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Abstract. Recently, Out-of-distribution (OOD) detection in dynamic
graphs, which aims to identify whether incoming data deviates from the
distribution of the in-distribution (ID) training set, has garnered con-
siderable attention in security-sensitive fields. Current OOD detection
paradigms primarily focus on static graphs and confront two critical
challenges: i) high bias and high variance caused by single-point estima-
tion, which makes the predictions sensitive to randomness in the data;
ii) score homogenization resulting from the lack of OOD training data,
where the model only learns ID-specific patterns, resulting in overall
low OOD scores and a narrow score gap between ID and OOD data. To
tackle these issues, we first investigate OOD detection in dynamic graphs
through the lens of Evidential Deep Learning (EDL). Specifically, we pro-
pose EviSEC, an innovative and effective OOD detector via Evidential
Spectrum-awarE Contrastive Learning. We design an evidential neural
network to redefine the output as the posterior Dirichlet distribution,
explaining the randomness of inputs through the uncertainty of distribu-
tion, which is overlooked by single-point estimation. Moreover, spectrum-
aware augmentation module generates OOD approximations to identify
patterns with high OOD scores, thereby widening the score gap between
ID and OOD data and mitigating score homogenization. Extensive ex-
periments on real-world datasets demonstrate that EviSAC effectively
detects OOD samples in dynamic graphs. Our source code is available
at https://github.com/Sunnan191/EviSEC.

Keywords: Dynamic graph · Out-of-distribution detection · Evidential
deep learning · Graph spectrum.

1 Introduction

Real-world graph data often evolves temporally, allowing dynamic graphs to be
ubiquitously applied across non-Euclidean domains such as citation networks [1],
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In-distribution (ID) dynamic graph samples

Out-of-distribution (OOD) dynamic graph samples

… …

… …

(a) (b)

OOD Type: FI

OOD Type: SM

Fig. 1. Dynamic graph examples of (a) ID samples maintain consistent structures,
while OOD samples exhibit deviations. (b) Examples include cases such as SM (Struc-
ture Manipulation) and FI (Feature Interpolation), highlighting structural changes and
feature variations, respectively.

social communities [2], and transaction records [3]. Recently, studies on dynamic
graphs have gained increasing popularity, among which Dynamic Graph Neural
Networks (DGNNs) [4] have rapidly emerged as powerful approaches for dy-
namic graph representation learning [5]. These models primarily leverage Graph
Neural Networks (GNNs) and sequence-based architectures to capture temporal
variations in dynamic graphs.

Most existing models on dynamic graphs are predominantly trained with the
closed-world assumption that the training and test data share the same data dis-
tribution, with such data termed In-Distribution (ID) data. Nevertheless, real-
world scenarios frequently deviate from this ideal assumption, often involving
Out-of-Distribution (OOD) dynamic graphs, which are unobserved during the
training process. Fig. 1 provides examples illustrating the behavior of ID and
OOD dynamic graph with two OOD types. During the inference stage, per-
forming predictions blindly without recognizing OOD samples can render the
output unreliable and pose serious risks. Such cases are especially unacceptable
in safety-critical domains, such as medical diagnostics [6] and autonomous driv-
ing [7]. An ideal model should effectively handle both ID test performance and
OOD detection performance. Therefore, OOD detection in dynamic graphs has
seen a growing demand, which aims to identify whether incoming data deviate
from the distribution of the training set.

Early works in OOD detection primarily focus on static graphs. Liu et al. [8]
propose a hierarchical contrastive learning method that captures common pat-
terns of ID graphs across different granularities (node, graph, and group levels),
so that OOD graphs that deviate from these patterns can be effectively identified.
GNNSAFE [9] extends energy-based models [10] to static graphs and develops
an energy function that classifies nodes with high energies as OOD samples. In
parallel, research on anomaly detection [11] in dynamic graphs has also gained
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attraction. Netwalk [12] uses random walks and autoencoders to generate simi-
lar node representations for ID data, thereby identifying anomalous interactions
between nodes with distinct representations. TADDY [13] employs transformers
to capture both global and local structural anomalies in node representations.
Although the above approaches perform fairly well, they are confronted with two
critical limitations:

i) High bias and high variance caused by single-point estimation.
Most of the aforementioned methods follow a manner of single-point estimation,
which overlook the inherent randomness presented in the data, so that their
OOD detection results are sensitive to natural noise, resulting in high bias and
high variance in the output.

ii) Score homogenization resulting from the lack of OOD training
data. During the training stage, only ID data is available whereas OOD data
remains unseen. This will cause the problem of score homogenization, i.e., the
model only learns the ID-specific patterns, making it tend to assign overall lower
OOD scores, regardless of whether the sample is ID or OOD. The small score
gap between ID and OOD data makes it challenging to effectively distinguish
OOD samples.

