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Abstract. The growing concerns regarding user privacy and data se-
curity have brought attention to the task of machine unlearning (MU),
which aims to remove the influence of specific data from a well-trained
model effectively and efficiently. A naive unlearning method is finetuning
the pretrained model to continually learn the remaining data to induce
the “catastrophic forgetting” of forgetting data. However, such unlearning
often turns out to be inefficient. For effective and efficient unlearning, it
is crucial to stimulate catastrophic forgetting, ideally by directly localiz-
ing model’s knowledge of specific class-wise features associated with the
forgetting data. In this paper, we highlight that the targeted universal ad-
versarial perturbation (UAP) implicitly contains class-wise information.
In light of this, we propose Unlearning by UAP (U²AP). By adding
the perturbation to clean remaining data during the finetuning process,
we shift the model’s attention away from the forgetting class directly,
stimulating faster and more efficient catastrophic forgetting. Extensive
experiments demonstrate that U2AP enables quicker and more accurate
forgetting while maintaining model performance on the remaining data.

Keywords: Machine Unlearning · Machine Learning .

1 Introduction

The success of deep learning is largely driven by the diversity and abundance
of training data [42]. However, this success also brings about pressing issues,
including data leaks, threats to personal privacy, and misuse of data that may
violate regulations [16]. To address these challenges, the General Data Protection
Regulation (GDPR) [17] was introduced to ensure “the right to be forgotten” [10].
In response, “machine unlearning” (MU) has emerged as a research area aimed at
enabling machine learning models to effectively forget specific data when needed.

In machine unlearning, retraining the model from scratch after data removal
remains the golden standard for ensuring complete forgetting [41], yet this ap-
proach is computationally intensive. To avoid the need of full retraining, various
methods have been proposed. Most of these methods rely on isolating forgetting
data influences [14], adjusting network outputs [3], and injecting error messages
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Fig. 1. Explanation of the effect of UAP. The corresponding number after the image
class is the predicted probability of being categorized into that class.

to forgetting data to disrupt the network’s memory of data [20,9]. However, these
methods sometimes compromise both unlearning efficiency and forgetting com-
pleteness. Empirical evaluations reveal that such approaches may underperform
even compared to naive finetuning. Finetuning trains the pretrained model on
the remaining samples, gradually forgetting the unlearned data through catas-
trophic forgetting [24], providing a milder unlearning process. However, its pas-
sive nature results in suboptimal efficiency.

To address this, class-specific features should be involved to actively stimu-
late catastrophic forgetting. On the one hand, such information should be the
key for the well-trained model to recognize the class as being forgotten. On the
other hand, it should not be specific to individual images within the same class
but rather representative of the entire class. Universal Adversarial Perturbation
(UAP) [29], an indistinguishable dark pattern specific to a class, perfectly fits the
requirement. When a UAP associated with a specific class is applied to any clean
sample, regardless of its original class, the network is deceived into misclassifying
the sample as the targeted class. As shown in Fig. 1, when the UAP targeted
at “brain coral” is added to clean samples originally classified as “monkey” and
“dog”, the model’s predictions for these samples are fooled to “brain coral” in
high probability. These perturbations, when visualized, often contain semantic
information of the targeted class. This observation underscores that UAPs en-
capsulate critical discriminative information that the neural network relies on for
decision-making. Consequently, by targeting and eliminating such information
during the unlearning process, we can effectively disrupt the model’s ability to
recognize the forgetting class, thereby stimulating catastrophic forgetting.

Here we propose Unlearning by UAP (U2AP). By combining the for-
getting features with the correct remaining data, our method reduces the infor-
mation loss associated with relabeling methods and overcomes the inefficiency
of simple finetuning. The specific differences between our method and others
are illustrated in Fig. 2. When the “brain coral” class is to be forgotten, simple
finetuning neglects the forgetting data and gradually forgets “brain coral” by con-
tinuing to learn from only the remaining classes. This passive approach, however,
proves inefficient, especially when dealing with more complex datasets or net-
works. To speed up such forgetting, some other prior works generally inject error
information into the forgetting data to actively guide the model toward unlearn-
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Fig. 2. Comparison of previous unlearning work and ours. Dr and Df denote the
remaining and forgetting data,Wp andWu denote the pretrained and unlearned model.

