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Abstract. Online advertising is a major application of recommenda-
tion systems. The primary process first involves recommending appro-
priate items to users, followed by selecting suitable creatives, such as
ad posters. While much research has focused on optimizing item rec-
ommendations to increase user clicks, creative selection has often been
overlooked. Properly chosen creatives can significantly enhance purchas-
ing intent by aligning with the diverse preferences, ages, and genders of
users. Current state-of-the-art methods typically rely on historical Click-
Through Rates (CTR), which may exhibit biases during initial exposures
due to limited data. In this paper, we introduce CULC-Net, which builds
detailed profiles to uncover hidden connections between users and cre-
atives, utilizing a creative relevance score for soft-decision making. This
approach improves recommendation effectiveness and reduces reliance
on sparse CTR data. Furthermore, we advance beyond the traditional
CTR-based “only top for training" strategy by introducing FlexiRank.
Creatives are sorted based on the relative strength of their CTRs, effec-
tively managing noise and outliers. We test CULC-Net in a real-world
search ad system, demonstrating a 3.43% increase in online and a 4.01%
increase in offline. Further validation on a public benchmark confirms
the effectiveness of our approach.

Keywords: Recommendation System · Ad Recommendation· Creative
Selection.

1 Introduction

With the growth of the Internet and mobile technologies, online advertising has
become vital for the income of digital platforms. It is important to grab user
attention with eye-catching visuals and clear, brief messages [1]. Ads that look
good are more likely to be clicked on, which increases the Click-Through Rate
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Fig. 1. CTR comparison for different ad creative examples, highlighting the
impact of ad creatives. The first row shows how CTR varies based on user charac-
teristics; for example, males may prefer descriptions of features, while females may be
more attracted to visual displays for the same headphone. The second row shows how
the CTR of a single creative changes with more exposure, emphasizing the unreliability
of CTR with limited exposures.

(CTR) of products [26]. CTR is not only a sign of user interest; it is also a key
indicator of how financially successful an online advertising campaign is. This
affects the total revenue and the return on the investment made in advertising.
Even a small improvement in CTR can have a big financial impact, especially
for large e-commerce platforms. Therefore, improving the effectiveness of ad
recommendations is crucial [4].

Current recommendation systems generally follow a multi-stage cascading
structure that includes matching, ad ranking, and creative selection [13]. Ini-
tially, the matching stage reduces the extensive pool of ad candidates from bil-
lions down to thousands. The next stage, ad ranking, organizes these ads to
identify the final top selections. Finally, the creative selection stage chooses the
most appropriate visual and text creatives for each ad [30]. At the creative se-
lection stage, industry practices often ignore specific creatives, either choosing
them randomly or picking popular ones from past data [28]. They do not fully
consider the actual impact of different visuals on user engagement. However, evi-
dence shows that creative elements can significantly impact Click-Through Rates
(CTR) [14, 16, 34]. As demonstrated in Figure 1, there are clear differences in
CTR for different creatives between male and female users. For example, for the
same headphone, men may prefer descriptions emphasizing utility, while women
might be more drawn to simplistic visual designs. Capturing these preferences
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with specific rules is challenging, and effectively leveraging diverse multimodal
data with neural networks remains a challenge [20,23,34].

Ad recommendations often involve frequently changing in creatives [7], which
results in each creative being displayed an average of only 6 times. With such
limited exposure, even random clicks can significantly affect the CTR [34]. For
example, if a creative receives only one exposure and one click, this could lead
to a misleading CTR of 100%. Such a scenario could easily be due to an acci-
dental click rather than genuine user interest. Consequently, relying on CTR to
gauge the popularity of a creative with few exposures can be misleading [11].
This underscores the need for ad recommendation systems that are better tai-
lored to handle user interactions effectively. Current creative selection methods
primarily follow two aspect [22]. The first class uses hard labels, recommending
the top creative based solely on the highest CTR value [34]. In practice, when
the creative with the highest CTR has only a few exposures, recommending it
on actual advertising platforms is not reliable. The second class considers the
ranking information of creatives [24], where the model ranks creatives by their
CTR, comprehensively assess the performance of different creatives. However,
relying on unstable or inaccurate ranking data can undermine the accuracy and
reliability of the recommendations [6].