To address these limitations, we thoroughly investigate OOD detection in
dynamic graphs from a novel perspective drawing on Evidential Deep Learn-
ing (EDL)—a theoretically grounded framework for uncertainty quantification
through Dirichlet distributions. Specifically, we propose EviSEC, an innova-
tive and effective OOD detector via Evidential Spectrum-awarE Contrastive
Learning. We design an evidential neural network to reshape the output class
probability of single-point estimation into a probability Dirichlet distribution,
allowing us to describe the variability and randomness of the data through the
uncertainty of distribution. Furthermore, we develop two loss functions to guide
the model to output sharper Dirichlet distributions with low uncertainty scores
for ID samples while preserve the ID performance. To tackle the issue of missing
OOD samples, we propose a spectral-aware data augmentation module that gen-
erates OOD approximations of dynamic graphs. Based on this, the contrastive
loss can enable the model to learn and assign higher uncertainty scores, thereby
mitigating the problem of score homogenization. Finally, our OOD detector com-
putes the learned uncertainty as the OOD score, which efficiently distinguishes
OOD samples with higher uncertainty. The main contributions of this study are
summarized as follows:

1. EviSEC is the first to establish a direct link between EDL and OOD detection
in dynamic graphs. We propose an evidential neural network that uses the
uncertainty of posterior distribution to describe the randomness of the input,
addressing the problem of single-point estimation. Our method effectively
improves OOD detection while maintaining ID testing performance.

2. We propose a spectral-aware data augmentation module to generate OOD
approximations for dynamic graphs, alleviating the lack of OOD training
samples. Based on this, our contrastive learning module enlarges the score
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gap, mitigating the issue of score homogenization and effectively enhancing
the OOD detection performance.

3. Experimental results on multiple real-world datasets validate the claimed
advantages of our approach, which achieves consistent performance gains
over multiple powerful competitors with an average AUROC improvement
of 24.32%.

2 Related Works

2.1 Dynamic Graph Representation Learning

Early attempts in dynamic graph representation learning [5, 14] employ tra-
ditional methods including random walks [15], matrix factorization [16], and
temporal point processes [17, 18] to model graph information over time. How-
ever, compared to these methods, DGNNs outperform in expressive power, since
they combine message passing and temporal modeling to better capture topo-
logical and temporal dynamics. For instance, EvolveGCN [19] employs RNNs to
dynamically adapt the weights of GNNs across temporal steps. DEFT [20] uti-
lizes transformers to model temporal dependencies through self-attention mech-
anisms. Instead of using RNNs, LEDG [21] applies gradient-based meta learning
to learn updating strategies. While these methods excel in predictive tasks, they
largely focus on ID data, often neglecting OOD detection in dynamic graphs.

2.2 Graph Out-of-distribution Detection

Graph OOD detection primarily focuses on static graphs and can be broadly
categorized into the following three approaches:

Post-processing Methods. These model-agnostic methods directly process
outputs of pretrained models to estimate OOD scores. For instance, Lee et al. [22]
use Mahalanobis distance to measure the deviation of input data. Similarly, max-
imum softmax probabilities (MSP) [23] can be utilized as confidence scores, with
lower values signaling OOD samples. ODIN [24] enhances MSP by incorporating
temperature scaling and input perturbation to increase the score gap. Yet, these
methods typically follow single-point estimation, which is prone to high variance
and bias, thereby hindering their ability to recognize the OOD patterns.

Energy-based Methods. These approaches are based on the framework of
energy-based models, where energy scores measure the discrepancy between in-
put data and the model’s learned distribution. Specifically, energy scores [25]
effectively separate OOD samples from ID data, as OOD samples typically yield
higher values. GNNSAFE [9] develops an energy function directly extracted from
GNNs trained with energy propagation on static graphs. Nevertheless, directly
adapting these approaches to dynamic settings is challenging since they require
a fundamental redesign of the energy propagation mechanism over time.
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Uncertainty-based Methods. Uncertainty [26] measures the unreliability of
a model’s predictive distribution. A previous study [27] adopts the graph neural
stochastic diffusion framework to model uncertainty in node classification tasks.
Zhao et al. [28] propose a graph-based kernel estimation method to predict node-
level Dirichlet distributions within the EDL framework. DAEDL [29] promotes
EDL performance through a density estimation algorithm. In addition, several
studies [30, 31] utilize the uncertainty measurement framework of conformal pre-
diction to provide statistical guarantees for the detection results. However, the
absence of OOD samples can cause severe score homogenization in detection.