ing specific data. For example, Amnesiac [20] modifies the labels of the forgetting
data, and UNSIR [39] adds harmful noise to the forgetting set. However, this
kind of error information will also inevitably damage the model’s performance in
the remaining data, resulting in low utility. Whereas our approach incorporates
forgetting features, by applying U2AP, the model’s attention is forced to shift
from the forgetting class to the remaining data, thus accelerating the erasure of
class-specific memories while minimally impacting the remaining set. Like other
unlearning methods, the forgetting process affects the remaining data. So we mit-
igate the potential disruptions to remaining information by finetuning the model
on a subset of remaining data after forgetting. This additional step ensures stable
performance, enhancing the model’s utility. By combining active forgetting with
careful post-unlearning refinement, U2AP achieves a balance between efficient
unlearning and sustained model performance.

Our contributions can be summarized as follows:

• We explore the implicit representation of the network’s memory of specific
class-wise features and innovatively extract such information by UAP. By in-
corporating the UAP into the forgetting process, we localize the memory of the
forgetting class, achieving more precise unlearning.

• We propose a novel unlearning method, U2AP. By training targeted UAP
and then adding it to the remaining data for finetuning, we stimulate the catas-
trophic forgetting of the forgetting class, improving the effectiveness and effi-
ciency of class-wise machine unlearning.

• Experimental results across various settings demonstrate that our method
accelerates the forgetting process while effectively preserving the model’s perfor-
mance on the remaining data. This improvement is especially prominent when
U2AP is applied to larger-scale datasets and more complex models, making it a
more efficient and reliable solution for practical applications.
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Fig. 3. Results from FG-UAP targeted attacks. The left three shows perturbations on
CIFAR-100 using ResNet-18, where each perturbation exhibits visual features specific
to the target classes: “bicycle”, “house”, and “butterfly”. Right two displays perturbations
on ImageNet-1K using VGG-16, with textures arranged in distinct, patterned forms
targeting the classes “brain coral” and “bubble”.

2 Related work

2.1 Machine unlearning

Machine unlearning aims to eliminate the influence of specific data on a well-
trained model to ensure the legal use of data and the user’s privacy [6,13,21].
While retraining is the golden standard, it is resource-intensive, promoting the
development of effective and efficient unlearning methods. Current methods
mainly achieve unlearning by analyzing data influence through parameter impor-
tance selection or stimulating catastrophic forgetting through label modification.

A straightforward approach to analyze and remove data influence is retrieving
historical gradients associated with the forgetting data [40]. However, due to the
complexity of dynamic training, such retrieval process is inexact and inefficient.
Thereby influence function [25] is introduced to approximate data influence for
unlearning [21], but is limited to linear models with convex loss functions [2].
More practical influence removal techniques usually rely on parameter impor-
tance selection [14], which involves selectively suppressing parameters specifically
responsible for the forgetting data.

Other unlearning methods stimulate catastrophic forgetting by finetuning
with the modified data. The most basic finetuning trains the pretrained model ex-
clusively on the remaining data, passively relying on the natural process of catas-
trophic forgetting [24] to gradually erode the model’s acquired knowledge of the
forgetting data. However, this method is inefficient. To accelerate the forgetting
process, some methods inject incorrect information, e.g . random-relabeling [20],
knowledge-distillation from a useless teacher model [9,27] or assimilating error-
maximizing noise [39,8]. However, introducing such incorrect knowledge severely
damages model utility, making unlearning inexact, inefficient, and ultimately
unfavorable. To achieve more effective and efficient unlearning, it is crucial to
correctly locate the knowledge associated with specific class-wise information,
thereby stimulating catastrophic forgetting in a targeted and controllable way.

2.2 Universal Adversarial Perturbation

Universal Adversarial Perturbation (UAP) [29] is an adversarial perturbation
that can fool a well-trained model to misclassify any sample with the perturba-
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tion. In particular, targeted UAP attacks focus on fooling the model’s predictions
to a specific targeted class, rather than merely causing misclassification [46].