To address the issue of unreliable CTR data due to limited exposure, we
explore the relationships between creatives and customize recommendations for
users with similar features, reducing our reliance on CTR data for individual
users or creatives. We designed CULC-Net (Contrastive User Learning for Cre-
ative Selection), which incorporates a soft-decision contrastive learning approach
to address this challenge. By partially masking user features, CULC-Net builds
profiles of users with similar attributes, allowing it to uncover hidden connec-
tions between users and creatives, and thereby mitigating the bias from sparse
data. Unlike existing methods that might wrongly push all other creatives apart
by focusing only on classification data, our approach introduces a creative rel-
evance score. This score evaluates how related different creatives are to each
other. During training, creatives that are less related are separated more, while
those with higher similarity are kept closer together in the representation space.
This method not only enhances the quality of data but also reduces the impact
of unreliable CTR data from low exposure, resulting in a more robust model.

Furthermore, we proposed FlexiRank, which utilizes a soft ranking loss func-
tion in place of classification and ranking losses. It sorts creatives based on
the relative ranking relationships of their CTRs, effectively managing noise and
outliers in the data. FlexiRank also incorporates an instructional gradient that
decays with training, progressively reducing reliance on explicit ranking informa-
tion. In this way, it enhances the model’s effectiveness and improves its predictive
accuracy for unseen data.

We highlight our contributions in this paper as follows:
(1) We introduce CULC-Net, which changes the “focus on self" concept in CL

by leveraging differences within users and creatives to obtain a creative relevance
score for soft-decision making.
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(2) We introduce FlexiRank, improving upon the “only top for training"
method by using all CTR data for more precise ranking and better handling of
noise and outliers.

(3) Our results show that CULC-Net outperforms existing models, achiev-
ing performance improvements of 4.01% offline and 3.43% online, proving its
effectiveness in real-world advertising scenarios.

2 Related works

2.1 Creative Selection

In online advertising, there are two main methods used for selecting ad creatives.
The first class of creative selection strategies relies on hard labels to recommend
creatives based on the highest CTR [34]. These approaches straightforward suf-
fers from reliability issues especially when creatives have limited exposures —
a problem acknowledged and addressed in part by methodologies that attempt
to pre-evaluate creatives [32, 33]. For instance, PEAC (Pre Evaluation of Ad
Creative Model) utilizes deep learning to predict potential online performance
without relying on user clicks, emphasizing the importance of offline creative
quality evaluation based on comprehensive image and text content analysis [36]
.Similarly, the Adaptive and Efficient ad creative Selection (AES) framework
introduces an innovative ingredient tree combined with Thompson sampling for
efficient selection based on predicted CTR, addressing the high variance due
to limited feedback and the sparsity of user interactions, which is a common
challenge in creative selection [5].

The second class involves ranking creatives based on CTR, assigning higher
ranks to those with higher CTRs and lower ranks to those with lower CTRs, using
these rankings to infer user preferences. However, this method struggles with
accurately identifying true user preferences due to the presence of false negatives
in low CTR data. Advanced hybrid models and category-specific approaches that
incorporate visual and categorical data to refine the ranking process have been
demonstrated to enhance creative optimization and integrate creative selection
more effectively within ad ranking stages [6,24]. Furthermore, systems like HBM-
VAM introduce visual priors and a flexible updated bandit method that can
raise platform revenue by focusing on online assessments [31]. CACS presents
a method that places the creative ranking module before the ad ranking stage,
then jointly optimizes them with distillation and shared embedding, resembling
our method closely and showcasing the potential for significant advancements in
advertising systems [23].

2.2 Contrastive Learning

Contrastive learning is a powerful branch of self-supervised learning that focuses
on encoding data by contrasting positive and negative samples [18]. This tech-
nique is particularly effective in recommendation systems, where it is used to
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learn representations that capture unique features of content, thereby facilitat-
ing more personalized and effective recommendations [20].

SimCLR [8] optimizes agreement between augmentations of the same image
while minimizing agreement between different images. It uses data augmentation
techniques and projection head designs to learn visual representations. MoCo [15]
employs a momentum-based encoder and a memory bank for dynamic embedding
updates, enhancing robustness.

Other methods like RotNet, BERT, and CPC expand the scope of contrastive
learning. RotNet [12] improves object recognition by training on rotated images.
BERT [10] predicts masked tokens in sentences, capturing deep dependencies
in natural language processing. CPC [29] generates compact representations by
predicting future observations in sequences, aiding sequential analysis.