3 Preliminary

3.1 Problem Definition

The dynamic graphs are interpreted as a sequence of graphs G1:T = {Gt}Tt=1,
where T specifies the total number of timesteps. Each discrete graph snapshot
Gt = (Vt, Et,Xt,At) contains node set Vt, edge set Et, adjacency matrix At ∈
{0, 1}Nt×Nt

, and feature matrix Xt ∈ RNt×d, whereN t = |Vt| and d respectively
denote the node count and the feature dimension at timestep t. Dynamic graph
representation learning aims to develop a powerful encoder fθ(·, ·) to capture the
temporal dependency. To achieve this, the graph snapshots Gt:t+∆t are commonly
employed as input to model the dynamics within the temporal window∆t. Based
on such input settings, we formulate OOD detection in dynamic graphs as the
task of ascertaining whether Gt:t+∆t follow the same distribution as ID data:

Definition 1 (OOD detection in Dynamic Graphs). Let the ID dataset
Din (resp. OOD dataset Dout) consist of graph sequences drawn from the distri-
butions Pin (resp. Pout). The training dataset Dtr = {Gtin}

T
t=1 is a subset of Din,

containing ID graphs at different timesteps. The test dataset Dte is constituted
by two disjoint subsets, Dte

in ⊂ Din and Dte
out ⊂ Dout, i.e., Dte = Dte

in ∪ Dte
out,

such that Dtr ∩Dte
in = ∅. For arbitrary input snapshots Gt:t+∆t ∈ Dte, the goal of

OOD detection in dynamic graphs is to design a discriminant function G(·, ·) to
determine whether Gt:t+∆t follow Pin or Pout based on the OOD detection score:

detect(Gt:t+∆t) =

{
1 G

(
fθ(Gt:t+∆t,W),Dtr

)
≥ γ,

0 G
(
fθ(Gt:t+∆t,W),Dtr

)
< γ,

(1)

where γ is the detection threshold, W represents the parameters of the encoder.

3.2 Evidential Deep Learning

EDL is grounded in Subjective Logic (SL) theory [32], which represents subjec-
tive multinomial opinion as a non-negative triplet τ = (b, u,β). In a K-class
classification problem, b = [b1, b2, . . . , bK ] assigns belief mass bi to each class; u
quantifies the overall uncertainty across classes, satisfying u+

∑K
i=1 bi = 1; and
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β = [β1, β2, . . . , βK ] is a predefined base rate vector. Based on τ , the projected
probability distribution for each class is defined as pi = bi + βiu, where i =
1, 2, . . . ,K. EDL adopts the K-dimensional Dirichlet distribution Dirpr(p;wβ)
as the prior distribution, where w is the prior weight. The conjugate posterior
of EDL, i.e., Dirpo(p;α) with concentration (parameter) α = [α1, α2, · · · , αK ]
is defined as:

Dirpo(p;α) =
Γ
(∑K

i=1 αi

)
∏K

i=1 Γ (αi)

K∏
i=1

pαi−1
i , (2)

where Γ denotes the Gamma function, αi ≥ 0, and pi ̸= 0 if αi < 1. To obtain
the posterior distribution in Eq. 2, EDL first designs a post-processing module to
capture the evidence vector e = [e1, e2, · · · , eK ], which represents the observation
evidences forK classes. Then EDL combines the observed evidence with the prior
to update the posterior concentration α = [α1, α2, · · · , αK ] as

αi = ei + βiw,where i = 1, 2, . . . ,K. (3)

Thereby the multinomial opinion τ = (b, u,β) in SL can be equivalently repre-
sented by EDL through the bijection mapping F between τ and Dirpo(p;α):

F : τ ←→ Dirpo(p;α),where bi =
αi − βiw
αsum

, u =
w
∑K

i=1 βi
αsum

, αsum =

K∑
i=1

αi.

(4)
EDL treats the predictive uncertainty u in Eq. 4 as a discriminative metric
for OOD detection. Specifically, for ID samples shown in Fig. 2(a), the model
assigns relatively high evidence to at least one class, resulting in a sharp Dirichlet
distribution (large αsum) with lower uncertainty (u → 0). Conversely, for OOD
samples shown in Fig. 2(b), the evidence allocated across all classes is relatively
low, leading to a flat Dirichlet distribution (small αsum) with high uncertainty
(u→ 1). This difference in uncertainty values clearly shows how the model can
tell apart ID and OOD samples. A predefined threshold γ (e.g., γ = 0.5) can
thus be applied to trigger OOD detection.