Recently, various UAP methods have been proposed to achieve nearly perfect
fooling rates [30,31,47,45]. Interestingly, powerful UAP is revealed to exhibit
semantic patterns specific to the targeted class, which are visualized in Fig. 3.
These semantic patterns evoke the model’s response and successfully fool its
predictions on perturbed data. This demonstrates that it is possible to extract
the specific information related to a targeted class from a pretrained model
through UAP [32,35,7]. Such insights provide a method for locating the class-
wise knowledge embedded in the model, which can then be leveraged to facilitate
effective unlearning.

3 Method

3.1 Preliminaries

Let D= {(xi, yi)}Ni=1 be a training set consisting of samples xi ∈Rd and cor-
responding class labels yi ∈{1, ...,K}. Machine unlearning aims to eliminate
the influence of specific samples that need to be forgotten from a pretrained
model. These samples are referred to as the forgetting data and denoted as
Df = {(xi, yi)∈D}Nf

i=1. The remaining samples in the dataset form the remaining
set, denoted as Dr =D\Df . The unlearned model should be as close as possible
to the retrained model, which is trained from scratch with Dr.

Nowadays, machine unlearning includes three primary tasks: (1) Full-class
unlearning: where the Df is made of all samples from an entire class k∈{1, ...,K},
(2) Sub-class unlearning: where the Df is made of samples from a specific sub-
class under a broader super-class k∈{1, ...,K}, (3) Random sample unlearning:
where the Df is made of samples randomly chosen from the entire dataset D.
Also, we consider multi-class unlearning: where the Df is made of all samples
from several entire classes k1, k2, ...∈{1, ...,K}. Here we mainly focus on full-
class unlearning, sub-class unlearning, and multi-class unlearning.

3.2 Proposed method

In deep learning, catastrophic forgetting refers to the phenomenon where neu-
ral networks progressively lose previously acquired knowledge when sequen-
tially trained on new tasks. Recent studies have leveraged this property through
finetuning-based unlearning methods to eliminate information pertaining to spe-
cific forgetting data. However, continual learning on the remaining data may fail
to achieve effective forgetting due to the underlying resemblance between the
remaining and the forgetting data. To address this challenge, we propose that
effective machine unlearning should actively stimulate controllable catastrophic
forgetting through targeted interference with class-specific features. The most
straightforward approach is to extract the pretrained model’s knowledge of the
forgetting data and remove it in a targeted way. Our key insight stems from the
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Fig. 4. The specific process of the three steps of U2AP, taking the example of forgetting
“dog”. (1) UAP extracting: using FG-UAP to targeted attack pretrained model in
remaining data to get targeted UAP of “dog”, (2) forget-class feature unlearning: adding
the UAP to remaining data and finetuning the pretrained model with correct remaining
data labels to stimulate catastrophic forgetting, (3) repairing: finetuning model with
subset of clean remaining data to repair model utility to get final unlearned model.

observation that UAPs generated by pretrained models inherently encapsulate
discriminative semantic patterns of targeted classes, as evidenced by their class-
specific visual manifestations in Fig. 3, which indicates the pretrained model’s
memorization of the classes. This suggests that UAPs can serve as effective prox-
ies for extracting class-wise information stored in model parameters. In light of
this, we propose a method that first uses UAP to extract class-wise information
and then promotes the shift of the model’s attention by training on the UAP-
perturbed remaining data. The labels of these perturbed samples still align with
those of their clean counterparts, compelling the model to actively ignore the
acquired knowledge of the targeted forgetting class. To mitigate any potential
impact of the adversarial noise on model utility, we finetune the model with the
clean remaining data for a few steps following previous methods. Overall, U2AP
has three steps: UAP extracting, forget-class feature unlearning, and model per-
formance repairing. The specific framework of our method is illustrated in Fig. 4.