3 Methods

In this section, we introduce CULC-Net (Contrastive User Learning for Creative
Selection), designed to address unreliable CTR data due to limited exposure. We
start with the problem formulation and the base model of creative selection. We
then compare CULC-Net with the base model and provide detailed explanations
of CUL and FlexiRank, emphasizing their impact on enhancing model accuracy.

3.1 Preliminary

Problem Formulation: We address a creative selection scenario within an ad
recommendation system, characterized by a user request u ∈ U and a set of
ads A = {aj}nj=1. Each ad aj includes m creatives, represented as aj = {ci}mi=1,
where each i-th creative ci is described by a tuple (vi, ti, idi). Here, vi, ti, and
idi correspond to the image feature, text feature, and unique hash ID. Our
objective is to select the optimal creative for each ad by integrating visual and
textual information of the creatives with the unique user preferences.
STM (Single-Tower Model): The Single-Tower Model utilizes embeddings [27],
DNNs [19], and cross-entropy [9] to extract and learn features from the creative
data. The image and text features are integrated at the embedding layer, sub-
sequently processed through a DNN to derive a more abstract representation.
This representation is used to predict the hard label for each creative, with
cross-entropy serving as the loss function to optimize the model parameters.
Base Creative selection model is the STM model.
TTM (Two-Tower Model): The Two-Tower Model employs two distinct DNNs
to enhance the separation of feature processing: one for user features and another
for item features. This architecture allows each tower to specialize in extracting
detailed representations from its respective domain. User features and item fea-
tures are embedded and processed independently through their respective DNNs.
The resulting features are then combined in a fusion layer, facilitating effective
interaction between user preferences and item attributes. Ad ranking stage is
based on this model [2, 21].
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Fig. 2. Visual comparison of the base creative selection method and the
detailed workings of CULC-Net. STM employs a single tower for recommendation,
whereas CULC-Net integrates shared DNN and different user knowledge to improve
CTR prediction. We also show the differences between Contrastive Learning and our
CUL approach, as well as ranking loss and FlexiRank, highlighting the advantages of
soft-decision making and the comprehensive utilization of ranking data.

3.2 Overview of CULC-Net

Inspired by [35], we adopt similar contrastive learning algorithms to learn rep-
resentations of categorical features. We apply different data augmentations to
the training examples to learn these representations and then use an adaptive
contrastive loss function to ensure that the representations learned for the same
training example are similar. Our proposed CULC-Net method enhances the
STM by introducing a shared DNN and incorporating varied user knowledge for
different augmentations. The shared DNN layer ensures that the model learns
a unified representation for both image and text features, while the integration
of diverse user knowledge allows the model to adapt to varying user preferences
more effectively.

Figure 2 offers a visual comparison between STM and our proposed CULC-
Net approach. The illustration underscores the differences in architecture, par-
ticularly emphasizing the shared DNN and the varied user knowledge embedded
within our model. These enhancements contribute to superior creative selection
and a better overall user experience.

Unlike some Two-Tower Model in advertising recommendation systems [23],
where one tower handles user requests and features, and the other manages ads
and creatives, our model leverages data augmentation techniques to improve
ranking for similar users. This approach helps address issues like exposure bias
and the long-tail distribution of data. By modifying changeable features, our
method brings similar users closer together, thereby enhancing the creative selec-
tion process. The integration of a shared DNN and diverse user knowledge within
our two-tower model, termed CULC-Net, significantly boosts the effectiveness of
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creative selection. This results in more tailored and relevant recommendations,
enhancing the user experience in consuming multimedia content.

3.3 CUL Augmentation: Which and Where

The key point of CUL (Contrastive User Learning) is feature augmentation,
implemented through a strategic two-stage process: which features to mask and
where to apply the masking. In the first stage, we determine ‘which’ features
to focus on by categorizing them into two types: important and changeable.
Important features, such as user gender, age, and customer purchase history,
are consistently shared across both towers to maintain a solid base for user
profiling. The second stage addresses ‘where’ to apply the masking. Changeable
features, including user access time, membership status (e.g., plus member),
sensitivity to promotions, and sensitivity to product evaluations, are randomly
masked at a rate of 35% to create two augmented data instances. This approach
allows the model to effectively handle user behavior variance and improve overall
performance.

