions [12]. As these scores often only rely on point-wise survival probability
predictions (without requiring a density estimate, for example), scores can be
compared across different model classes. One such scoring rule is the continuous
rank probability score or integrated brier score [12]. [13] adapted it to the sur-
vival setting by weighting the scores concerning the individuals’ probabilities of
being censored (IPCW). This work refers to it as integrated survival brier score
(ISBS). While ubiquitous in practice, recent work suggests that the ISBS is not
proper [24, 26, 32], and proper alternatives have been proposed. As scoring rules
in survival analysis are established in the context of model evaluation and com-
parison, so far only few attempts have been made to use them as a loss function
for model training.

Our Contributions In this work, we investigate the use of censoring-adapted
scoring rules for model training rather than evaluation. The developed frame-
work uses gradient-based optimization of the scoring rule of choice, evaluated
at discrete partitions of the follow-up. In contrast to previous contributions, it
is scoring-rule agnostic, allows parametric and non-parametric estimation of the
event time distribution, and extends scoring rule-based estimation to the im-
portant case of competing risks. Additionally, while our main implementation is
based on neural networks, we also show that our framework is applicable to other
model classes, such as gradient boosting, trees, and generalized additive mod-
eling. We empirically evaluate the approach on synthetic and real-world data,
showing competitive predictive performance compared to established state-of-
the-art survival models.

2 Related Literature

Scoring rules Scoring rules are established tools for model evaluation and com-
parison, particularly in the context of probabilistic predictions. A comprehensive
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summary is given in [12], who also investigate the role of scoring rules in esti-
mation. Adaptations of scoring rules for survival analysis (see Table 1 for an
overview of selected scores) have been pioneered by [13], who defined the ISBS,
which weights the integrated brier score by an estimate of the censoring dis-
tribution Ĝ, usually using the Kaplan-Meier estimator. Other adaptations are
discussed in [9, 24, 32, 26]. [24] propose the right-censored log-likelihood (RCLL)
and claim to prove its properness, but its calculation requires an estimate of the
density fY , which is not readily available for non- and semi-parametric meth-
ods that often only return survival probability predictions. The score proposed
by [32] is also claimed to be proper but relies on an oracle parameter that is
not known in practice. [26] suggest a class of re-weighted scoring rules (Eq. (1)),
including the re-weighted ISBS (RISBS) and re-weighted integrated survival log-
loss (RISLL):

SRR,ipτq “
di

Ĝptiq
SRipτq, (1)

with di being the status indicator, SRipτq is a suitable point-wise scoring rule
(e.g. the IBS) of observation i at time τ and Ĝptiq an estimate of the censoring
distribution at time ti, which is estimated beforehand. SR is computed up to a
τ˚ ă τmax, the largest observed survival time, and [26] recommend to consider
all fully observed i still at risk at τ˚ with di “ 1.

Survival Models Most of the existing methods model the hazard function non-
or semi-parametrically (i.e. without (strong) distributional assumptions) based
on prior partitioning or discretization of the follow-up (for example, Cox regres-
sion [7], (extensions of) piece-wise exponential models [10, 5] and discrete-time
approaches [28]), or use specific distributional assumptions with dedicated loss
functions for censored data [e.g., 30]. More recently, adaptations of these ap-
proaches based on machine and deep learning have been suggested [cf. 29, 31,
for respective reviews]. According to the latter, most deep learning models are
adaptations of the Cox model, followed by discrete-time approaches. The latter
are popular as they allow for transforming a survival task to a classification task
and don’t require strong distributional assumptions. Concretely, the follow-up
is partitioned into J intervals pτj´1, τjq, j “ 1, . . . , J ; τ0 :“ 0 and new status
indicators are defined for each interval dij “ Ipti P pτj´1, τjs ^ di “ 1q. Assum-
ing a Bernoulli distribution for these new event indicators, discrete time meth-
ods that optimize the resulting Binomial log-likelihood. Popular methods within
this class include DeepHit [23] and nnet-survial [11]. Another stream of models
that reduces the survival problem to a (Poisson) regression problem through dis-
cretization are methods based on piece-wise exponential models. State-of-the-art
examples include [20, 3, 21]. While this reduction idea relates to our approach,
we do not further review this model class in this contribution, as there are too
many disjunctions.

In the context of SA, only a few have suggested using scoring rules at the
estimation or training rather than the evaluation step. A notable exception is
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[2], who use a survival-adapted continuous rank probability score (SCRPS). Ad-
ditionally, [24] illustrate how RCLL can be used for training and evaluating
survival models. While [2] evaluate the SCRPS to estimate the parameters of
a log-normal distribution, the approach by [24] is distribution-free, but requires
an estimate of the density fY which usually needs to be approximated. The two
approaches suggested in this work differ from previous endeavors. In contrast
to other methods, our non-parametric approach learns increments of a function
for event probabilities (i.e., survival or cumulative incidence) based on a scoring
rule, whereas others use a specific likelihood. Our parametric approach is similar
to [2] but not restricted to SCRPS or the log-normal distribution. Importantly,
we extend the scoring rule-based estimation to the important case of competing
risks and illustrate how the proposed estimation routine can be incorporated in
various modeling approaches (deep learning, boosting, trees, and additive mod-
els).