UAP extracting. Targeted UAP is an input-agnostic noise that induces
misclassification of all perturbed samples toward a predefined target class. In-
terestingly, targeted UAP is revealed to contain semantic patterns specific to
the targeted class. This behavior demonstrates that UAPs inherently encode a
model’s memorization of class-specific information. Therefore, it can be an effec-
tive tool for removing the influence of forgetting data from pretrained model. In
this paper, we use FG-UAP [45] for its obvious class-wise patterns. As revealed
by Papyan et al . [34], for samples belonging to the same class, their penultimate
features in a well-trained model exhibit totally identical. FG-UAP trains the
UAP to destroy such within-class feature collapse of perturbed data. By enforc-
ing the classification of perturbed data to the targeted class with a cross-entropy
loss, FG-UAP achieves a remarkable fooling rate. Mathematically, the FG loss
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is expressed as:

LFG(Dr, δ, yf ) =
∑

xr∈Dr

[Lattack(xr, δ) + LCE(xr + δ, yf )] (1)

where
Lattack(xr, δ) =

h(xr) · h(xr + δ)

∥h(xr)∥∥h(xr + δ)∥
(2)

and h(x) represents the feature of sample x, δ is the UAP needs to be optimized,
yf denotes the forgetting class. We use the Lattack to optimize the UAP and use
the LCE to targetedly drive the predictions of the perturbed samples to the
forgetting class.

Forget-class feature unlearning. The targeted UAP inherently encodes
the class-wise information that establishes strong parametric interactions with
the pretrained model’s weight space. This causes the pretrained model to focus
heavily on this class-wise information once it is introduced to clean samples.
Therefore, in the context of unlearning, the goal is to reduce the model’s atten-
tion to such features, i.e., to make the model ignore and diminish its respon-
siveness to them. To achieve this, we finetune the pretrained model to correctly
classify the perturbed remaining data to its original labels with the loss function
in Equation (3). The inclusion of these perturbed samples causes the model’s
attention to shift rapidly away from the targeted UAP, thereby actively stimu-
lating the process of “catastrophic forgetting” by overriding the explicit semantic
information embedded in the UAP.

Lforget(Dr, δ) =
∑

xr,yr∈Dr

LCE(xr + δ, yr) (3)

Repairing. Since the UAP is essentially an adversarial noise, learning the
perturbed data may potentially impact performance on remaining data. Fortu-
nately, this can be effectively mitigated by finetuning the model for a few steps
on clean samples, as other unlearning methods also explicitly or implicitly lever-
age remaining data for repairing [39,9,20,14]. For full-class unlearning, we repair
by finetuning on a subset of remaining data. For sub-class unlearning, detailed
sub-class labels within broader super-classes can help target the UAP specifically
for certain classes. However, when sub-class labels are inaccessible, as in the MU
setting, we generate the UAP by targeted attacking the entire super-class and
then use a subset of remaining data for repairing.

The complete unlearning algorithm, which consists of the three critical steps
outlined above: (1) UAP extracting, (2) forget-class feature unlearning, (3) re-
pairing, is presented in Algorithm 1.

4 Experiments

4.1 Setups

Datasets, models and MU tasks. We evaluate our U2AP in supervised image
classification tasks. Since we utilize the UAP to extract class-wise information,
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Algorithm 1 Unlearning by UAP (U2AP)
Input: Pretrained model Wp, Remaining set Dr, Forgetting set Df , Forgetting class

yf
Output: Unlearned model Wu

Step 1: UAP Extracting
1: Sample subset Dr1 from Dr

2: δ ← FG_UAP(Wp,Dr1, yf )
Step 2: Forget-Class Feature Unlearning

3: Sample subset Dr2 from Dr based on UAP
4: Initialize synthetic dataset Ds = {}
5: for xi ∈ Dr2 do
6: Add UAP to sample: x′

i = xi + δ
7: Add (x′

i, yi) to Ds

8: Wuap ← Finetune (Wp, Ds)
9: end for

Step 3: Repairing
10: Sample subset Dr3 from Dr

11: for xi in Dr3 do
12: Wu ← Finetune (Wuap, Dr3)
13: end for
14: Return: Unlearned model Wu

we focus on class-wise unlearning tasks, including full-class unlearning, sub-class
unlearning, and multi-class unlearning. The full-class unlearning is evaluated
on ImageNet-1K [11]. The sub-class unlearning is evaluated on sub-classes of
CIFAR-20 [26]. The multi-class unlearning is evaluated on several classes of
CIFAR-100 [26]. For smaller-scale datasets like CIFAR-100 and CIFAR-20, we
use ResNet-18 [22] as the training model, while for the larger-scale dataset,
ImageNet-1K, we use Deit-B [43]. In our experiments, the forgotten classes were
selected randomly.