3.4 From Contrastive Learning to CUL

In our CULC-Net, we design a CUL framework that enhances the outputs of the
two towers to be more similar for identical inputs while minimizing the impact
of inaccurate CTR data. We first present the formula for Contrastive Learning
and then extend it to Contrastive User Learning.

Given a batch of N examples a1, . . . , aN , where ai ∈ A denotes a set of
features for example i, we define xi and x′

i as the respective inputs for the two
towers. Our goal is to learn distinct representations xi and x′

i while ensuring the
model recognizes both as originating from the same input i.

We aim to minimize the difference between xi and x′
i while maximizing the

difference between the representations learned for distinct examples i and j. Let
yi and y′i represent the outputs of xi and x′

i. We consider (yi, y
′
i) as positive

pairs and (yi, y
′
j) as negative pairs for i ̸= j. Let s(yi, y

′
j) = 1

τ · ⟨yi,y
′
j⟩

|yi|·|y′
j |

, where
τ is a temperature parameter that controls the concentration of the probability
distribution. To promote the desired properties, we define the InfoNCE loss for
a batch of N examples as:

LCL = − 1

N

N∑
i=1

log

(
exp(s(yi, y

′
i))∑N

j=1 exp(s(yi, y
′
j))

)
, (1)

This is a vanilla InfoNCE loss that facilitates the comparison of positive and
negative creatives. However, due to the presence of low exposure creatives, which
may be false negatives, not all i ̸= j in

∑N
j=1 exp(s(yi, y

′
j) should be considered

as negative. We define a relevance score δij representing the similarity distance
from each negative item y′j to the positive anchor yi. Its formula is set as:

s(yi, y
′
j)− s(yi, y

′
i) + δij < 0, (2)
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integrating this into the Contrastive Learning formula:

LCUL = − 1

N

N∑
i=1

log
exp(s(yi, y

′
i))∑N

j=1 exp(s(yi, y
′
j) + δij)

=

− 1

N

N∑
i=1

log
exp(s(yi, y

′
i))

exp(s(yi, y′i))+
∑
j ̸=i

exp(s(yi, y′j)+δij)
,

(3)

When δij = 0, it simplifies to the vanilla InfoNCE loss function. This rel-
evance score δij helps display the ranking among negative creatives; a larger
δij suggests a stronger negative sample, while a smaller δij indicates a poten-
tial false negative. Models may learn implicit relationships between feature and
different negative samples under the vanilla InfoNCE loss, but we argue that
modeling this relationship explicitly by δij has a positive influence on learning
better representations.This approach allows the model to give more weight to
certain negative samples, considering a broader spectrum of negatives.

The specific computation of the loss function is as follows, using adversarial
training [25] to learn the difficulty of specific negative samples:

min
θ

LCUL = min
θ

max
∆∈C

− 1

N

N∑
i=1

log
exp(s(yi, y

′
i))

exp(s(yi, y′i))+
∑
j ̸=i

exp(δij) exp(s(yi, y′j))
,

(4)

where C encapsulates the collective set of all δij .for each δij we have:

exp(δij) ∈ C(ij) = (1− ϵ, 1 + ϵ) ,

and ϵ is a hyperparameter that regulates the upper-bound deviation of hardness.
In practice, ϵ is regulated by the number of adversarial training epochs under a
fixed learning rate.

In this way, we reduce the reliance on individual CTR data by exploring the
relationships between creatives and customizing recommendations for users with
similar features.

3.5 FlexiRank for Utilizing All CTR Data

To better learn the ranking information of creatives, not just identifying the best
but understanding which is better, we introduce the FlexiRank method, which
utilizes soft ranking to effectively manage the predicted outputs {y1, y2, . . . , ym}
and their corresponding soft labels {l1, l2, . . . , lm}.