3 Training with Scoring Rules

We aim to learn FY by discretely evaluating an associated scoring rule. While
our approach is scoring rule agnostic, we focus on the rules in Table 1. The
ISBS is of great historical significance and is a popular evaluation metric in
the majority of benchmark experiments for SA. The alternatives in Table 1
have been suggested only recently and therefore have not been applied often in
practice. The SCRPS, as implemented in [2], is the ISBS but without weighting
contributions by inverse probability of censoring weights. The weighting factor in
RISBS and RISLL means that contributions of censored observations are always
set to zero. Non-censored observations are weighted by the probability of not
being censored until the observed event time.

In order to use scoring rules for training, we partition the follow-up into
J equidistant intervals pτj´1, τjs, j “ 1, . . . , J , with τ0 “ 0 and τJ the largest
observed event time. We then minimize the objective O that evaluates scoring
rule SRipτj |Ĝq for observation i at time τj , given censoring distribution Ĝ:

O “
1

N

N
ÿ

i“1

1

J

J
ÿ

j“1

SRipτj |Ĝq. (2)

To do so, we need J point-wise estimates of Spτj |xiq “ 1 ´ F pτj |xiq. These can
be generated in two ways:

1.) Parametric Learning : Estimation of the parameters of an assumed distribu-
tion;

2.) Distribution-free Approach: Direct estimation of the survival function with-
out distributional assumption.

In both cases, the data transformation is identical as depicted in Figure 1.
The shown transformation contains all sufficient information for all scoring rules
and model classes discussed in this work. However, for some scoring rules, the
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Table 1: Selected model-agnostic scoring rules. Here, Fipτq :“ F pτ |xiq; Si, fi equiva-
lently. RCLL is only evaluated at the observed time ti, while all other rules are evaluated
over r0, τ˚

s.

Abbreviation
(Source)

Definition

ISBS [13]
ż ti

0

Fipτq
2

Ĝpτq
dτ `

ż τ˚

ti

diSipτq
2

Ĝptiq
dτ

SCRPS [2]
ż ti

0

Fipτq
2dτ `

ż τ˚

ti

Sipτq
2dτ

RISBS [26]
ż ti

0

diFipτqq
2

Ĝptiq
dτ `

ż τ˚

ti

diSipτq
2

Ĝptiq

RISLL [26] ´
di

Ĝptiq

˜

ż ti

0

logpFipτqq `

ż τ˚

ti

logpSipτqqdτ

¸

RCLL [24] ´ logpdifiptiq ` p1 ´ diqSiptiqq

computation of the weights (wj) varies or is not necessary, or only a limited
number of intervals is needed. Also, the features do not necessarily need to be
transformed as well if the model class can facilitate such mapping internally. For
example, neural networks can do this by reshaping.

3.1 Modeling Approaches

Both approaches 1.) and 2.) share the same objective function (2) and only differ
in the way the predictions Ŝpτj |xjq are obtained. Both variants ensure that Ŝ is
monotonically decreasing. Details are given below.

Parametric Learning One way to obtain estimates for Spτ |xjq is by assum-
ing a parametric distribution of event times and learning the distribution’s pa-
rameters. Let F pτ |θq be a distribution suitable to represent event times Y ą

0, with parameters θ P Rm depending on the input features, i.e., θpxq “

pθ1pxq, θ2pxq, . . . , θmpxqqJ. Some popular parametric survival distributions in-
clude the Weibull, log-logistic, and log-normal distribution. Given parameter
estimates θ̂pxq, all quantities of the distribution, including the survival function
Ŝpτ |θ̂pxqq “ 1 ´ F̂ pτ |θ̂pxqq, are fully specified and thus prediction can be ob-
tained at any time point τ . Depending on the distribution, parameters may have
restrictions, e.g. for the log-normal distribution θpxq “ pµpxq, σpxqqJ with µ P R
and σ P R`. The distribution parameters θ are learned by minimizing Eq. (2)
w.r.t. the model parameters.

Distribution-free Approach Instead of obtaining an estimate of the survival func-
tion by learning the parameters of an assumed distribution, we can also learn the
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id status time x
1 0 3.1 2.3
2 1 1.4 2.4
3 0 1.2 -1.3

ñ

id dj τj wj x
1 0 0.5 1.70 2.3
1 0 1.5 1.70 2.3
1 0 2.5 1.70 2.3
... ... ... ... ...
2 0 0.5 1.23 2.4
2 1 1.5 1.23 2.4
2 1 2.5 1.23 2.4
... ... ... ... ...
3 0 0.5 0.00 -1.3
3 0 1.5 0.00 -1.3
3 0 2.5 0.00 -1.3
... ... ... ... ...