(a) ID Dirichlet distributions (b) OOD Dirichlet distributions

Fig. 2. Heatmaps of Dirichlet distributions in 3-class classification with four groups
of concentration parameters and corresponding subjective opinions. Warm (resp. cool)
colors represent relatively high (resp. low) probability density values in the distribution.
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Fig. 3. An overall illustration of the proposed method, EviSEC, which follows a two-
stage paradigm: (1) During training, original dynamic graph samples and OOD approx-
imations generated via spectrum-aware augmentation are assigned different Dirichlet
distributions by the dynamic graph encoder and the EDL module—sharper for ID sam-
ples and flatter for OOD approximations. The loss function enlarges the gap in their
uncertainty scores. (2) During inference, the trained model accurately identifies OOD
samples using a learned uncertainty threshold.

4 METHODOLOGY

In this section, we present a novel EDL framework for OOD detection in dynamic
graphs. Our proposed model, i.e., EviSEC combines a flexible dynamic graph
encoder (Sec. 4.1) with an evidential neural network (Sec. 4.2) to address the
limitations of single-point estimation without sacrificing ID performance. Fur-
thermore, to mitigate score homogenization, we introduce a new spectrum-aware
contrastive learning strategy (Sec. 4.3). Finally, we design an OOD detector
(Sec. 4.4) based on the uncertainty scores. The overall architecture is illustrated
in Fig. 3.

4.1 Dynamic Graph Encoder

EviSEC adopts a dynamic graph encoder [19] to efficiently capture the topolog-
ical structure and temporal dependencies in dynamic graphs through the evolu-
tion of GCN parameters. Specifically, we employ a GCN with weight matrix set
Wt = {W(1)

t ,W
(2)
t , . . . ,W

(L)
t }, where W

(l)
t denotes the weight matrix at l-th

layer, to learn the node embedding matrix Z
(l)
t at each timestep t:

Z
(l)
t =

{
Xt, if l = 0,

σ
(
D̃t−

1
2 ÃtD̃t−

1
2 Z

(l−1)
t W

(l)
t

)
, if l > 0,

(5)
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where σ is a non-linear activation function, Ãt is the adjacency matrix aug-
mented with self-loops, and D̃t denotes the diagonal degree matrix of Ãt.

To naturally store historical dependencies, W(l)
t is regarded as a hidden state

of the dynamical system. We utilize gated recurrent units (GRUs) to incorporate
the layer input Z

(l−1)
t into the update of W(l)

t over time:

W
(l)
t︸ ︷︷ ︸

GCN weights

= GRU( Z
(l−1)
t︸ ︷︷ ︸

embeddings

, W
(l)
t−1︸ ︷︷ ︸

GCN weights

). (6)

By iteratively updating the weight matrix set from Wt to Wt+∆t, our dynamic
graph encoder can aggregate the evolutionary patterns of the input Gt:t+∆t to
generate the final output fθ(Gt:t+∆t,Wt+∆t) = Z

(L)
t+∆t. To perform a specific

classification task, the output of our encoder is passed through a classifier gϕ(·)
to generate the final prediction ŷ = softmax

(
gϕ

(
fθ

(
Gt:t+∆t,Wt+∆t

)))
.

4.2 Evidential Neural Network

EviSEC proposes an evidential neural network to reshape the prediction p =
[p1, p2, . . . , pK ] into a Dirichlet distribution. Thus, we can leverage the uncer-
tainty of distribution to describe the randomness of the input, addressing the
high bias and high variance issues in single-point estimation. Specifically, two
loss functions are developed to guide the network to assign a sharper poste-
rior distribution with lower uncertainty to the ID data, allowing for a robust
OOD detection process. Notably, our method maintains the highest probability
assigned to the target class, which preserves ID performance.

In a K-class classification task, since there is no prior information, we can
simply assume the uniform Dirichlet distribution Dirpr(p;1) as the prior dis-
tribution Dirpr(p;wβ), where the base rate β =

[
1
K ,

1
K , . . . ,

1
K

]
and the prior

weight w = K. Based on the preliminary mentioned in Sec. 3.2, the posterior
concentration α = [α1, α2, · · · , αK ] and the class probability p = [p1, p2, . . . , pK ]
are derived as follows,

αi = ei + βiw
Dirpr(p;1)

= ei + 1,where i = 1, 2, . . . ,K. (7)

pi = Ep∼Dirpo(p;α)[pi] =

∫
piDirpo(p;α) dp =

αi

αsum
,where i = 1, 2, . . . ,K. (8)

To update the posterior concentration α, our evidential neural network includes
an evidence collector eθ,ϕ(·) to construct the corresponding evidence vector e =
[e1, e2, . . . , eK ]:

eθ,ϕ
(
Gt:t+∆t

)
= exp

(
gϕ

(
fθ

(
Gt:t+∆t,Wt+∆t

)))
− 1. (9)