The motivation for FlexiRank is rooted in the necessity to accurately rank
creatives according to their potential to engage users. In softmax, labels(ŷ)
are one-hot encoded, which only predicts the accuracy for top one creative,
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thus losing information of the relative ranking of creatives. Inspired by semi-
nal works [4, 23, 31], we designed FlexiRank, which normalizes CTR to obtain
soft labels. FlexiRank considers the relative relationships and rankings among
different creatives, exploring the potential of all creatives to attract users and
providing more accurate recommendations. The probability that a creative is
ranked as the top choice is defined by:

Pi =
exp(yi)∑m

k=1 exp(yk)
, (5)

where exp(·) denotes the exponential function. The corresponding probability of
the soft labels is defined as:

P̂i =
exp(li/T )∑m

k=1 exp(lk/T )
, (6)

where T is a temperature coefficient, adjusting the scale when ym is small.
To enable the model to learn ranking information better in the initial epochs

and improve contrastive learning in the later epochs, FlexiRank includes an
instructional gradient inspired by Curriculum Learning [3]:

LFlexiRank = −
m∑
i=1

P̂i log(Pi) +

m∑
i=1

L(xi, P̂i, t), (7)

where L(xi, P̂i, t) = −P̂i · log(pt(xi)) · exp(−α · t) represents the instructional
gradient, pt(xi) is Pi at step t, and α is a hyperparameter.

This objective function is designed to capture the relative ordering of cre-
atives and to facilitate smooth knowledge acquisition within our CULC-Net.
By effectively balancing the influence of predicted outputs and soft labels, the
FlexiRank method leads to a more robust and generalizable model.

3.6 CULC-Net Optimization

To leverage the advantages of Contrastive User Learning and FlexiRank, CULC-
Net employs a unified learning framework that jointly optimizes both the con-
trastive user learning loss (LCUL) and the flexible ranking loss (LFlexiRank). This
joint optimization approach enables the model to learn more informative and ef-
fective parameters, enhancing creative selection performance. The training pro-
cess involves minimizing a joint loss function formulated as:

Ljoint = LFlexiRank + λLCUL, (8)

where λ is a hyperparameter that balances the adaptive regularization and con-
trastive user learning losses.
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Table 1. Offline evaluation results of 5 creative selection models across 7
creative settings. CULC-Net demonstrates significant improvements in All setting,
with a 1.06% increase in sCTR, a 1.35% increase in AUC, and a 0.85% increase in
GAUC, showcasing our advantage. Non-CL also shows a clear improvement over STM,
highlighting the effectiveness of the FlexiRank.

Metrics Image Title STM VAM-
HBM CACS Non-CL

(Ours)
CULC-Net

(Ours)

sCTR

single — 28.54% 28.73% 28.82% 29.12% 29.94% (+1.40%)
single single 27.22% 27.43% 27.51% 27.77% 28.63% (+1.41%)
multi — 23.12% 23.31% 23.42% 23.67% 24.98% (+1.86%)
multi multi 26.07% 26.21% 26.33% 26.61% 27.29% (+1.22%)
— single 31.82% 31.94% 32.02% 32.23% 33.82% (+2.00%)
— multi 24.87% 25.03% 25.14% 25.72% 26.88% (+2.01%)

ALL ALL 26.41% 26.63% 26.73% 26.95% 27.47% (+1.06%)

AUC

single — 64.42% 64.74% 64.89% 65.37% 66.43% (+2.01%)
single single 67.15% 67.38% 67.52% 68.09% 69.12% (+1.97%)
multi — 70.46% 70.68% 70.84% 71.25% 72.44% (+1.98%)
multi multi 67.04% 67.27% 67.49% 68.01% 69.07% (+2.03%)
— single 62.54% 62.41% 62.23% 61.87% 63.54% (+1.00%)
— multi 67.91% 68.05% 68.16% 68.33% 69.90% (+1.99%)

ALL ALL 67.11% 67.34% 67.47% 67.84% 68.46% (+1.35%)
GAUC ALL ALL 58.06% 58.17% 58.24% 58.33% 58.91% (+0.85%)

4 Experiments

4.1 Datasets and Experimental Setup

Our experiments utilize a comprehensive dataset from a real-world search ad
system, which includes user click history and various ad attributes collected over
a one-month period. Specifically, the dataset comprises approximately 9 billion
training samples and 200 million test samples, encompassing interactions from
46 million users with 12 million ads and 43 million ad creatives. The creatives
include images and titles. In our offline experiments, we categorized them into
Single Image, Multi-Image, Single Title, Multi-Title, Combination (combining
images and titles, single or multiple), and All (including all types of creatives).

We employ the Adam optimizer with a learning rate of 0.001, beta1 of 0.9,
beta2 of 0.999, and epsilon of 1e-9. For online and offline experiments, λ is 0.6, α
is 0.2, and ϵ is 0.1. The model is trained with a batch size of 256. Additionally, we
did not use the dropout strategy, and we utilize ReLU activation with a sigmoid
output layer to ensure predictions are bound within the range of (0, 1).