Fig. 1: Example of the transformation of original survival data into a discretized data
set with τj P t0.5, 1.5, 2.5, ...u. (Time-constant) Features (x) are simply repeated. The
survival indicator dj switches from 0 to 1 when a failure is observed and remains 1 for
the remaning intervals. The weights are computed for the RISBS scoring rule. For other
scoring rules, weights can be time-varying. As the first observation is fully observed
(censored after τmax “ 2.9) it has positive weights (w1j “ 1

Ĝpt“2.9q
) while the third

observation has zero-weights not being fully observed.

survival function by estimating the increments αi,j :“ αi,jpxiq between the sur-
vival functions at subsequent discrete time points/intervals τj´1, τj . We require
the following properties to obtain a correctly specified survival function:

(a) Spτj |xiq needs to be monotonically decreasing, i.e. αi,j ď 0;
(b) Spτj |xiq P r0, 1s;
(c) αi,j P r´1, 0s.

In order to learn the increments αi,j , we require appropriate activation functions
γupxq P r0, 1s, u P t1, 2u, such as the sigmoid or truncated ReLU function fp¨q “

minp1,maxp0, ¨qq, and a model gl (e.g., a neural network) for the lth interval. By
defining

Ŝpτj |xiq “ γ2

˜

j
ÿ

l“1

p´γ1pglpxiqq

¸

through increments α̂i,l :“ ´γ1pĝlpxiqq P r´1, 0s, we obtain a monotonically
decreasing survival function Ŝpτj |xiq “ γ2p

řj
l“1 α̂i,lq P r0, 1s for each time in-

terval τj with τ0 “ 0 and Ŝpτ0|xiq “ 1. In contrast to the parametric learning
approach, this approach initially only produces discrete survival probabilities
Ŝpτj |xq. However, simple interpolation or smoothing can be applied to obtain
meaningful predictions at time points between initial interval points τj .

3.2 Competing Risks

In the competing risks setting, we are interested in the time until the first of
K competing events is observed. Let E P t1, . . . ,Ku be a random variable rep-
resenting the possible event types with realizations e. In this setting, we are
typically interested in estimating P pY ď τ, E “ e|xq, i.e., the probability of
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observing an event of type e before time τ given feature set x. This quantity
is usually referred to as cumulative incidence function (CIF) and denoted by
CIFkpτ |xq, k “ 1, . . . ,K.

In the case of our parametric framework, we either learn the set of parameters
for each competing risk k with separate sub-models for distribution parameters
θk or train a single joint model for all parameters Θ “ tθuKk“1.

The CIF in the non-parametric case is modeled via

yCIFkpτj |xiq “ γ2

˜

j
ÿ

l“1

pγ1pgl,kpxiqq

¸

, (3)

where gl,k are now interval- and risk-specific models.
To evaluate competing risk models, we can use the single-risk scoring rules,

but need to define a cause-specific status indicator

di,k “ di1pei “ kq P t0, . . . ,Ku, (4)

where ei is the cause observed for subject i. We further constrain

K
ÿ

k“1

F̂kpτj |xiq ď 1.

This can be achieved through the network architecture (by directly constraining
the sum of the outputs) or by reweighting the resulting CIFs using their incre-
ments. Putting everything together, we optimize the competing risks objective

OCR “

K
ÿ

k“1

1

N

N
ÿ

i“1

1

J

J
ÿ

j“1

SRi,kpτj |Ĝq, (5)

where SRi,k is a single-event scoring rule (e.g. Table 1) with the status indicator
di replaced by the competing risks indicator from Eq. (4). Predictions can be
directly obtained from the model or internally reweighted depending on the
scoring rule.

3.3 Optimization and Implementation

Gradient-based Optimization For all scoring rules discussed in this paper, first
derivatives with respect to an arbitrary weight vector ω of

Spτ |xi, ωq or F pτ |xi, ωq

exist. For example, for RISBS and a single observed individual i and interval j

B

Bω
SRpτ ; Ĝq9F pτ |xi, ωq

B

Bω
F pτ |xi, ωq

if Ĝptiq is considered constant, which is usually the case if it is determined a
priori. If Ŝpτ |xiq is differentiable itself, which is typically the case for neural
networks, the model itself is differentiable.
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Implementation Our framework can be easily implemented in a neural network.
The network trunk can have an arbitrary shape whereas the output layer contains
JˆK units for both the parametric and non-parametric variant. The final layer of
the parametric variant is a deterministic distributional layer that automatically
enforces monotonicity by implementing the cumulative distribution or survival
function of a parametric distribution. By the chain rule, backpropagation is
given by the derivative of the SR w.r.t. the parameters θk of the chosen survival
distribution for each risk k times the gradients of θk w.r.t. the network’s weights.
For the non-parametric version, the output layer is specified as in Eq. (3). The
selected architectures must reflect the general modeling flow shown in Figure 2.
Example architectures are depicted in Figure 3.