By subtracting all-ones vector 1 from exponentiated logits, our method ensures
negative logits to yield negative evidences. To ensure that eθ,ϕ(·) produces sharp
distributions with low uncertainty scores for ID samples, our network comprises
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two key losses: the evidential learning cross-entropy loss Lce-edl and the Kullback-
Leibler divergence loss Lkl following traditional EDL framework [33]. Lce-edl can
be calculated as the negative log-likelihood of the predicted class probability p
with respect to the one-hot label y = [y1, y2, . . . , yK ]:

Lce-edl =
1

|Dtr|
∑

(Gt:t+∆t,y)∈Dtr

Ep∼Dirpo(p;α)

[
−

K∑
i=1

yi log(pi)

]

=
1

|Dtr|
∑

(Gt:t+∆t,y)∈Dtr

K∑
i=1

yiEpi∼Dirpo(α) [− log(pi)]

=
1

|Dtr|
∑

(Gt:t+∆t,y)∈Dtr

K∑
i=1

yi (ψ(αsum)− ψ(αi)) .

(10)

The digamma function ψ(·) is the logarithmic derivative of the Gamma func-
tion. We can see that Eq. 10 ensures the preservation of the original ID testing
performance and guides the model to assign the highest concentration to the
target class. However, it may still allow eθ,ϕ(·) to allocate relatively high ev-
idence to non-target classes, thereby increasing the uncertainty u of ID data.
To address this, we introduce Lkl to further penalize the model if it provides
excessive evidence for non-target categories:

Lkl =
1

|Dtr|
∑

(Gt:t+∆t,y)∈Dtr

KL (Dirpo(p; α̂),Dirpo(p;1)) . (11)

Here α̂ = y+ (1− y)⊙α, and ⊙ represents the Hadamard product. α̂ signifies
the adjusted concentration parameter, which reserves correct predictions while
damping the contribution from irrelevant classes.

4.3 Spectrum-Aware Contrastive Learning

In the above computational process, since only ID data is available, the model
tends to assign generally lower uncertainty scores. The absence of OOD data hin-
ders the model’s ability to learn and predict higher uncertainty scores, leading to
a severe score homogenization issue and further compromising its effectiveness in
distinguishing OOD data. To mitigate this, we propose a graph spectrum-aware
augmentation technique to generate negative samples as OOD approximations
for dynamic graphs. Through contrastive loss, we further widen the gap in un-
certainty scores between ID and OOD data.

Spectrum-Aware Augmentation. Previous work [34] demonstrates that low-
frequency components in the graph spectrum capture global features (e.g., graph
connectivity), while high-frequency components often reflect noise. Therefore,
our technique changes the low-frequency components in the graph spectrum to
generate negative samples.
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Let the symmetric normalized Laplacian matrix of the adjacency matrix
with self-loops Ã represented as L = I − D̃−1/2ÃD̃−1/2, which can be eigen-
decomposed as follows,

L = UΛU⊤ =

N∑
i=1

λiuiu
⊤
i , (12)

where Λ = diag(λ1, λ2, . . . , λN ) is the eigenvalue diagonal matrix and U =
[u⊤

1 ,u
⊤
2 , . . . ,u

⊤
N ] is the corresponding orthogonal eigenvector matrix. For sim-

plicity’s sake, we assume 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN < 2. Then the graph spectrum
can be partitioned into two parts: low-frequency components with eigenvalues
λlow = {λ1, λ2, . . . , λ⌊N/2⌋} and high-frequency components with eigenvalues
λhigh = {λ⌊N/2⌋+1, λ⌊N/2⌋+2, . . . , λN}.

Our method generates OOD approximations by perturbing the low-frequency
information with a preservation ratio r, where 0 ≤ r < 1. For the low-frequency
eigenspaces

{
uiu

⊤
i

}⌊N/2⌋
i=1

of λlow, we only preserve the first r portion and discard

the remaining part. For the high-frequency eigenspaces
{
uju

⊤
j

}N

j=⌊N/2⌋+1
of

λhigh, we keep them intact. Based on this, the negative sample L−
r is generated

as follows,

L−
r =

⌊rN/2⌋∑
i=1

uiu
⊤
i +

N∑
j=⌊N/2⌋+1

uju
⊤
j . (13)

Contrastive Loss. With the above negative samples, we seek to enable the
model to learn and assign higher uncertainty scores for OOD approximations,
which correspond to smoother posterior distributions. To increase the gap in
uncertainty scores between the sample pairs, our contrastive loss is formed as
the log-likelihood between the class probability p− = [p−1 , p

−
2 , . . . , p

−
K ] of the

negative sample and the class probability p of the original input:

Lcl =
1

|Dtr|
∑

(Gt:t+∆t,y)∈Dtr

Ep−

[
K∑
i=1

pi log(p
−
i )

]
. (14)