Evaluation metrics. Machine unlearning algorithms should be evaluated
based on their ability to effectively remove information while maintaining model
performance and ensuring efficiency. Our evaluation metrics focus on four criti-
cal aspects: the effectiveness of forgetting, the utility of model, the protection of
privacy, and the efficiency of the method. For the effectiveness of forgetting, we
use the forgetting accuracy (FA) to measure how well the model has removed the
influence of forgetting data. For the utility of model, we use the remaining accu-
racy (RA) and validation accuracy (VA) to evaluate how well the model retains
performance on the remaining data. To provide a more comprehensive evalua-
tion, we compute the average gap (Avg. Gap) between the unlearned model
and the retrained model across FA, RA and VA. A smaller average gap indi-
cates better unlearning performance. Additionally, for the protection of privacy,
we employ the membership inference attacks (MIA) [37,38] to further evaluate
the privacy guarantees after unlearning. The success rate of MIA indicates how
many samples in Df are classified as member samples of the unlearned model.
The lower MIA represents less information about the forgetting set left in the
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unlearned model, indicating more effective forgetting. Regarding the efficiency of
the unlearning algorithm, we report the execution time (Time) of each method.

Baselines. We compare our method against eight baselines, including (1)
Finetune: training the pretrained model with remaining data to gradually un-
learn through catastrophic forgetting [44], (2) Gradient Ascent: unlearning by
making a gradient ascent on the forgetting data [40], (3) EU-k and (4) CF-k:
fixing some parameters and only finetuning the last k layers [18], (5) Unlearning-
by-Selective-Impair-and-Repair (UNSIR): generating noise to impair the forget-
ting data and then finetining with the subset of remaining data to repair the
model [39], (6) Bad Teacher: transferring knowledge from the useful (the pre-
trained model) and useless (the randomly initialized model) teachers for the re-
maining data and the forgetting data [9], (7) Amnesiac: relabeling the forgetting
data and meanwhile minimizing the cross-entropy loss of the remaining data [20],
(8) Saliency-based Unlearning (SalUn): computing a weight saliency map to iden-
tify the weights most relevant to forgetting data by gradient norm [14].

Table 1. Results of full-class unlearning methods on ImageNet using Deit-B, evalu-
ated with two classes “109” an “971”. Each value represents the mean±variance in per-
cent(%). (Avg. Gap with retraining is not computed here because retraining is too
time-consuming.) We bold the best-performing values.

Class Method RA↑ FA↓ VA↑ MIA↓ Time (s)↓

109

Pretrain 81.89±0.00 88±0.00 80.10±0.00 63.50±0.00 -

Finetune 72.95±0.45 4.82±3.03 71.94±0.44 23.50±6.38 9171
GradientAscent 75.76±0.21 15.67±0.34 73.44±0.33 24.56±0.76 5130

EU-k 73.56±0.33 5.68±0.23 71.31±0.26 10.51±1.75 8451
CF-k 75.66±0.61 6.52±1.09 72.89±0.38 7.66±0.10 7989

UNSIR 68.17±1.32 49.03±1.00 65.14±1.77 56.12±0.88 6513
BadTeacher 70.04±0.50 8.33±9.83 69.95±0.45 2.33±1.52 4934
Amnesiac 78.57±0.21 9.32±3.52 78.54±0.21 1.33±0.58 5225

SalUn 79.58±0.05 1.04±1.00 79.53±0.05 2.33±1.04 4840
U2AP 80.25±0.13 0.00±0.00 80.20±0.12 4.00±0.50 748

971

Pretrain 81.73±0.00 85.42±0.00 81.72±0.00 79.50±0.00 -

Finetune 72.12±0.37 5.20±3.89 71.10±0.37 11.83±3.05 9197
GradientAscent 76.21±0.98 8.73±0.52 74.08±1.55 9.76±0.20 5326

EU-k 77.98±1.62 7.36±0.54 75.10±0.91 6.78±2.81 8030
CF-k 76.65±1.00 8.52±0.83 73.87±0.20 8.98±0.55 8006

UNSIR 72.98±0.97 50.31±0.84 70.45±1.02 47.89±0.76 6002
BadTeacher 70.27±0.41 13.33±5.16 70.21±0.43 1.83±0.29 4929
Amnesiac 78.70±0.12 16.28±5.66 78.66±0.12 1.33±0.29 5251