Overfitting can, e.g., be addressed by dropout layers throughout the network
architectures and L2 regularization on the ultimate layer’s weights. The para-
metric framework produces smooth, continuous estimates, the non-parametric
one interpolates step-functions, as shown in Figure 3. In many cases, it is rea-
sonable not to choose τ˚ “ τmax but slightly smaller (e.g. the 80th or 90th
percentile) as late events have outlier character in small data sets [26].

Alternative Implementations While neural networks achieve the most versatile
implementation, the idea can be generalized to arbitrary machine learning mod-
els. Particularly, the parametric framework with RISLL or ISLL as a loss function
applies to some established machine learning models without further modifica-
tion. For an assumed lognormal or log-logistic distribution with location µ and
scale σ, we only need to model the linear predictor logpτq{σ ´ µ{σ, apply a
logit (for an assumed log-logistic distribution) or probit (for an assumed lognor-
mal distribution) link, and optimize a weighted binary cross-entropy loss with
the weights being determined by the scoring rule used. As σ ą 0 by definition,
monotonicity must be enforced on the estimation of γ “ 1

σ where γ is the linear
coefficient for logpτq (the natural logarithm of the discretized follow-up time).
For generalized linear models, linear estimates guarantee (weak) monotonicity.
While technically, negative estimates are possible for γ, this doesn’t occur in
practice in our experience when estimated with maximum likelihood optimiza-
tion. In boosting applications, monotonicity can be explicitly enforced through
constraints on the estimation of the feature logpτq. Essentially, we can fit a GLM
using the discretized data with the following form:

P pdij “ 1|xi, τq “ g´1pγ log τ ` xijνq,

where τ is part of the feature matrix, γ is a scalar coefficient, ν is a vector of
coefficients and gpq is the respective link function. Survival predictions can be
directly made from the model. Location and scale parameters can be obtained
indirectly via γ. Furthermore, we can use distributional regression software to
generate predictions for any model class, e.g. trees, independent of their opti-
mization.
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Parametric

Features
xi
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θ̂i “ gpxiq

Survival Probability
Ŝi,j “ Spθ̂i | τjq

Loss
ř

i

ř

j Lpdi,j , Ŝi,jq

Outcome
δi, ti
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xi

Model(s)
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Survival Probability
Ŝi,j “ γ2

`

´
řj

ℓ“1 α̂i,ℓ

˘

Loss
ř

i

ř

j Lpdi,j , Ŝi,jq

Outcome
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di “ pdi,1, . . . , di,J q
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Fig. 2: Schematic model flow graphs (top) for parametric (left) and non-parametric
(right) variants with schematic survival predictions (bottom). Features are used to learn
model weights, optimized with respect to discretized outcomes and a loss function or
scoring rule. Some models may require feature transformations (not depicted). In the
parametric model, these weights determine a parameter vector (θi) for each individual
(e.g., location and scale). In the non-parametric approach, survival increments αi,j

are estimated directly. The parameters θi generate a continuous prediction of survival
probabilities, resulting in smooth predictions (left bottom panels). For optimization,
only the subset S̃ “ tSi,j@j P 1, ..., Ju is needed. In the non-parametric case, this
subset is available by construction, leading to point-wise predictions that are linearly
interpolated (right bottom panels). Models are said to assume proportional hazards
when survival functions do not intersect (upper panel of bottom graph).
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Dense Layer

Distribution Layer

Dense Layer

DATA DATA

Fig. 3: Examples for architectures of our proposed method in the single risk case. Top:
Parametric approach. We pass the data through a fully connected neural network
to estimate the parameters (here θ1 and θ2) of a survival distribution. We generate
predictions for each τ̃ “ τj using the parameterized F . Bottom: Non-parametric ap-
proach. We pass the data through a fully-connected neural network to estimate the
survival increments αj and use them to generate survival predictions for each τj , where
ξp¨q :“ γ2p´

ř

p¨qq.

4 Numerical Experiments

In the following sections, we evaluate our framework empirically. First, we test
our approach with simulated data. While our proposed method can represent
arbitrarily complex associations, our goal is to show that the proposed method
can estimate parametric and semi-parametric SA methods that traditionally
optimize likelihoods: Accelerated Failure Time models (AFT) and the Cox pro-
portional hazard model (CPH). Furthermore, we explore how well our framework
performs on benchmark data sets commonly used in SA for both single and com-
peting risks. We benchmark our neural network implementation against other
deep learning algorithms for a meaningful comparison. However, we also include
the oblique random survival forest [ORSF; 18], which has been shown to yield
good predictive performance in SA tasks. Last, we illustrate that the framework
also applies to learners different from neural networks.

