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Abstract. We investigate the convergence properties of the EM algorithm when
applied to overspecified Gaussian mixture models—that is, when the number
of components in the fitted model exceeds that of the true underlying distribu-
tion. Focusing on a structured configuration where the component means are
positioned at the vertices of a regular simplex and the mixture weights satisfy
a non-degeneracy condition, we demonstrate that the population EM algorithm
converges exponentially fast in terms of the Kullback-Leibler (KL) distance. Our
analysis leverages the strong convexity of the negative log-likelihood function in a
neighborhood around the optimum and utilizes the Polyak-Łojasiewicz inequality
to establish that an ϵ-accurate approximation is achievable in O(log(1/ϵ)) itera-
tions. Furthermore, we extend these results to a finite-sample setting by deriving
explicit statistical convergence guarantees. Numerical experiments on synthetic
datasets corroborate our theoretical findings, highlighting the dramatic acceler-
ation in convergence compared to conventional sublinear rates. This work not
only deepens the understanding of EM’s behavior in overspecified settings but
also offers practical insights into initialization strategies and model design for
high-dimensional clustering and density estimation tasks.
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1 Introduction and Main Results

Let Z1, . . . , Zn be a random sample from the standard d-variate normal distribution
Nd(0, I), where 0 ∈ Rd is the mean vector, and I ∈ Rd×d is the identity covariance
matrix. We aim to fit a k-component Gaussian mixture model of the form

π1 · Nd(µ1, I) + . . .+ πk · Nd(µk, I) (1)

to this sample. When k ≥ 2, this setting is known as overspecification, meaning the fit-
ted model contains more mixture components than the true data-generating process. We
assume the location parameters µ = (µ⊤

1 , . . . , µ
⊤
k )

⊤ are unknown, while the mixture
weights (π1, . . . , πk) are fixed and satisfy πj > 0 and

∑k
j=1 πj = 1.
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Let f(x;µ) denote the probability density function of the mixture defined in (1).
The maximum likelihood estimator (MLE) of µ is given by

µ̂ ∈ argmax
µ

1

n

n∑
i=1

log f(Zi;µ). (2)

For k ̸= 1, a closed-form solution for µ̂ does not exist. Instead, (2) is typically solved us-
ing iterative methods such as the Expectation-Maximization (EM) algorithm [7]. How-
ever, since the log-likelihood function in (2) is non-concave, iterative methods generally
do not guarantee convergence to the global optimum.

Recent studies have analyzed the behavior of EM in overspecified settings. Dwivedi
et al. [8, 9] examined the case k = 2, differentiating between balanced mixtures (π1 =
π2 = 1/2) and unbalanced mixtures (π1 ̸= π2). Assuming symmetric means (µ1 =
−µ2), they showed that in the unbalanced case, the population EM4 algorithm requires
O(log(1/ϵ)) steps to obtain an ϵ-accurate estimate of the parameter µ∗ = 0. In contrast,
for balanced mixtures, the algorithm needs Θ(log(1/ϵ)/ϵ2) steps, making it exponen-
tially slower.

Xu et al. [17] investigated the behavior of gradient EM5 in the population setting
for general k. Their results show that gradient EM exhibits a slow convergence rate,
requiring O(1/ϵ2) iterations to approximate the k-component Gaussian mixture (1) to
Nd(0, I) within an accuracy ϵ in the KL metric. Their work imposes no assumptions
on the balance of the mixture weights or the arrangement of Gaussian component cen-
ters. From this perspective, their result is more general. However, as demonstrated by
Dwivedi et al. [9], in certain overspecified cases, the EM algorithm can achieve expo-
nential convergence. This motivates the following question:

When learning a mixture of k Gaussians from Nd(0, I) data, does there exist a
configuration of component centers and mixture weights such that the EM algorithm

converges exponentially fast?

Our answer to this question is affirmative, and we present it in the form of the following
theorem.

Theorem 1. Let R ∈ Rd×d be an orthogonal matrix such that for any nonzero θ ∈ Rd,
the points

µj(θ) = Rj−1θ, for j = 1, . . . , k.

form the vertices of a regular (k − 1)-simplex in Rd, d ≥ k − 1, centered at the origin.
Consider the k-component Gaussian mixture

G(θ) := π1 · Nd(µ1(θ), I) + π2 · Nd(µ2(θ), I) + · · ·+ πk · Nd(µk(θ), I),

where the mixture weights π1, . . . , πk are fixed, positive, satisfy
∑k

j=1 πj = 1, and their
discrete Fourier transform has no zero entries. This mixture is fitted to the standard

4 Population EM assumes access to the true data-generating distribution, allowing updates to be
computed as exact expectations, free from sampling variability.