4.2 Evaluation Metrics

In order to assess the performance of our creative selection model, we employ
specific evaluation metrics for both offline and online experiments. For the online
experiments, CTR is used as the primary evaluation metric.
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Fig. 3. Offline daily comparison of sCTR, AUC, and GAUC between STM,
VAM-HBM, CACS, Non-CL, and CULC-Net over 30 days. The comparison is
based on all available data, with CULC-Net consistently achieving the best performance
across all metrics.

For the offline experiments, we use Simulated Click-Through Rate (sCTR)
[31], Area Under the Curve (AUC), and Group AUC (GAUC) to comprehensively
evaluate the model’s performance in a controlled environment that mimics real-
world conditions. By employing these metrics, we demonstrate the effectiveness
and robustness of our proposed CULC-Net in both offline and online settings.

4.3 Baselines

To effectively evaluate the performance of CULC-Net, we introduce a range of
advanced baseline models. Below is a concise overview of these models:
STM: employing a single-tower structure, feeds features directly into a multi-
layer network, culminating in a classification problem for optimization. This
method provides a fundamental benchmark for comparison, excluding the use of
Contrastive Learning.
VAM-HBM [31]: combining the Visual-aware Ranking Model (VAM) for learn-
ing visual features related to performance and the Hybrid Bandit Model (HBM)
for updating its understanding based on prior data, offering a responsive model
to creative selection.
CACS [23]: employing a two-tower structure reminiscent of the widely recog-
nized Deep Structured Semantic Model (DSSM) [17]. It maps creatives and user
queries into a common semantic space, allowing it to gauge their relevance based
on proximity.
Non-CL(Ours): CULC-Net excludes the CUL loss, essentially replacing soft-
max in STM with FlexiRank to validate the effectiveness of FlexiRank.
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Fig. 4. Daily CTR comparison between CULC-Net and STM over 30 days
in online A/B test. The average CTR for STM is 2.04%, while CULC-Net achieves
2.11%, with a 3.43% increase. The result demonstrates the effectiveness of CULC-Net
in the real-world online advertising scenario.

4.4 Offline Results

In this section, we discuss the performance of our proposed method, CULC-Net,
and compare it with the baseline method, the Non-CL method (without con-
trastive learning), as well as two recent prominent approaches, VAM-HBM and
CACS. We first present a comprehensive comparison test of the creatives, includ-
ing single image, multi-image, single title, multi-title, single combination, multi-
combination, and all data in Table 1. We observe that CULC-Net consistently
outperforms the other methods in all test scenarios, affirming its superiority in
creative selection.

In terms of total performance across all data, CULC-Net achieves a 4.01%
increase in sCTR, a 2.01% increase in AUC, and a 1.44% increase in GAUC com-
pared to the baseline method. Notably, when contrastive learning is incorporated
(compared to the Non-CL method), the performance improvement is significant.
The sCTR increases by 1.93%, AUC by 0.91%, and GAUC by 0.99%, illustrat-
ing the effectiveness of contrastive learning in capturing the nuances between
creatives, ultimately leading to a more refined understanding of the underlying
patterns.

Moreover, our analysis extends to the comparison with VAM-HBM and CACS.
The results suggest that while these methods exhibit competitive performance
in certain scenarios, CULC-Net consistently provides a more comprehensive and
accurate creative selection mechanism. Specifically, CULC-Net demonstrates a
more pronounced ability to leverage the complex interplay between different
creative elements, as evidenced by its superior performance in multi-image and
multi-title scenarios.

Figure 3 showcases the daily comparison of sCTR, AUC, and GAUC between
STM, Non-CL, VAM-HBM, CACS, and CULC-Net over a span of 30 days, where
each method processed one day of data from the dataset. The results underscore
that CULC-Net is not only effective but also exhibits remarkable stability, con-
sistently outperforming the other methods across all evaluation metrics.
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STM

CULC-Net

CTR:1.42%
CTR:1.37%

CTR:1.99%
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CTR:4.21%
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CTR:5.85%

Fig. 5. Visualization of selected creatives by CULC-Net and STM. Each col-
umn presents one pair of creatives with the same item. CULC-Net attracts more clicks
and recommends better creatives for both males and females.