With two balancing factors ρ1 and ρ2, the overall loss function of EviSEC is
formulated as:

L = Lce-edl + ρ1Lkl + ρ2Lcl. (15)

4.4 OOD Detector

After our model has been optimized by Eq. 15, EviSEC includes an OOD detector
to compute the uncertainty of posterior distribution Dirpo(p;α) as the OOD
score. In specific, the uncertainty u is derived from the Dirichlet concentration
α through Eq. 4:

u =
K

αsum
,where αsum =

K∑
i=1

αi. (16)
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On the one hand, a lower u corresponds to a sharper and more confident output
distribution, suggesting the sample is from the ID class. On the other hand,
a higher u corresponds to a smoother output distribution, indicating that the
sample is likely an OOD instance. Then the OOD detector can select a threshold
γ to determine whether the input is OOD according to the learned u.

5 EXPERIMENT

This section empirically validates the effectiveness of EviSEC by addressing four
key research questions: RQ1, how does EviSEC perform compared with compet-
itive methods? RQ2, how do the evidential neural network and the spectrum-
aware contrastive learning enhance OOD detection in dynamic graphs? RQ3,
how effective is our method in staying compatible with ID tasks? RQ4, how do
key parameters affect EviSEC’s performance?

Table 1. Dataset details. "Time Splits" shows the data division (train/val/test).

#Nodes #Edges #Time Splits Task

BC-OTC [3] 5,881 35,588 95 / 14 / 28 Edge Classification
BC-Alpha [3] 3,777 24,173 95 / 13 / 28 Edge Classification
UCI [2] 1,899 59,835 62 / 9 / 17 Link Prediction
AS [35] 6,474 13,895 70 / 10 / 20 Link Prediction
Elliptic [36] 203,769 234,355 31 / 5 / 13 Node Classification
Brain [37] 5,000 1,955,488 10 / 1 / 1 Node Classification

5.1 Experimental Setup

Datasets. As summarized in Tab. 1, we adopt the datasets and preprocessing
steps used in previous dynamic graph representation works [19–21]. These in-
clude: i) BC-OTC, a trust-based bitcoin transaction network; ii) BC-Alpha, a
similar bitcoin transaction network from another platform; iii) UCI, a student
community network; iv) AS, a router traffic flow network; v) Elliptic, bitcoin
transactions from the Elliptic network; and vi) Brain, a region connectivity
network in the brain.

OOD Data. We extend the OOD data generation framework from recent
work [9] on static graphs to generate OOD dynamic graphs through two strate-
gies: i) Structure Manipulation (SM), which utilizes a stochastic block model
to generate graphs as OOD samples, and ii) Feature Interpolation (FI), which
applies random interpolation to create node features for OOD data.
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Baselines. Beyond the three OOD detection families outlined in our Related
Works, we also utilize several dynamic graph anomaly detection methods as
baselines. These include: i) post-processing methods (MSP [23], ODIN [24],
Mahalanobis [22]), ii) energy-based methods (Energy [25], GNNSAFE [9]), iii)
uncertainty-based methods (Entropy [38], EDL [39], DAEDL [29]) and iv) anomaly
detection methods(NetWalk [12], TADDY [13], SLADE [40]).

Metrics. We adopt the commonly used evaluation metrics [41] for OOD detec-
tion, including: i) AUROC, the area under the receiver operating characteristic
curve; ii) AUPR, area under the precision-recall curve; and iii) FPR95, false
positive rate at 95% true positive rate. Additionally, F1, the harmonic mean of
precision and recall, is employed to evaluate ID performance.

Implementation. We employ grid search to determine the optimal values of
three key hyper-parameters in our model: the balancing factors ρ1 and ρ2, and
the preservation rate r in augmentation. The remaining parameters, including
the training epochs, the number of layers L, hidden dimension and temporal
window size ∆t, are adopted from prior studies [19, 20]. To ensure a fair compar-
ison, both the baselines and EviSEC are configured with identical settings. All
experiments were conducted on Python 3.6.13 and NVIDIA A800 80GB GPU.

5.2 OOD Detection Perfrmance(RQ1)

In Tab. 2 and Tab. 3, we present the key results of EviSEC in comparison with
eleven competitive models from four families for the SM and FI OOD types,
respectively. These experiments are conducted across six real-world scenarios,
measured by AUROC, AUPR, and FPR95. For the OOD type of SM, EviSEC
consistently surpasses all baselines across all six datasets, boosting the average
AUROC by 24.57%, increasing the average AUPR by 25.64%, and reducing the
average FPR95 by 34.65%. For the OOD type of FI, the corresponding changes
are 24.08%, 25.22%, and 37.39%, respectively. These results demonstrate that
our model exhibits strong adaptability to different OOD types. In both OOD
types, we are pleased to observe exceptionally satisfactory performance on the
BTC-OTC and BC-Alpha datasets. Specifically, we achieved nearly perfect AU-
ROC and AUPR scores, as well as extremely low FPR95, significantly surpass-
ing the performance of other models. These results reinforce the superiority of
EviSEC for OOD detection in dynamic graphs.