5 Gradient EM replaces the M-step of the Expectation-Maximization algorithm with a single
gradient ascent step on the Q-function.
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Gaussian distribution N (0, I) using the Population EM algorithm. Let θt denote the
parameter value at iteration t. Then there exists γ > 0 such that the following holds:

DKL[N (0, I) ∥ G(θt)] ≤ κtDKL[N (0, I) ∥ G(θ0)],

for θ0 satisfying ∥θ0∥ ≤ γ and for some constant κ ∈ (0, 1).

At first glance, the choice of placing Gaussian component centers at the vertices
of a regular (k − 1)-simplex may seem arbitrary. However, this configuration naturally
arises in the context of Gaussian mixture learning.

A common approach to initializing Gaussian mixture components in the EM algo-
rithm is via Lloyd’s variant of the k-means algorithm [13]. We can show that the vertices
of a regular (k − 1)-simplex (with a particular radius) form a fixed point of Lloyd’s al-
gorithm when applied to N (0, I) at the population level (Section 2). Figure 1 illustrates
this for finite samples and k = 2, 3. This suggests that the regular (k − 1)-simplex

(a) k = 3 on N2(0, I) (b) k = 4 on N3(0, I)

Fig. 1: K-means clustering on standard Gaussian data. Left: 10,000 samples in R2 are
clustered into 3 groups; centroids (black markers) are connected by dashed lines to form
a near-equilateral triangle. Right: 10,000 samples in R3 are clustered into 4 groups;
centroids (black markers) connected by dashed lines approximate a regular tetrahedron.

is a natural initialization choice for the EM algorithm when learning an overspecified
Gaussian mixture from data generated by a single Gaussian.

Following Xu et al. [17], we focus on the convergence of the fitted distribution to the
true distribution in the KL metric rather than the convergence of the parameters to zero
in the Euclidean metric, as studied by Dwivedi et al. [9]. However, our analysis fun-
damentally differs from both works. We find that the expected negative log-likelihood
function is strongly convex in the neighborhood of the optimum and satisfies the so-
called Polyak-Łojasiewicz inequality [1, 14]. This significantly simplifies the analysis
of the convergence of the KL distance between the fitted model and the true distribution.
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An immediate consequence of Theorem 1 is that the Population EM algorithm re-
quires O (log (1/ϵ)) steps to approximate the mixture G(θ) to N (0, I) within ϵ in the
KL metric. This is exponentially faster than the general result of Xu et al. [17]. More-
over, by leveraging the now-standard approach of Balakrishnan et al. [3], we can trans-
late the fast convergence of the population EM into the following finite-sample guaran-
tee for the sample-based EM algorithm.

Theorem 2. Under the assumptions of Theorem 1 on the structure of the Gaussian
mixture, there exists γ > 0 such that for any initialization θ0 with ∥θ0∥ ≤ γ, the EM
algorithm produces a sequence of parameter estimates θ̂t satisfying

DKL

[
N (0, I) ∥ G(θ̂T )

]
≤ c1∥θ0∥2

log(1/δ)

n
, (3)

for T ≥ c2 log
n

log(1/δ) with probability at least 1− δ.

The proof of Theorem 2 is based on a perturbation bound that relates the sample-
based EM operator to its population-level counterpart (Lemma 8 in Section C). In turn,
the proof of the latter utilizes standard arguments to derive Rademacher complexity
bounds.

The theoretical insights presented above are supported by our numerical experi-
ments. In particular, Figure 2 demonstrates the exponential decay of the KL divergence
over EM iterations under various mixture weight configurations, while Figure 3 reveals
how the divergence decreases as the sample size increases. Together, these figures pro-
vide an intuitive visualization of the convergence dynamics and statistical guarantees
established by our analysis.

To summarize, our work makes the following key contributions:

– We demonstrate that the EM algorithm can achieve exponential convergence in the
KL metric when learning an overspecified mixture of k Gaussian components under
a specific structured configuration of mixture centers and weights. This contrasts
with prior work [17], which establishes only sublinear convergence rates in general
settings.

– We develop a novel analytical framework based on the Polyak-Łojasiewicz inequal-
ity, leveraging the strong convexity of the expected negative log-likelihood function
near the optimum. This significantly simplifies the convergence analysis compared
to previous approaches.

– We establish an explicit finite-sample guarantee for learning an overspecified mix-
ture of k Gaussians with the EM algorithm.

These contributions provide new insights into the role of mixture structure in the
efficiency of EM and identify settings where the algorithm achieves fast convergence
rates.