Evaluation and Tuning In all experiments, we make use of repeated subsam-
pling. For all benchmark data sets, we repeat the subsampling 25 times, and,
except for KKBox, use 80% of the data for training and 20% for evaluation.
Repeated subsampling is preferred over cross-validation as the test set needs
to be sufficiently large to estimate the censoring probability for all evaluation
metrics. The number of subsamples depends on the complexity of the underlying
experiments. For KKBox, 2 percent of the data (ca. 1,000 events) is sufficient for
model evaluation. If tuning is necessary, we use a random search with a budget
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of 25 configurations. The inner loop of the nested resampling is a five-fold cross-
validation. Early stopping is performed when necessary based on the validation
error. In all experiments, models are evaluated using the RISBS as our primary
evaluation metric at different quantiles (25, 50, and 75 percent) of the follow-up.

4.1 Comparison to Maximum Likelihood Estimation

We first empirically check whether our approach can recover the parameters
of a known event time distribution without explicitly using its likelihood for
estimation. We compare the goodness of approximation with the true parameters
and those estimated through maximum likelihood. To do so, we simulate event
times from an AFT model via

logpTiq “ β0 ` β1x1 ` β2x2 ` β3x3 ` θ2ϵi (6)

with βJ “ p2, 0.5, 0.2, 0q and let ϵ follow the (i) Logistic, (ii) Normal, and (iii)
Extreme value distribution, implying event times T „ F pθ1px1, x2, x3q, θ2q that
follow a (i) Loglogistc, (ii) Log-normal and (iii) Weibull distribution, respec-
tively. We only let one parameter of the distribution depend on features, i.e.
θ1px1, x2, x3q “ β0 ` β1x1 ` β2x2 ` β3x3 and set θ2 “ σ “ 0.4.

β0 β1 β2 β3 σ

Loglogistic
Lognorm

al
W

eibull

−0.05

0.00

0.05

0.10

−0.075

−0.050

−0.025

0.000

0.025

−0.05

0.00

0.05

0.10

θ̂
−

θ

Weibull

Lognormal

Loglogistic

0.000 0.025 0.050 0.075

0.000 0.025 0.050 0.075 0.100

0.000 0.025 0.050

(RISBSModel − RISBSDGP) RISBSDGP

AFTMLE

AFTRISBS

AFTRISLL

AFTRCLL

CoxMLE

CoxRISBS

CoxRISLL

NPRISBS

NPRISLL

Fig. 4: Results of the comparison to ML estimation. Left: difference of estimated pa-
rameter θ̂ to oracle parameters θ. Parameter comparison for Cox PH models is limited
to the coefficients β1, β2 and β3, and the Weibull distribution. Right: Relative differ-
ence in the predictive performance w.r.t. the data generating process (DGP). Optimal
performance is given by RISBSDGP, obtained by using true parameters in the correctly
specified model.

For the simulation, we draw n “ 1500 event times from each distribution
based on Eq. (6) and introduce censoring assuming a uniform distribution over
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the follow-up, resulting in approximately 28% censoring. We repeat this B “ 100
times, each time splitting the data into train (80%) and test (20%) data. In each
iteration, we calculate

βj ´ β̂j,m; j “ 0, . . . , 3;

m P tAFTMLE,CoxMLE,AFTSR,CoxSRu,

where we either optimize the respective correctly specified AFT models and Cox
PH models via maximum likelihood estimation (MLE) or one of the scoring rules
(SR) based approaches as proposed in Section 3 . Additionally, we consider the
difference between the estimated and true scale σ̂ ´ σ. In addition to recovering
coefficients, we report the aggregated predictive performance of all models in
terms of the RISBS, RISLL, and ISBS. For predictive performance evaluation, we
also fit the non-parametric variant of our framework, NPSR with SR P tRISBS,
RISLLu. The AFT model estimated within our framework with RCLL provides
a direct comparison to AFTMLE. This results in a total of 4 AFT models (3 SR
and 1 MLE), 2 Cox PH models (2 SR and 1 MLE), and 2 non-parametric models
(both SR) for the main analysis.

The experimental results are presented in Figure 4. The methods specified
within our framework recover the true coefficients well, with, however, a little ap-
proximation error. This approximation error is negligibly small when considering
the predictive performance in the right panel. This finding holds for both, AFT
and Cox PH model. When considering the model performances, we also see that
a simple, untuned, yet regularized, non-parametric scoring-rule-based method
performs comparably to the other (correctly specified) methods. In contrast to
other deep AFT (e.g. [2]) approaches, our method allows the estimation of a
variety of distributions using the parametric framework, including the Weibull
distribution, which has repeatedly been reported to suffer from poor computa-
tional conditioning [e.g., 2].

4.2 Benchmark Study

In this section, we evaluate the models’ predictive performance on synthetic and
real-world data for both single (Table 2) and competing risks (Table 3) settings.