4.5 Online Results

To investigate the effectiveness of CULC-Net in a real-world scenario, we con-
ducted a 30-day A/B test comparing its performance with STM. The daily and
average CTRs for both methods are presented in Figure 4. From the results, we
observe that CULC-Net consistently outperforms STM in terms of daily CTR,
with a relative increase in average CTR of 3.43%, demonstrating the effectiveness
of our approach.

Figure 5 visualizes the creatives selected by CULC-Net and STM. Each col-
umn shows a pair of creatives associated with the same item, where CULC-Net
consistently selects creatives that are better designed and more informative, lead-
ing to higher click rates. This analysis also compares male and female responses,
highlighting enhanced engagement: males show a notable increase in clicks for
items like headphones and refrigerators, while females demonstrate a significant
uplift for footwear. These trends suggest that the improvements in creative se-
lection by CULC-Net are influenced by gender-specific preferences. This further
supports the effectiveness of CULC-Net in optimizing creative selection and en-
hancing advertising performance.

Our approach demonstrates that incorporating user knowledge and con-
trastive learning into the creative selection process can result in more effective
ad creatives, which in turn, enhances platform revenue and contributes to a more
engaging user experience.

4.6 Ablation Study

Offline Results on Public Dataset. Due to the lack of open-source datasets
and the specific requirements for online performance, most creative selection
methods [33, 34] have only been tested on proprietary datasets. The Creative
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Table 2. Offline results on CreativeRanking dataset. This public dataset lacks
user information, so we only test the effectiveness of FlexiRank (Non-CL). The results
proving the robustness of our approach across multiple datasets.

Method sCTR AUC GAUC
STM 2.95% 60.13% 54.27%
VAM-HBM 3.32% 62.75% 57.09%
CACS 3.27% 61.98% 56.35%
Non-CL 3.48% (↑17.9%) 63.42% (↑5.5%) 57.88% (↑6.7%)

Fig. 6. Impact of key hyperparameters. We test the effects of λ, α, and ϵ in offline
experiments, with the y-axis representing the percentage of the best performance.

Ranking Dataset [31] is the only public dataset we identified for the creative
selection task. This dataset includes advertising creative data from Taobao, col-
lected from July to August 2020, with 500,827 product samples, 1,204,988 differ-
ent creatives, and over 200 million impressions. However, since this dataset lacks
user information, we could not evaluate CULC-Net directly and instead focused
on testing the FlexiRank component (Non-CL). We conducted additional offline
experiments on this dataset to verify the effectiveness of FlexiRank. As shown
in Table 2, Non-CL achieved the best results, with a 17.9% improvement in
sCTR, a 5.5% increase in AUC, and a 6.7% rise in GAUC. These results further
demonstrate the advantages of utilizing soft ranking.
Parameter Sensitivity. We analyze the impact of key hyperparameters of
CULC-Net, as shown in Figure 6, where the y-axis represents the percentage of
the best performance.

1.Impact of λ: The balance between FlexiRank and contrastive user learning
losses is best achieved with λ = 0.6, with performance dropping off as λ increases.

2.Impact of α: The optimal decay rate is found with α = 0.2, ensuring stable
training and effective learning.

3.Impact of ϵ: The hardness of negative samples is best regulated by ϵ = 0.1,
striking the right balance between challenge and learnability.

5 Conclusion

In this paper, we introduced CULC-Net, a novel approach for optimizing ad cre-
ative selection by addressing the challenges of unreliable CTR data and sparse
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data exposures. Unlike existing methods that rely heavily on surface-level anal-
ysis, CULC-Net delves deeper into user behavior, uncovering latent connections
between users and creatives. This approach enables a more personalized and
effective advertising experience. Our extensive evaluation shows a 3.43% im-
provement in online and 4.01% in offline.

The key contribution of CULC-Net lies in its ability to enhance data robust-
ness and relevance, even with unbalanced datasets, leading to more effective ad
recommendations. This improvement is economically significant; for instance, on
a large e-commerce platform with daily sales of $100 million, a 3% increase in
CTR could yield an additional $3 million in revenue. Moving forward, CULC-
Net sets the stage for future innovations in personalized, data-driven advertising,
emphasizing the critical role of user-centric approaches in optimizing online ad-
vertising.
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