Notation. Lowercase letters (x) denote vectors in Rd, uppercase letters (A, X) denote
matrices and random vectors. The Euclidean norm is denoted by ∥x∥ :=

√
x⊤x. We

denote {1, 2, . . . , k} with [k].
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Fig. 2: Convergence of Population EM: The plot shows the evolution of the KL diver-
gence versus the number of EM iterations for three different sets of mixture weights.
The curves correspond to varying levels of imbalance illustrating how the choice of
weights influences convergence speed.

Fig. 3: Sample-Based EM Performance: The figure plots the final KL divergence against
the sample size n on a log-log scale. It demonstrates how increasing the number of
samples improves the accuracy of the EM estimate by reducing the divergence between
the fitted mixture and the true N (0, I) distribution
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The probability density function of Z ∼ N (0, I), where I is a d×d identity matrix,
is denoted by ϕ(z). The cumulative distribution function of Z ∼ N (0, 1) is denoted by
Φ(z).

Given f : R → R and g : R → R+, we write f ≾ g if there exist x0 ∈ R, c ∈ R+

such that for all x > x0 we have |f(x)| ≤ cg(x). When f : R → R+, we write f ≍ g
if f ≾ g and g ≾ f . We use c, c1, c2, etc. to denote some universal constants (which
might change in value each time they appear).

Related Work

Research on the Expectation-Maximization (EM) algorithm and its convergence behav-
ior in Gaussian mixture models has advanced rapidly. Balakrishnan et al. [3] introduced
a framework to delineate the region of convergence in terms of distribution parameters.
Their work contrasted a population-level analysis with the sample-based implemen-
tation commonly used in practice, focusing specifically on the well-specified case of
k = 2 components and addressing both balanced and unbalanced scenarios.

Within this context, significant effort has been devoted to developing initialization
strategies that guarantee convergence to the global optimum. Klusowski and Brinda
[12] demonstrated that local convergence can occur over a broader region than previ-
ously identified for the two-component case, while Zhao et al. [19] investigated how
initialization affects mixtures with an arbitrary number of well-separated components.
In addition, Daskalakis et al. [6] provided global convergence guarantees for a two-
component model with symmetrically positioned mean vectors. For mixtures with k
well-separated components, Segol and Nadler [16] proved that convergence is assured
even when the algorithm is initialized near the midpoint between clusters, refining the
estimation error bounds and extending the analysis to Gradient EM—a variant of the
classical EM algorithm. Moreover, Yan et al. [18] further analyzed the convergence
rate and local contraction radius of Gradient EM for an arbitrary number of mixture
components.

Another major line of inquiry has focused on model misspecification. Dwivedi et al.
[10] examined an underspecified scenario, where a two-component Gaussian mixture is
fitted to data generated by a three-component mixture, and characterized the resulting
bias while also exploring the influence of initialization on convergence. The benefits
of overspecified mixture models have been recognized by Dwivedi et al. [9], Dwivedi
et al. [8], Chen et al. [4], and others. In particular, Dwivedi et al. [9] and Dwivedi et al.
[8] studied the case of fitting two Gaussian components to data from a single Gaussian
distribution. They compared balanced and unbalanced scenarios, demonstrating that
in sample-based EM the unbalanced case converges at a statistical rate of O(1/

√
n),

in contrast to O( 4
√
1/n) for the balanced case when estimating mean vectors under

both known and estimated isotropic covariance structures. They further showed that the
algorithmic convergence rate is exponentially faster in the unbalanced setting.

Bayesian approaches to model overspecification, as discussed in [15], have revealed
that the estimated mixture weights can vary greatly, often causing some components to
become redundant and allowing for model refinement by discarding those with very
small weights. In addition, Chen et al. [4] found that even spurious local minima of
the negative log-likelihood retain structural information that is valuable for identifying
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component means, highlighting the advantages of overspecification over underspeci-
fication—a contrast often described as “many-fit-one” versus “one-fit-many.” Further-
more, Dasgupta and Schulman [5] proposed a method for finite mixture overspecifica-
tion by recommending that models be deliberately initialized with log(k)

wmin
clusters, where

wmin denotes the smallest weight, to substantially accelerate convergence.
While much of the literature has focused on convergence in terms of distribution

parameters, investigations measuring the quality of fit using the Kullback-Leibler (KL)
divergence are relatively few. Ghosal and van der Vaart [11] derived a statistical conver-
gence rate of (log n)κ/

√
n in Hellinger distance, which translates to a lower bound of

(log n)2κ/n in KL divergence; however, their analysis was confined to well-specified
models and did not consider algorithmic factors. Dwivedi et al. [10] also employed KL
divergence in the context of underspecified mixtures, but, to our knowledge, the use
of KL divergence in overspecified mixtures was first explored by Xu et al. [17]. They
obtained KL divergence bounds for the population version of Gradient EM applied to a
k-component mixture with known variances. In contrast, our work extends these results
by analyzing both population and sample-based EM under a structured configuration
of mixture centers and weights, and importantly, we establish an exponentially faster
algorithmic convergence rate in KL divergence than that reported by Xu et al. [17].