5.3 Ablation Study(RQ2)

To systematically evaluate the contribution of core components (Lce-edl, Lkl and
Lcl) in our framework, we conducted comprehensive ablation studies across six
benchmark datasets. Through progressive removal of individual loss components
from the complete EviSEC architecture, we quantitatively assessed their respec-
tive impacts on OOD detection capability measured by AUROC. As presented
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Table 2. OOD detection results for the OOD type of structure manipulation (SM)
evaluated by AUROC/AUPR/FPR95 on six datasets. The best performance is bolded,
with the runner-up underlined.

Baseline
Dataset BC-OTC BC-Alpha UCI AS Elliptic Brain

AUROC ↑ AUPR ↑ FPR95 ↓

NetWalk 52.38 48.06 92.80 48.62 52.70 98.40 48.67 46.02 98.68 52.71 56.31 94.20 38.97 46.58 91.30 54.38 52.60 100.0
TADDY 77.20 65.38 98.07 64.28 59.05 95.20 54.80 58.69 95.18 56.89 55.73 88.67 52.61 54.98 93.20 56.80 59.08 100.0
SLADE 74.35 64.30 94.26 66.40 60.50 92.80 59.80 50.20 94.19 51.20 56.98 89.20 48.80 54.70 95.20 51.30 55.47 95.58

MSP 48.65 52.82 92.55 45.79 48.63 91.50 54.38 46.01 97.20 52.76 47.39 94.20 48.64 40.43 90.25 44.87 42.15 99.80
ODIN 55.15 42.63 88.88 55.26 49.07 100.0 41.68 39.92 96.68 56.08 45.25 98.34 48.77 50.62 92.57 48.83 42.39 100.0

Mahalanobis 61.44 34.88 96.80 43.21 39.34 92.34 40.68 38.72 94.29 57.26 49.77 97.04 49.56 52.03 98.62 36.20 32.17 98.65

Energy 58.80 31.88 88.11 50.33 52.68 99.19 50.68 55.48 92.70 57.21 54.23 95.46 50.69 52.70 98.37 34.67 48.94 99.27
GNNSAFE 87.02 85.57 85.32 89.66 86.34 78.20 62.41 66.34 90.04 67.08 59.71 87.62 64.58 60.22 96.55 72.12 71.17 98.87

Entropy 45.15 23.48 99.09 50.55 55.18 100.0 60.27 50.66 99.21 55.39 60.22 92.44 52.66 55.71 98.06 61.62 52.33 99.80
EDL 61.83 28.35 98.40 55.33 54.08 100.0 55.18 47.02 96.55 58.77 62.72 90.58 54.87 50.68 97.54 65.99 66.60 99.40

DAEDL 90.12 88.33 69.88 85.34 80.20 90.68 70.22 64.09 90.27 74.48 69.85 88.36 66.53 68.97 80.65 74.39 70.17 96.31

EviSEC 96.39 94.52 13.47 97.14 92.30 13.86 72.09 68.84 82.77 78.39 76.50 80.46 70.61 72.35 74.68 76.73 73.51 92.64

Table 3. OOD detection results for the OOD type of feature interpolation (FI) eval-
uated by AUROC/AUPR/FPR95 on six datasets. The best performance is bolded,
with the runner-up underlined.

Baseline
Dataset BC-OTC BC-Alpha UCI AS Elliptic Brain

AUROC ↑ AUPR ↑ FPR95 ↓

NetWalk 57.06 58.54 91.78 60.45 65.12 99.20 50.86 48.34 90.60 56.27 50.20 88.71 42.08 45.32 99.80 42.48 37.08 100.0
TADDY 79.68 64.43 94.07 68.31 66.61 96.08 56.76 52.63 94.71 55.16 51.20 85.64 50.65 55.08 96.20 52.99 57.04 100.0
SLADE 76.81 64.09 93.26 65.86 58.06 94.52 54.32 49.06 90.35 50.34 55.98 90.70 52.74 58.62 94.64 47.03 55.93 98.40

MSP 43.04 38.80 94.38 46.28 38.98 94.34 33.74 42.58 98.77 51.20 48.29 99.25 44.28 39.38 88.64 34.18 33.66 100.0
ODIN 50.26 47.87 90.32 54.20 50.84 99.80 46.20 48.07 98.82 58.91 47.30 96.53 50.24 59.26 94.40 50.07 56.30 99.25