SalUn 79.59±0.08 7.00±2.76 79.55±0.08 2.17±0.58 4774
U2AP 80.11±0.04 0.00±0.00 80.07±0.04 3.17±0.76 525



10 Zhou WX et al.

4.2 Results and comparison

Performace on full-class unlearning tasks. The advantages of our approach
become noticeable when the models and datasets are more complex and large-
scaled. For the ImageNet-1K dataset shown in Table 1, the non-zero values of
FA of other baselines indicate that they all fail to achieve complete forgetting
without unduly impairing model performance. Although the FAs may drop to 0
as the training duration increases, it will inevitably cause lower RA. In contrast,
U2AP achieves a zero-value FA as well as high RA and VA. Furthermore, our
method achieves low MIA scores, which reflects its enhanced privacy protection
capabilities after unlearning. In terms of forgetting efficiency, the time required
by our method is significantly lower (faster ×10) than that of other baselines. Es-
pecially, compared to basic finetuning where catastrophic forgetting is inefficient
in this task, our method significantly accelerates such process. Other baseline
approaches not only fail to achieve complete forgetting knowledge elimination
but also induce severe performance degradation in model utility. Unlike other
methods that suffer from excessively long execution times and low efficiency, our
method proves more practical for real-world applications.

Table 2. The time(s) consumption of each step in the U2AP framework: (1) UAP
extracting; (2) Forget-class feature unlearning; (3) Repairing. And the accuracy on
different datasets after forgetting step. The results are evaluated on “109” and “971”
classes of ImageNet-1K using Deit-B.

Class RAu ↑ FAu ↓ VAu ↑ UAP Time Unlearn Time Repair Time
109 78.21±0.63 0.00±0.00 76.87±0.43 102 160 402

971 77.89±0.25 0.00±0.00 76.35±0.57 101 161 250

To comprehensively evaluate the efficiency of our proposed method under
complex configurations of datasets and models, we conducted detailed experi-
ments to measure the time consumption of each step in the U2AP framework
on ImageNet-1K. Furthermore, to demonstrate that UAP specifically stimulates
catastrophic forgetting for the targeted class while minimally affecting other
classes, we systematically measured model accuracy across all datasets immedi-
ately after the forgetting step (prior to the repairing step), as presented in Ta-
ble 2. Our results show that the computation time required for UAP remains
acceptable given the complexity of both models and datasets, with the forgetting
step itself requiring negligible time. Remarkably, this efficient forgetting proce-
dure sufficiently reduces the FA value to 0% while maintaining high accuracy on
remaining data (exhibiting less than 4% degradation compared to pre-forgetting
performance). These results confirm that UAP achieves efficient elimination of
target class influence while preserving model utility for other classes, thereby
validating the operational efficiency and precision of our approach.
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Table 3. Results of multi-class unlearning methods on CIFAR-100 using ResNet-18,
evaluated with forgetting 2, 4, 8 classes. Since the purpose of forgetting the whole class
is high RA,VA as well as low FA, we omit the comparison with retrain here. The tables
are laid out in the same format as Table 1.

Classes number Method RA↑ FA↓ VA↑ MIA↓

2

Pretrain 76.28±0.00 83.33±0.00 76.50±0.00 95.10±0.00

Finetune 76.43±0.22 0.02±0.05 70.11±0.18 1.58±0.25

GradientAscent 73.01±0.64 1.20±1.30 71.54±0.40 7.23±0.34

EU-k 68.53±0.60 0.00±0.00 66.96±0.56 3.00±0.03

CF-k 72.76±0.22 0.00±0.00 71.57±0.20 2.13±0.01

BadTeacher 66.86±0.46 0.00±0.00 65.47±0.44 0.00±0.00
Amnesiac 73.39±0.60 0.00±0.00 71.93±0.60 46.62±1.04

SalUn 76.50±0.14 2.68±0.97 74.99±0.13 0.00±0.00
U2AP 76.62±0.06 0.00±0.00 74.95±0.23 1.11±0.39