2 Initialization with k-means

Initialization is a critical step in the Expectation–Maximization (EM) algorithm, partic-
ularly in overspecified settings where the number of mixture components exceeds the
true number. A common strategy is to first run the k–means algorithm (i.e., Lloyd’s
algorithm) on the data and then use the resulting cluster centers to initialize the EM
algorithm.

When the data are generated from a single Gaussian distribution N (0, I), one ob-
serves that Lloyd’s algorithm exhibits a natural fixed–point property under a symmetric
configuration. In particular, consider initializing the k centers at the vertices of a regular
(k − 1)–simplex centered at the origin. That is, let

µi = r vi, i = 1, . . . , k,

where the vectors v1, . . . , vk ∈ Rd (with d ≥ k−1) are unit vectors forming the vertices
of a regular simplex, and r > 0 is a scaling factor.

A key observation is that the Voronoi partition induced by these centers depends
only on the directions vi and not on the scalar r. Consequently, the conditional expecta-
tions computed in the Lloyd update—i.e., the new centers—are also determined solely
by the angular configuration. In fact, one may show that the Lloyd update maps the
configuration to

µ′
i = R0 vi, i = 1, . . . , k,

where R0 > 0 is determined by the radial integrals of the Gaussian density. Thus, the
fixed–point condition µ′

i = µi for all i is equivalent to choosing r = R0.
This fixed–point property suggests that initializing the EM algorithm with a regular

simplex (properly scaled) is natural in the context of overspecified Gaussian mixtures.
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In the proof of the following proposition (Section A), we rigorously analyze this phe-
nomenon by first characterizing the Voronoi partition induced by a regular simplex and
then proving that there exists a unique scaling r > 0 such that the configuration

{µi = r vi : i = 1, . . . , k}

remains invariant under the population–level Lloyd update.

Proposition 1. Let d ≥ k − 1, and suppose that

v1, . . . , vk ∈ Rd

are unit vectors that form the vertices of a regular simplex in some (k−1)–dimensional
subspace of Rd,

∥vi∥ = 1, for i = 1, . . . , k, with
k∑

i=1

vi = 0,

with the pairwise inner products being constant for i ̸= j. For any r > 0, define centers

µi = r vi, i = 1, . . . , k,

and let the Voronoi cells be

Vi = {x ∈ Rd : ∥x− µi∥ ≤ ∥x− µj∥ for all j ̸= i }.

Then there exists a unique r > 0 such that if one performs the population-level Lloyd
update

µ′
i =

∫
Vi

xϕ(x) dx∫
Vi

ϕ(x) dx

,

one obtains µ′
i = µi for all i = 1, . . . , k. That is, the configuration

{µi = r vi : i = 1, . . . , k}

is a fixed point of Lloyd’s algorithm.

3 Population-Level Analysis

We begin by analyzing the behavior of the so-called population EM, a theoretical con-
struct that isolates algorithmic complexity from sample complexity. Population EM as-
sumes direct access to the data-generating distribution N (0, I) and, instead of maxi-
mizing the sample-based log-likelihood in (2), optimizes the population log-likelihood:

L(θ) := E
Z∼N (0,I)

[log f(Z; θ)]. (4)

The algorithm proceeds iteratively by applying the following two steps:
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– Expectation step: Given the current estimate θt, compute the function

Q(θ, θt) := E
Z∼N (0,I)

 k∑
j=1

wj(Z; θt) log
(
πj · ϕ

(
Z −Rj−1θ

)) ,

where

wj(Z; θt) =
πj · ϕ(Z −Rj−1θt)∑k
ℓ=1 πℓ · ϕ(Z −Rℓ−1θt)

.

– Maximization step: Update the parameters by solving the optimization problem:

θt+1 ∈ argmax
θ

Q(θ, θt).