Single Risk We compare our framework to other popular deep learning models
for survival analysis, namely nnet-survival [11], DeepHit [23], and DeepSurv [19],
as well as the Countdown model (with an assumed log-normal distribution) as
proposed in [2] (AFTdeep

SCRPS). For our framework we fit both, a non-parametric ver-
sion NPRISBS and a deep parametric variant AFTdeep

RISBS. Furthermore, we compare
with baselines (KM and CPH) and Oblique Random Survival Forests (ORSF).
All methods have been tuned over 50 configurations (10 for KKBox) except for
the KM and CPH baselines. AFTdeep

SCRPS approximates the model proposed in [2]
(log-normal distribution, SCRPS as scoring rule). The model by [2] itself suffered
from computational issues and did not result in adequate predictive performance.
While not being perfectly identical to [2] AFTdeep

SCRPS adapts their idea.
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Table 2: Predictive performance of different learning algorithms for different data sets
for a single event using the RISBS (smaller is better). We report the mean and standard
deviation (in brackets) from 25 distinct train-test splits and highlight the best method
in bold. The AFT models are also tuned with respect to the distribution family.

KM Cox PH ORSF DeepSurv nnet DeepHit AFTdeep
SCRPS AFTdeep

RISBS NPRISBS

tumor Q25 7.4 (1.58) 6.6 (1.43) 6.5 (1.23) 6.6 (1.52) 6.5 (2.03) 6.7 (1.80) 6.4 (1.30) 6.5 (1.37) 6.6 (1.30)
n “ 776 Q50 13.0 (1.46) 11.7 (1.46) 11.8 (1.40) 11.6 (1.51) 11.5 (1.84) 11.6 (1.91) 11.4 (1.21) 11.3 (1.24) 11.3 (1.32)
p “ 7 Q75 17.8 (1.17) 16.3 (1.47) 16.4 (1.40) 16.3 (1.40) 16.2 (1.37) 16.2 (1.67) 16.2 (1.29) 16.1 (1.30) 16.1 (1.39)

gbsg2 Q25 4.9 (0.80) 4.7 (0.75) 4.6 (0.73) 4.7 (0.80) 4.9 (1.03) 4.6 (1.01) 4.7 (0.75) 4.7 (0.69) 4.6 (0.80)
n “ 2232 Q50 10.1 (0.80) 9.3 (0.69) 9.2 (0.73) 9.3 (0.82) 9.2 (0.95) 9.5 (0.83) 9.1 (0.69) 9.4 (0.68) 9.1 (0.79)
p “ 7 Q75 15.4 (0.56) 13.9 (0.47) 13.6 (0.60) 13.7 (0.62) 13.6 (0.82) 13.4 (0.71) 13.4 (0.61) 13.3 (0.54) 13.2 (0.61)

metabric Q25 5.1 (0.64) 5.0 (0.61) 5.1 (0.56) 5.0 (0.60) 5.5 (0.51) 5.2 (0.55) 4.9 (0.61) 4.9 (0.56) 5.0 (0.65)
n “ 1904 Q50 11.4 (0.80) 10.8 (0.78) 10.9 (0.67) 10.7 (0.60) 10.9 (0.58) 10.9 (0.70) 10.4 (0.73) 10.4 (0.72) 10.4 (0.79)
p “ 9 Q75 16.5 (0.61) 15.2 (0.60) 15.8 (0.66) 15.1 (0.55) 15.1 (0.46) 15.4 (0.52) 15.0 (0.61) 14.8 (0.55) 14.8 (0.59)

breast Q25 2.2 (1.14) 2.2 (1.14) 2.1 (1.11) 2.3 (1.13) 2.2 (1.01) 2.2 (1.02) 2.0 (0.86) 2.1 (0.97) 2.4 (1.12)
n “ 614 Q50 4.6 (1.51) 4.6 (1.51) 4.3 (1.44) 4.8 (1.59) 4.4 (1.35) 4.5 (1.42) 4.4 (1.18) 4.4 (1.26) 4.4 (1.54)
p “ 1690 Q75 7.8 (1.62) 7.8 (1.62) 7.0 (1.61) 7.6 (1.71) 7.2 (1.60) 7.3 (1.64) 7.2 (1.50) 7.3 (1.52) 7.3 (1.75)

KKBox Q25 1.02 (0.05) 0.92 (0.04) 0.87 (0.05) 0.95 (0.07) 0.93 (0.06) 0.85 (0.06) 0.86 (0.05) 0.90 (0.07)
n “ 865 K Q50 1.66 (0.06) 1.41 (0.05) – 1.25 (0.05) 1.31 (0.06) 1.35 (0.06) 1.27 (0.05) 1.21 (0.05) 1.20 (0.07)

p “ 6 Q75 2.72 (0.09) 2.19 (0.07) 1.89 (0.06) 2.00 (0.05) 2.01 (0.06) 1.94 (0.06) 1.92 (0.06) 1.89 (0.06)

synthetic Q25 6.7 (0.70) 4.7 (0.51) 4.2 (0.66) 3.5 (0.63) 4.4 (0.66) 3.9 (0.61) 3.3 (0.48) 3.4 (0.40) 3.5 (0.56)
n “ 1500 Q50 13.9 (0.78) 9.2 (0.53) 8.8 (0.81) 6.7 (0.78) 8.5 (0.71) 8.0 (0.69) 6.4 (0.36) 6.4 (0.38) 6.4 (0.51)
p “ 4 Q75 19.7 (0.26) 12.8 (0.56) 10.0 (1.01) 9.2 (0.76) 9.6 (0.83) 9.5 (0.67) 8.6 (0.45) 8.3 (0.46) 8.4 (0.50)