4

Pretrain 76.21±0.00 80.66±0.00 76.50±0.00 95.25±0.00

Finetune 75.91±0.14 0.00±0.00 72.93±0.54 3.83±6.89

GradientAscent 73.54±0.20 3.51±0.34 71.92±0.33 2.81±0.56

EU-k 68.32±0.57 0.06±0.11 67.13±0.35 4.13±0.02

CF-k 72.98±0.31 0.00±0.00 71.62±0.38 1.66±0.20

BadTeacher 67.09±0.52 0.04±0.09 64.35±0.50 0.00±0.00
Amnesiac 72.81±0.12 0.00±0.00 69.83±0.14 44.33±0.60

SalUn 76.14±0.19 1.76±0.69 73.11±0.17 0.01±0.02

U2AP 76.50±0.33 0.00±0.00 73.36±0.34 1.02±0.35

8

Pretrain 76.13±0.00 80.80±0.00 76.50±0.00 95.82±0.00

Finetune 76.43±0.22 0.02±0.05 70.11±0.18 1.58±0.25

GradientAscent 74.06±0.72 3.61±0.60 72.36±0.33 9.22±1.65

EU-k 69.06±0.67 0.00±0.00 66.34±0.66 2.02±0.01

CF-k 73.21±0.89 1.05±0.09 71.00±0.66 0.56±0.93

BadTeacher 67.35±0.48 0.00±0.00 61.84±0.47 0.00±0.00
Amnesiac 72.67±0.25 0.00±0.00 66.74±0.24 43.71±0.94

SalUn 75.65±0.20 3.17±0.41 69.75±0.22 0.03±0.03

U2AP 76.54±0.13 0.00±0.00 70.87±0.22 2.14±0.32
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Performace on multi-class unlearning tasks. To further analyze the
applicability and stability of our method across different unlearning scenarios, we
conducted multi-class unlearning experiments with varying numbers of forgetting
classes (2, 4, and 8) on CIFAR-100 using ResNet-18. We train the corresponding
UAPs for the classes that need to be forgotten and add them randomly to the
remaining data (only one class of UAPs is added to each remaining sample). As
shown in Table 3, our method consistently achieves optimal performance across
all evaluation metrics, demonstrating superior RA and VA while maintaining
the lowest FA. Comparative analysis reveals that while Finetune and SalUn
preserve model utility on remaining classes, they exhibit incomplete forgetting of
target classes. Conversely, EU-k, CF-k, and Amnesiac achieve effective forgetting
but significantly degrade performance in the remaining classes. Our approach
effectively balances these objectives, delivering both precise forgetting and high
utility preservation without compromising either aspect.

Performace on sub-class unlearning tasks. We do experiments of sub-
class “rocket” on CIFAR-20. As shown in Table 4, data-modification based meth-
ods like Amnesiac and UNSIR both have relatively RA, indicating poor forget-
ting effectiveness. Some other finetuning-based methods e.g . Gradient Ascent,
EU-k, and Cf-k demonstrate performance substantially deviating from retrain-
ing. In contrast, in terms of Avg. Gap, our method produces results similar to
retraining, with comparatively lower execution time and stable performance.

Table 4. Results of sub-class unlearning methods on CIFAR-20 using ResNet-18, eval-
uated with sub-class “rocket”. The tables are laid out in the same format as Table 1.

Method RA↑ FA↓ VA↑ Avg. Gap↓ MIA↓ Time (s)↓

Pretrain 85.26±0.00 80.73±0.00 85.21±0.00 - 92.80±0.00 -
Retrain 84.85±0.05 2.69±0.21 84.07±0.09 - 12.40±0.86 -

Finetune 83.23±0.20 4.46±1.44 82.49±0.20 1.66 4.36±0.92 165
GradientAscent 80.77±4.04 1.32±1.54 79.53±1.28 3.33 14.76±5.39 130

EU-k 78.56±1.25 1.89±0.36 77.97±0.26 4.40 16.98±2.76 230
CF-k 80.13±0.78 3.96±1.22 79.04±0.88 3.67 9.67±0.77 254

UNSIR 78.39±0.66 4.69±3.23 77.65±0.63 4.96 12.08±4.85 88
BadTeacher 84.15±0.33 3.01±1.62 83.34±0.32 0.58 0.00±0.00 33
Amnesiac 82.92±0.09 2.71±1.09 82.15±0.10 1.29 1.10±0.48 28