In this specific case, where the population EM algorithm is used to fit the mixture
(1) to N (0, I), the recurrence relations governing the parameter updates can be explic-
itly derived (Section B.1). The parameter updates follow the recursion θt+1 = M(θt),
where

M(θ) := E
Z∼N (0,I)

 k∑
j=1

wj(Z; θ)(Rj−1)⊤Z

 . (5)

The mapping M(θ) is referred to as the population EM operator. Notably, it is
closely related to the population negative log-likelihood, as stated in the following equa-
tion (Section B.2):

∇θ[−L(θ)] = θ −M(θ). (6)

Denote L(θ) := −L(θ). The equation (6) implies that

θt+1 = θt −∇θ[L(θt)],

which means that in the given setting, the EM algorithm is equivalent to gradient de-
scent (GD) on L(θ) with a step size 1. This suggests that standard techniques used
in the analysis of GD can be applied to study the convergence of the EM algorithm.
One such technique is the Polyak-Łojasiewicz inequality, a sufficient condition for the
exponential convergence of GD. We establish this property for L(θ) in the following
lemma.

Lemma 1 (Local PL Inequality). Let L(θ) be the population log-likelihood func-
tion defined by (4). Suppose π1, . . . , πk > 0 are positive real numbers whose discrete
Fourier transform has no zero entries. Then there exists δ > 0 such that L(θ) := −L(θ)
satisfies the following local Polyak–Łojasiewicz (PL) inequality in {θ : ∥θ∥ ≤ δ}:∥∥∇L(θ)

∥∥2 ≥ λmin

(
L(θ) − L(0)

)
, (7)

where λmin ≤ 1 is the smallest eigenvalue of ∇2L(0).
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A key step in establishing the local Polyak–Łojasiewicz (PL) inequality around
θ∗ = 0 is to show that the Hessian ∇2L(θ) remains positive definite in a sufficiently
small neighborhood of θ∗ = 0. Concretely, we need the Jacobian of the EM operator
at θ∗ = 0 to have spectral properties that ensure strong convexity of the population
negative log-likelihood L.

In our setup, this boils down to proving that the matrix A =
∑k

j=1 πj R
j−1 is in-

vertible (cf. Lemmas 2 and 3 in Section 5), since one can then show I− ∂M
∂θ (0) = A⊤A

is positive definite. The invertibility of A follows from the assumption that the πj’s
have a discrete Fourier transform with no zero entries. Intuitively, if the discrete Fourier
transform of {πj} vanished at one of the k-th roots of unity, then certain “rotational
symmetries” in the update equations would cause degeneracies, preventing A from be-
ing invertible. By ruling out such degeneracies, the condition π̂(ℓ) ̸= 0 for all ℓ guaran-
tees the necessary full rank of A.

Under these conditions, the Hessian ∇2L(θ) remains uniformly positive definite
in a neighborhood of θ∗ = 0, which yields the strong convexity of L around θ∗ =
0. From strong convexity, the usual argument then gives the local PL inequality (7)
demonstrating the sharpness of the landscape near the stationary point θ∗ = 0.

Since the local PL inequality plays a central role in our convergence analysis, we
present the proof of Lemma 1 in the main text (Section 5) to ensure the core argument
remains transparent. The proofs of the remaining supporting lemmas are deferred to the
Appendix.

We are ready to prove the exponential decay of the KL divergence between the true
distribution and the sequence of fitted mixtures.

Proof (Proof of Theorem 1). We start by noting that

DKL

[
N (0, I)

∥∥G(θt)] = L(θt) − L(0).

Equation (6) implies that the Hessian of L is given by

∇2L(θ) = I − ∂M

∂θ
.

Furthermore, we can show (see Lemma 2 in Section 5) that at θ∗ = 0, we have

∇2L(0) = AA⊤, where A :=

k∑
j=1

πj R
j−1.

Since R is an orthogonal matrix, its eigenvalues are among the k-th roots of unity
{e2πiℓ/k}k−1

ℓ=0 , implying ∥R∥op = 1. Hence, by the triangle inequality,

∥∇2L(0)∥op ≤
( k∑

j=1

πj∥Rj−1∥op
)2

=

( k∑
j=1

πj

)2

= 1.

By smoothness of L(θ), there is therefore a neighborhood of θ∗ = 0 in which ∥∇2L(θ)∥op ≤
3/2. Consequently, for θ and θ′ in that neighborhood,

L(θ′) ≤ L(θ) + ∇L(θ)⊤(θ′ − θ) + 3
4 ∥θ

′ − θ∥2.
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In particular, applying this to θt+1 and θt yields

L(θt+1) ≤ L(θt) + ∇L(θt)
⊤(θt+1 − θt

)
+ 3

4 ∥θt+1 − θt∥2

= L(θt) + ∇L(θt)
⊤(M(θt)− θt

)
+ 3

4 ∥M(θt)− θt∥2

= L(θt) − ∥∇L(θt)∥2 + 3
4 ∥∇L(θt)∥2

= L(θt) − 1
4 ∥∇L(θt)∥2.

Next, using the Polyak–Lojasiewicz inequality (7), we obtain

L(θt+1) ≤ L(θt)− λmin

4

(
L(θt)− L(0)

)
.