We selected common data sets in the survival analysis literature primarily
related to various medical conditions with observations in the high hundreds or
low thousands and a large churn data set: tumor [4], gbsgs2 [25], metabric [8],
breast [27], and mgus2 [22]. KKBox [17] is a large churn data set obtained from
Kaggle that we processed for SA. For KKBox, ORSF evaluations, however, failed
due to the size of the data set. For similar computational reasons, Cox PH only
uses one feature for breast, where the other methods use all p ą n features.

Results In summary, the results indicate that our proposed methods provide
good predictive performance, competitive with established methods. We observe
that for the AFT model, both scoring rules (SCRPS and RISBS) have very
similar performances. This finding is in line with [26], who empirically study
differences between proper and improper scoring rules and report only small
differences. NP tends to perform worst on early quantiles, indicating potential
overfitting for the early cut points.

Competing Risks For competing risk, we compare our approach against the
baseline methods Aalen-Johannsen estimator [AJ; 1] and competing risks piece-
wise exponential additive model [CR PAMM; 15] as well as DeepHit, which is
typically considered when dealing with competing risks. Next, the real-world
data set mgus2, we also consider a synthetic data set with a risk with complex
(cause 1) and simple (cause 2) feature associations.

Results DeepHit and our method perform similarly well in estimating survival
probabilities in a competing risk setting. In some cases, both methods cannot
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Table 3: Prediction accuracy of different methods (columns) for different competing
risks data sets (rows) evaluated using the ISBS (smaller is better). We report the mean
and standard deviation (in brackets) from 25 distinct train-test splits and highlight the
best method in bold.

AJ CR PAMM DeepHit AFTdeep
ISBS

mgus2 Q25 1.1 (0.39) 1.1 (0.39) 1.1 (0.42) 1.2 (0.58)
(cause 1) Q50 2.1 (0.59) 2.0 (0.57) 2.2 (0.59) 2.2 (0.58)
n “ 1384 Q75 3.2 (0.84) 3.2 (0.80) 3.1 (0.85) 3.3 (0.79)

mgus2 Q25 9.1 (1.18) 8.6 (1.16) 8.7 (1.04) 8.7 (1.10)
(cause 2) Q50 14.3 (1.03) 13.2 (1.17) 12.9 (1.20) 13.0 (1.34)
p “ 6 Q75 18.2 (0.74) 15.8 (0.99) 15.6 (1.07) 15.7 (1.22)

synthetic Q25 5.4 (0.66) 3.7 (0.49) 3.2 (0.56) 3.1 (0.45)
(cause 1) Q50 10.9 (0.96) 7.3 (0.67) 5.7 (0.69) 5.7 (0.60)
n “ 1500 Q75 16.9 (0.83) 11.5 (0.55) 8.3 (0.77) 8.4 (0.65)

synthetic Q25 2.2 (0.72) 2.0 (0.59) 2.0 (0.62) 2.1 (0.53)
(cause 2) Q50 5.8 (0.97) 4.7 (0.78) 5.0 (0.79) 4.9 (0.73)
p “ 4 Q75 9.7 (1.06) 7.9 (0.94) 7.9 (1.00) 7.8 (0.79)

outperform a CR PAMM that assumes linear effects on the log hazards. However,
this is most likely due to the differences between the empirical incidence of the
two causes (only 12 % of observed events in mgus2 are due to cause 1) and by
construction (cause 2 of synthetic assumes only linear associations).

Alternative Implementations To test alternative implementations of our
framework, we use two datasets: simple is the simulation introduced in Sec-
tion 4.1 and reflects linear effects only, while complex uses four features that par-
tially exhibit non-linearities and interactions. Both settings assume a log-normal
distribution. As learners, we include KM and Cox PH for baseline comparisons
and prototype implementations for an XGBoost ([6]), generalized additive model
(GAM; [16]), and soft regression tree. Performance is reported quantile-wise and
estimated with 25 times repeated subsampling (80-20). Methods are not tuned;
our goal is only to show that these alternatives work in principle. We find that
all methods perform better than the baseline (KM). However, a single tree does
not outperform a Cox PH model. In the simple setting, GAM performs best.
This is because the Cox PH model is slightly misspecified in the presence of
log-normally distributed survival times. Unsurprisingly, the (untuned) XGBoost
model overfits in this simple regime. For the complex setting, we allowed the
GAM to capture non-linearities, yet no interactions. While this significantly
boosts performance over Cox PH, the XGBoost approach achieves very good
generalization despite being untuned. All in all, this suggests that the methods
work as intended and provide reasonable results.