SalUn 84.71±0.09 3.52±0.57 83.89±0.08 0.38 0.30±0.12 117
U2AP 84.38±0.04 2.56±0.55 83.56±0.04 0.37 1.31±1.56 102

Summary. These results indicate that our method demonstrates consistent
forgetting performance across datasets, models of various sizes, and different
unlearning tasks. It enables the unlearning process to stimulate the catastrophic
forgetting of data while preserving the integrity on remaining data. This makes
our approach more effective and efficient than existing unlearning methods.
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4.3 Analysis
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RetrainPretrain
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Fig. 5. Visualization of feature dimension reduction for different models on the CIFAR-
10. Compared to finetuning, our method has more similar results to retraining.

Feature representation visualization. We use T-SNE [28] dimensionality
reduction to visualize the output features of CIFAR-10 [26] across models. In
this case, class “0” is the forgetting class, indicated in dark red color. As can
be seen in Fig. 5, although both Finetune and our method can distinguish the
forgetting data from the remaining data, our approach demonstrates superior
feature distribution alignment with the retrained model.

 Origin Pretrain Retrain U2APAmnesiacFinetuneSalUn

 Origin Pretrain Retrain U2APAmnesiacFinetuneSalUn

Fig. 6. The visualizations of attention heatmaps for some unlearned models on the
forgetting data (top three lines) and the remaining data (bottom line) .

Attention maps visualization. We examine the model’s attention on the
forgetting class before and after unlearning using attention heatmaps [36]. We
compare U2AP with several other unlearning methods that exhibit minimal Avg.
Gap to the retrained model in previous evaluations, including SalUn, Finetune,
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and Amnesiac on PinsFaceRecognition [5] using ResNet-18. As shown in Fig. 6,
after applying U2AP for class forgetting, the model’s attention noticeably shifts
away from facial regions, closely aligning with the visualization results of the
retrained model. In contrast, the attention maps of other baseline methods still
focus more or less on the facial areas. This implies that U2AP is superior to
other methods in precisely locating and erasing class-wise information, leading
to a more effective unlearning process. In addition, Fig. 6 shows the heatmap
of the remaining data before and after forgetting, and it can be seen that the
attention of the model is still gathered on the face of the remaining data after
forgetting using our method, showing the high utility of our method.

Fig. 7. The UAPs obtained from targeted attacking the model before and after un-
learning by U2AP.

Post-unlearned UAP test. We investigate the leftover semantic informa-
tion of the forgetting class after unlearning by visualizing the targeted UAPs
of the pretrained and unlearned models. As shown in Fig. 7, we analyze this
for five different forgetting classes in CIFAR-100. The first row shows the UAPs
trained from the pretrained model, where each UAP exhibits obvious semantic
class-wise patterns, such as a “bicycle” or a “butterfly”. After applying U2AP,
the semantic patterns disappear from generated UAPs. This demonstrates that
our proposed method, U2AP, successfully eliminates the class-wise information
from the pretrained model.

5 Conclusion

In this paper, we point out that effective and efficient unlearning requires ex-
plicitly extracting class-wise information to stimulate catastrophic forgetting.
We emphasize that targeted universal adversarial perturbations implicitly ex-
tract class-specific information, as demonstrated by the visible semantic pat-
terns aligned with the targeted class. Hence, the targeted UAP generated from
the pretrained model can be readily leveraged to facilitate the unlearning of spe-
cific data. In light of this, we propose U2AP, which unlearns by finetuning the
model with perturbed remaining data to stimulate catastrophic forgetting. Ex-
tensive experiments demonstrate the effectiveness and efficiency of our proposed
method. Taking advantage of the universal adversarial perturbation opens up a
new perspective for identifying model’s knowledge of the forgetting data.
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Limitations. The critical aspect of our U2AP lies in extracting implicit fea-
tures related to the forgetting data, which makes our method dependent on the
difficulty and accuracy of feature localization. When the features of the forgetting
data are dispersed and difficult to extract, our method may fail. Additionally,
we only focus on image tasks, and our approach remains to be explored for tasks
such as text-based ones.
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