Subtracting L(0) from both sides gives

L(θt+1)− L(0) ≤
(
1− λmin

4

) (
L(θt)− L(0)

)
.

Applying this inequality recursively completes the proof.

4 Finite-Sample Analysis

When the sample-based averaged log-likelihood in (2) is maximized via the EM algo-
rithm, the parameter updates can be expressed explicitly by replacing the expectation E
in (5) with the empirical average over the sample:

θ̂t+1 = Mn(θ̂t),

where Mn(θ) :=
1

n

n∑
i=1

k∑
j=1

wj(Zi; θ)(R
j−1)⊤Zi. (8)

The following perturbation bound (Section C) relates the sample-based EM operator to
its population-level counterpart:

Pr

[
sup

∥θ∥≤r

∥Mn(θ)−M(θ)∥ ≤ cr

√
d+ log(1/δ)

n

]
≥ 1− δ, (9)

for any radius r > 0, threshold δ ∈ (0, 1), and sufficiently large n.
Due to the strict contractivity of the population EM operator in a neighborhood of

θ∗ = 0 (Lemma 4 in Section 5) and the perturbation bound above, we can establish that
the sequence of EM iterates θ̂t satisfies, with probability at least 1− δ,

∥θ̂T ∥ ≾ ∥θ0∥
√

log(1/δ)

n
, (10)

for T ≿ log
(

n
log(1/δ)

)
, provided that θ0 lies within the contraction neighborhood (see

the proof of Theorem 2 in [3]).
With this, we are ready to establish our key result on convergence in KL distance

for the finite-sample case.
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Proof (Proof of Theorem 2). By the convexity of L in a neighborhood of θ∗ = 0
(Lemma 5 in Section 5), we have

L(θ̂t)− L(0) ≤ ∇L(θ̂t)
⊤θ̂t. (11)

From (6), it follows that

∇L(θ̂t)
⊤θ̂t = ∥θ̂t∥2 − [M(θ̂t)]

⊤θ̂t ≾ ∥θ̂t∥2, (12)

where we used the contraction property of M near θ = 0 (Corollary 1 in Section 5).
The theorem follows directly from (10), (11), and (12).

5 Proof of the Local PL Inequality

In this section, we prove the local Polyak–Lojasiewicz (PL) inequality for the negative
log-likelihood L(θ) of our overspecified Gaussian mixture model. By analyzing the
Jacobian of the population EM operator M(θ) at θ∗ = 0, we show that M(θ) is locally
contractive, which implies that the Hessian of L(θ) is uniformly positive definite near
θ∗ = 0.

The subsequent lemmas establish these properties and lead directly to the local PL
inequality, ensuring the exponential convergence of the EM algorithm in terms of the
KL divergence.

Lemma 2. Let M(θ) be the EM operator defined by (5). Then the Jacobian of M(θ) at

θ∗ = 0 is given by ∂M
∂θ (0) = I −

(∑k
j=1 πj R

j−1

)(∑k
j=1 πj R

j−1

)⊤

.

Proof. Let S(θ, Z) =
∑k

ℓ=1 πℓ exp
(
(Rℓ−1θ)⊤Z

)
. Then

wj(Z; θ) =
πj exp

(
(Rj−1θ)⊤Z

)
S(θ, Z)

.

At θ∗ = 0, each exponential term is exp(0) = 1, so S(0, Z) =
∑k

ℓ=1 πℓ = 1,
wj(Z; 0) = πj . Since

∇θ

(
(Rj−1θ)⊤Z

)
= (Rj−1)⊤Z,

∇θS(θ, Z) =

k∑
ℓ=1

πℓ exp
(
(Rℓ−1θ)⊤Z

) [
(Rℓ−1)⊤Z

]
,

using the quotient rule for ∇θwj(Z; θ), and then evaluating it at θ∗ = 0, we get

∇θwj(Z; θ)
∣∣
θ∗=0

= πj

[
(Rj−1)⊤Z −

k∑
ℓ=1

πℓ (R
ℓ−1)⊤Z

]
.

Define g(θ, Z) =
∑k

j=1 wj(Z; θ) (Rj−1)⊤Z. Then

∂g

∂θ
(θ, Z) =

k∑
j=1

(Rj−1)⊤Z
[
∇θwj(Z; θ)

]⊤
.
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At θ∗ = 0,

∂g

∂θ
(θ, Z)

∣∣
θ∗=0

=

k∑
j=1

πj(R
j−1)⊤Z

[
(Rj−1)⊤Z −

k∑
ℓ=1

πℓ (R
ℓ−1)⊤Z

]⊤
.