4.3 Ablation: Altering the Scoring Rule

As discussed in Section 3, our framework is scoring-rule agnostic. While we
mainly focused on RISBS in the experiments, we also implemented all other
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Table 4: Comparison of predictive performances of different learners (columns) for
different datasets (rows). We report the mean (top) and standard deviation (below in
brackets) from 25 distinct train-test splits. The best method is highlighted in bold.

KM Cox PH AFTGAM
RISLL AFTtree

RISBS AFTXGB
RISLL

simple Q25 5.1 3.2 3.0 4.5 3.2
(0.46) (0.46) (0.43) (0.87) (0.42)

n “ 1500 Q50 10.7 6.3 6.1 8.9 6.3
(0.87) (0.43) (0.40) (0.69) (0.43)

p “ 3 Q75 15.5 8.7 8.5 13.3 8.9
(0.42) (0.51) (0.44) (0.60) (0.51)

complex Q25 6.7 4.7 3.8 6.2 3.6
(0.71) (0.52) (0.54) (0.59) (0.47)

n “ 1500 Q50 13.9 9.2 7.2 12.7 6.6
(0.78) (0.53) (0.59) (0.62) (0.44)

p “ 4 Q75 19.7 12.8 9.6 18.2 8.6
(0.26) (0.56) (0.51) (0.51) (0.40)

scoring rules from Table 1. To investigate their influence, we study how the
results from the benchmarking study qualitatively change when the optimized
scoring rule is changed for the parametric sub-framework.

Table 5: Predictive performance of the ablation study. For two data sets from the
benchmark study, we changed the training scoring rule to RISLL, RCLL, and ISBS,
respectively. For RISLL and ISBS we only consider the 75 % percentile for τ˚. We also
evaluate using the same scoring rules. RCLL is reported as -RCLL.

AFTdeep
RISBS AFTdeep

RISLL AFTdeep
RCLL AFTdeep

ISBS

gbsg2 RISBS 13.6 (0.54) 13.4 (0.59) 13.5 (0.58) 13.6 (0.56)
RISLL 40.8 (1.39) 40.7 (1.35) 40.8 (1.47) 41.2 (1.55)

n “ 2232 RCLL 2.67 (0.76) 2.65 (0.72) 2.60 (0.70) 2.69 (0.79)
p “ 7 ISBS 13.1 (0.53) 13.1 (0.59) 13.0 (0.62) 13.2 (0.63)

synthetic RISBS 8.3 (0.46) 8.3 (0.50) 8.4 (0.45) 8.6 (0.63)
RISLL 26.7 (1.18) 26.5 (1.17) 26.6 (1.28) 26.9 (1.20)

n “ 1500 RCLL 1.58 (0.06) 1.57 (0.06) 1.59 (0.06) 1.60 (0.07)
p “ 4 ISBS 8.5 (0.38) 8.5 (0.35) 8.6 (0.34) 8.6 (0.58)

Results In Table 5, we observe that using different scoring rules only leads to
minor changes for both training and evaluation. Choosing ISBS as the evaluation
metric seems to give a slight advantage to the model, which is also trained on an
ISBS loss. Among the proper scoring rules, we do not observe a similar pattern.

5 Discussion & Conclusion

We proposed a new method for estimating event time distributions from cen-
sored data, including competing risks, using scoring rules as a loss function.
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Our framework can be seamlessly integrated into neural networks, but also into
tree-based models, generalized additive models, and gradient boosting. Empiri-
cal results demonstrate that the proposed integration of scoring rules yields good
predictive performance, and the proposed framework is on par with other state-
of-the-art approaches. We particularly highlight the results from the recovery
and ablation study in sections Section 4.1 and Section 4.3 that confirm that the
framework can be used in a variety of settings and configurations. This validates
theoretical propositions and claims and provides proof-of-concept evidence for
the entire framework.

The use of scoring rules in survival model training can be viewed as an-
other method for reducing survival problems into classification or regression
problems through discretization. By extending the framework to any arbitrary
model class, this work makes an important taxonomic contribution. We show
that this specific discretization (in combination with a suitable scoring rule) is
generally applicable (e.g. in single event and competing risks settings), similar
to piecewise exponential models or discrete hazard models. This finding goes
beyond previous attempts that assessed scoring-rule-based model training. In
contrast to them, this work provides a rigorous separation of a learner into a
loss (scoring rule in combination with discretization), a hypothesis space (model
classes), and an optimization (dependent on model class). This point of view
allows a very agnostic application of the framework and makes it easy to extend.

Limitations and Future Work While our approach works for right-censored data
and competing risks, other SA use cases, such as interval-censored data, multi-
state modeling, or recurrent events, are contemporary challenges that could be an
interesting extension of our proposal for future research. The choice of a specific
scoring rule and respective advantages and disadvantages for model optimization
could also be explored further in the future.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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