Mahalanobis 45.20 51.35 98.20 45.84 42.09 95.63 43.82 44.24 93.29 56.98 51.28 95.77 48.53 54.08 89.60 44.31 42.07 98.65

Energy 60.28 59.60 72.37 51.20 59.61 95.44 55.21 56.38 90.52 54.30 52.27 94.70 58.89 60.58 94.20 48.67 50.38 97.27
GNNSAFE 70.05 86.79 68.30 87.25 88.37 68.46 64.09 68.27 89.42 66.57 64.35 80.29 66.80 58.92 94.38 63.44 60.18 90.43

Entropy 42.95 26.83 100.0 47.23 50.35 100.0 55.69 54.31 98.70 52.17 48.69 88.64 59.07 62.18 96.50 70.02 71.17 96.56
EDL 53.81 38.03 95.42 59.30 52.18 100.0 48.67 49.72 94.21 64.38 64.80 82.50 61.20 64.52 90.20 64.20 68.17 93.57

DAEDL 80.54 86.28 54.31 80.14 74.58 65.31 65.28 64.97 91.25 70.07 69.57 86.25 68.34 66.30 78.57 72.18 73.15 96.51

EviSEC 97.29 98.51 5.22 96.40 94.44 10.27 70.91 72.08 80.16 72.58 74.25 84.20 72.15 70.25 58.68 74.21 76.47 89.40

in Tab. 4, the full configuration demonstrates significant superiority over all ab-
lated variants, with particular note to the Elliptic dataset where we observe a
substantial absolute performance improvement of 17.41%. This empirical val-
idation confirms that the synergistic combination significantly enhances OOD
detection performance.

5.4 ID Performance(RQ3)

As mentioned in Sec. 4.2, EviSEC does not alter the value of the maximum
component in the predictive distribution. Therefore, when comparing ID per-
formance measured by F1 scores with representation learning methods such as
EvolveGCN [19], LEDG [21], DEFT-MLP, DEFT-GAT and DEFT-T [20], our
approach still achieves performance close to (or even surpassing) state-of-the-art
levels (see Fig. 4). This demonstrates that our method does not sacrifice ID task
performance while enhancing OOD detection capabilities.
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Table 4. Ablation study results for the SM OOD type across six datasets. ✓-means
the variant with random negative edge sampling augmentation.

Lce-edl Lkl Lcl BC-OTC BC-Alpha UCI AS Elliptic Brain

- ✓ ✓ 86.24 85.14 66.28 65.80 58.32 68.45
✓ - ✓ 95.58 95.28 70.60 72.87 68.24 73.12
✓ ✓ - 90.17 93.69 68.07 74.10 65.78 69.56
✓ ✓ ✓- 91.08 92.26 69.31 73.54 67.92 70.27

✓ ✓ ✓ 96.39 97.14 72.09 78.39 70.61 76.73

BC-OTC BC-Alpha Elliptic Brain0.0

0.2

0.4

0.6

0.8

ID
 F

1

EvolveGCN
LEDG
DEFT-MLP
DEFT-GAT
DEFT-T
EviSEC

Fig. 4. In-Distribution performance of classification tasks with F1 scores on the y-axis.

5.5 Parameter Sensitivity(RQ4)

Fig. 5 shows the hyper-parameter sensitivity of EviSEC measured by AUROC
in terms of the balancing factors ρ1 and ρ2, and the preservation rate r in
augmentation. Specifically, ρ1, ρ2 range from 0.2 to 2.0 with a step size of 0.2
on the AS dataset, and r ∈ {0, 0.2, 0.4, 0.6, 0.8} on six datasets. We observe that
setting them to moderate values (e.g., ρ1 ∈ {0.4, 0.6, 0.8}, ρ2 ∈ {0.6, 0.8, 1.0}, r ∈
[0.2, 0.4]) usually achieves optimal performance. We can conclude that: i) Lce-edl
and Lcl have a greater impact than Lkl; and ii) a smaller r, i.e., retaining less low-
frequency information, tends to generate more effective OOD approximations.
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Fig. 5. Hyper-parameter sensitivity of EviSEC.
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6 Conclusion

In this work, we propose EviSEC, an innovative and effective OOD detection
framework comprising two key modules. Specifically, we propose an evidential
neural network that uses the uncertainty of posterior distribution to explain the
randomness of the input, thereby mitigating the high bias and high variance
issues associated with single-point estimation. Moreover, we design a spectral-
aware contrastive learning module to generate OOD approximations for enlarg-
ing the score gap between the ID and OOD data, effectively mitigating the issue
of score homogenization. Empirical evaluation demonstrates that our model out-
performs others across various datasets for OOD detection in dynamic graphs.
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