Then the sought Jacobian of M(θ) at θ∗ = 0 is

∂M

∂θ
(0) = EZ

[
∇θg(0, Z)

]
.

Since Z ∼ Nd(0, I), we have E[ZZ⊤] = I . Each Rj−1 is orthogonal, hence

E
[
(Rj−1)⊤Z Z⊤ Rj−1

]
= (Rj−1)⊤ I Rj−1 = I.

Collecting terms, the result is

∂M

∂θ
(0) = I −

( k∑
j=1

πj R
j−1

)( k∑
j=1

πj R
j−1

)⊤

,

which completes the proof.

Lemma 3. Let R ∈ Rd×d be a (real) matrix whose eigenvalues lie among the k-th
roots of unity (except 1), i.e., spec(R) ⊆

{
e i 2πℓ

k : ℓ = 1, 2, . . . , k − 1
}
. Let

π1, . . . , πk > 0 be positive real numbers whose discrete Fourier transform π̂(ℓ) =∑k−1
j=0 πj+1 e

i
2πℓ
k j , ℓ = 0, 1, . . . , k − 1, has no zero entries (i.e. π̂(ℓ) ̸= 0 for all ℓ).

Define the matrix A :=
∑k

j=1 πj R
j−1. Then A is invertible.

Proof. Since all eigenvalues of R lie among the k-th roots of unity (except 1), we can
work over C and bring R into a Jordan (or block-diagonal) form. Concretely, there exists
an invertible matrix V ∈ Cd×d such that R = V ΛV −1, where Λ is block-diagonal

and each block corresponds to an eigenvalue of the form e i
2πℓ
k (with 1 ≤ ℓ ≤ k − 1).

In particular, R j−1 = V Λ j−1 V −1 for all j = 1, . . . , k. Thus we can rewrite A as

A =

k∑
j=1

πj R
j−1 =

k∑
j=1

πj

(
V Λ j−1 V −1

)
= V

( k∑
j=1

πj Λ
j−1

)
V −1.

Since V is invertible, A is invertible if and only if
∑k

j=1 πj Λ
j−1 is invertible.

Now, Λ is block-diagonal with Jordan blocks corresponding to eigenvalues λ ∈
{ e i

2πℓ
k : ℓ = 1, . . . , k − 1} . Consider a single eigenvalue λ. The diagonal entry of

the diagonal block of
∑k

j=1 πj Λ
j−1 is

∑k
j=1 πj λ

j−1 =
∑k−1

j=0 πj+1 λ
j . Since

λ j = e i
2πℓ
k j for some ℓ ∈ {1, . . . , k − 1}, this sum is precisely the discrete Fourier

transform of (π1, . . . , πk):
∑k−1

j=0 πj+1 e
i
2πℓ
k j = π̂(ℓ). By hypothesis, π̂(ℓ) ̸= 0 for

all ℓ = 0, . . . , k − 1, hence each diagonal entry is nonzero. Therefore, every diagonal

block of
k∑

j=1

πj Λ
j−1 is invertible, so the entire block-diagonal matrix is invertible.
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Lemma 4. Under the conditions of Lemmas 2 and 3, the matrix I − ∂M
∂θ (0) is positive

definite.

Proof. From Lemma 2, the Jacobian of the EM operator at θ∗ = 0 is given by ∂M
∂θ (0) =

I−AA⊤, where A =
∑k

j=1 πjR
j−1. Rearranging this equation, we obtain I−∂M

∂θ (0) =

AA⊤. By Lemma 3, the matrix A is invertible. Since AA⊤ is the product of A and A⊤, it
follows that AA⊤ is symmetric and positive definite. To see this, note that for any non-
zero vector x ∈ Rd, x⊤AA⊤x =

(
A⊤x

)⊤ (
A⊤x

)
= ∥A⊤x∥2 > 0, since A is invertible

and thus A⊤x ̸= 0 for x ̸= 0. Therefore, the matrix I − ∂M
∂θ (0) = AA⊤ is positive

definite.

Corollary 1. All eigenvalues of ∂M
∂θ (0) lie strictly below 1, which in turn implies that

M is a contraction near θ∗ = 0.

Lemma 5. Let L(θ) be the population log-likelihood function defined by (4). Suppose
π1, . . . , πk > 0 are positive real numbers whose discrete Fourier transform has no zero
entries. Then there exists δ > 0 such that L is strongly convex in {θ : ∥θ∥ ≤ δ}:

Proof. Since ∇L(θ) = θ −M(θ), its Hessian is given by ∇2L(θ) = I − ∂M
∂θ (θ).

By Lemma 4, S := I − ∂M
∂θ (0) is positive definite. Let λmin = λmin(S) > 0 be

the smallest eigenvalue of S.
Next, by continuity of ∂M

∂θ (θ) at θ = 0, for any ε > 0 there exists a δ > 0 such that

∥θ∥ < δ =⇒
∥∥∥∥∂M∂θ (θ) − ∂M

∂θ
(0)

∥∥∥∥
op

< ε,

where ∥ · ∥op denotes the operator norm.

Choose ε = 1
2 λmin. Then for ∥θ∥ < δ,

∥∥∥∂M
∂θ (θ) − ∂M

∂θ (0)
∥∥∥
op

< 1
2 λmin. Thus,

for any vector v ∈ Rd with ∥v∥ = 1,

v⊤
(
I − ∂M

∂θ
(θ)

)
v = v⊤

(
I − ∂M

∂θ (0)
)
v − v⊤

(
∂M
∂θ (θ)− ∂M

∂θ (0)
)
v

≥ v⊤
(
I − ∂M

∂θ (0)
)
v −

∥∥∥∂M
∂θ (θ)− ∂M

∂θ (0)
∥∥∥
op

≥ λmin − 1
2 λmin = 1

2 λmin.

Therefore, I − ∂M
∂θ (θ) ⪰ 1

2 λmin I for all ∥θ∥ < δ. Since ∇2L(θ) = I− ∂M
∂θ (θ), we

deduce ∇2L(θ) ⪰ 1
2 λmin I whenever ∥θ∥ < δ. Hence L(θ) is

(
1
2 λmin

)
-strongly

convex in the ball {θ : ∥θ∥ < δ}.

Proof (Proof of Lemma 1). By Lemma 5, L is λmin

2 -strongly convex in a neighborhood
of θ∗ = 0, i.e. there exists δ > 0 such that for θ, θ′ ∈ {θ : ∥θ∥ ≤ δ}

L(θ′) ≥ L(θ) +∇L(θ)T (θ′ − θ) +
λmin

4
∥θ′ − θ∥2.
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Minimizing both sides with respect to θ′, we get

L(0) ≥ L(θ)− 1

λmin
∥∇L(θ)∥2.

Re-arranging the terms we have the PL inequality.
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A Proof of Proposition 1

Proof. See the full version [2].

B Population EM properties

B.1 Population EM updates

We begin by providing additional details on the EM algorithm. It is convenient to rep-
resent the mixture distribution (1) using a latent categorical random variable K, which
identifies the mixture components. Given the mixture weights (π1, . . . , πk), we assume
that

Pr[K = j] = πj .

The conditional distribution of X given K = j is then defined as

(X | K = j) ∼ Nd(R
j−1θ, I), for j ∈ [k].

This specifies the joint distribution of the tuple (X,K), ensuring that the marginal dis-
tribution of X corresponds to the Gaussian mixture G(θ) in (1). The Population EM
algorithm maximizes the expected log-likelihood (4) through the following iterative
steps:

– E-step: Given the current estimate θt, compute the soft assignment of any x ∈ Rd

to component K = j, i.e., evaluate the posterior probability:

wj(x; θt) =
πj · ϕ(x−Rj−1θt)∑k
ℓ=1 πℓ · ϕ(x−Rℓ−1θt)

, (13)

and use it to compute the Q-function:

Q(θ, θt) := EZ∼N (0,I)

 k∑
j=1

wj(Z; θt) log
(
πj · ϕ(Z −Rj−1θ)

) .
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– M-step: Update the parameter by solving the following optimization problem:

θt+1 ∈ argmax
θ

Q(θ, θt). (14)

Lemma 6. Let the population EM algorithm maximize the expected log-likelihood (4).
Then, the parameter updates follow the recursion θt+1 = M(θt), where

M(θ) := E
Z∼N (0,I)

[∑k
j=1 πj · exp

(
(Rj−1θ)⊤Z

)
(Rj−1)⊤Z∑k

ℓ=1 πℓ · exp ((Rℓ−1θ)⊤Z)

]
.

Proof. See the full version [2].

B.2 Population EM operator and Log-likelihood

Lemma 7. The population log-likelihood L(θ) defined in (4) and the population EM
operator M(θ) are related by the equation:

∇θ[−L(θ)] = θ −M(θ).

Proof. See the full version [2].

C Perturbation bound

Lemma 8. There exist universal constants c, c′ > 0 such that for any radius r > 0,
confidence level δ ∈ (0, 1), and sample size n ≥ c′

(
d+ log(1/δ)

)
, the following holds

with probability at least 1− δ:

sup
∥θ∥≤r

∥Mn(θ) − M(θ)∥ ≤ cr

√
d+ log(1/δ)

n
.

Proof. See the full version [2].
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