
Gathering and Exploiting Higher-Order
Information when Training Large Structured

Models

Pierre Wolinski[0000−0003−1007−0144] (�)

LAMSADE, Paris-Dauphine University, PSL University, CNRS, 75016 Paris, France
pierre.wolinski@dauphine.psl.eu

Abstract. When training large models, such as neural networks, the full
derivatives of order 2 and beyond are usually inaccessible, due to their
computational cost. Therefore, among the second-order optimization
methods, it is common to bypass the computation of the Hessian by
using first-order information, such as the gradient of the parameters (e.g.,
quasi-Newton methods) or the activations (e.g., K-FAC).
In this paper, we focus on the exact and explicit computation of projec-
tions of the Hessian and higher-order derivatives on well-chosen subspaces
relevant for optimization. Namely, for a given partition of the set of pa-
rameters, we compute tensors that can be seen as “higher-order derivatives
according to the partition”, at a reasonable cost as long as the number of
subsets of the partition remains small.
Then, we give some examples of how these tensors can be used. First, we
show how to compute a learning rate per subset of parameters, which
can be used for hyperparameter tuning. Second, we show how to use
these tensors at order 2 to construct an optimization method that uses
information contained in the Hessian. Third, we show how to use these
tensors at order 3 (information contained in the third derivative of the
loss) to regularize this optimization method. The resulting training step
has several interesting properties, including: it takes into account long-
range interactions between the layers of the trained neural network, which
is usually not the case in similar methods (e.g., K-FAC); the trajectory of
the optimization is invariant under affine layer-wise reparameterization.
Our code is available on GitHub: https://github.com/p-wol/
GroupedNewton.

Keywords: Optimization · Newton’s method · Deep Learning.

1 Introduction

In machine learning, computing the derivatives of the loss at various orders
is challenging when using large models, such as neural networks. While the
first-order derivative is relatively cheap to compute and easy to use to train
neural networks, things get difficult when it comes to higher-order derivatives.
In particular, Hessian-based training algorithms such as Newton’s method are

https://github.com/p-wol/GroupedNewton
https://github.com/p-wol/GroupedNewton

2 P. Wolinski

very expensive to use on large models. Therefore, the study of the Hessian of a
loss according to many parameters has become a research area in its own right.
For derivatives of order 3 and higher, the situation is even worse: their exact
computation is far more expensive than the Hessian, and only a few optimization
algorithms use them.

Main contribution: extracting higher-order information. Formally, we study a
loss L to be minimized according to a vector of parameters θ ∈ RP . Thus, the
order-d derivative of L at a given point is a tensor of order d with P d coefficients.
Usually, such tensors cannot be computed exactly and explicitly with d ≥ 2
(which includes the Hessian) for medium-sized models (P ≳ 106).

Instead of trying to approximate these tensors, we propose to compute
their projections along well-chosen directions, that are relevant for optimization.
This computation can be done efficiently by taking advantage of the practical
implementation of the vector of parameters θ as a tuple of tensors (T1, · · · ,TS).
Such a projection of the order-d derivative yields a tensor of order d with
Sd coefficients, instead of P d. Thus, the Hessian of a model of size P = 106

represented by a tuple of S = 20 tensors can be reduced to a matrix of size
S2 = 400, instead of P 2 = 1012. More generally, whenever S ≪ P , the projected
order-d derivative of L is significantly smaller and easier to compute than the
full order-d derivative.

Application: computing per-layer learning rates. Then, we show that such projec-
tions of the order-1 and order-2 derivatives can be used to compute the optimal
learning rates to choose for each one of the S tensors (or subsets of parameters).
The procedure we propose to compute per-layer learning rates is both theoretically
well-grounded and usable in practice (as long as the number of layers is not too
large). In particular, our computation does not neglect long-range interactions
between layers.

Application: second-order optimization method. Finally, we show that the informa-
tion contained in the 1st, 2nd, and 3rd order derivatives is not only accessible at
reasonable cost, but can also be used for optimization. In particular, we propose
an optimization method that exploits higher-order information about the loss
obtained by using the main contribution. For simplicity, our optimization method
and Newton’s method look similar: in both cases, a linear system H0x = g0

has to be solved (w.r.t. x), where g0 and H0 contain respectively first-order
and second-order information about L. Despite this formal resemblance, the
difference is enormous: with Newton’s method, H0 is equal to the Hessian H
of L of size P × P , while with ours, H0 is equal to a matrix H̄ of size S × S.
Thus, H̄ is undoubtedly smaller and easier to compute than H when S ≪ P .
Nevertheless, since H̄ is a dense matrix, it still contains information about the
interactions between the tensors Ts when they are used in L. This point is crucial
because most second-order optimization methods applied to neural networks
use a simplified version of the Hessian (or its inverse), usually a diagonal or
block-diagonal approximation, ignoring interactions between layers. Additionally,

Higher-Order Information for Large Structure Models 3

we propose an anisotropic version of Nesterov’s cubic regularization [24], which
uses order-3 information to regularize H̄ and avoid instabilities when computing
H̄−1ḡ. In particular, the resulting training trajectory is invariant by layer-wise
affine reparameterizations, so our method preserves some interesting properties
of Newton’s method.

Structure of the paper. First, we show the context and motivation of our work
in Section 2. Then, we provide in Section 3 our core method, and in Sections 4
and 5 its applications. In Section 6, we present experimental results showing that
the developed methods are usable in practice. Finally, we discuss the results in
Section 7.

2 Context and motivation

2.1 Higher-order information

It is not a novel idea to extract higher-order information about a loss at a
minimal computational cost to improve optimization. This is typically what is
done by [6], although it does not go beyond the second-order derivative. In this
line of research, the Hessian-vector product [28] is a decisive tool, that allows
to compute the projection of higher-order derivatives in given directions at low
cost (see Appendix A). For derivatives of order 3, Nesterov’s cubic regularization
of Newton’s method [24] uses information of order 3 to avoid too large training
steps. Incidentally, we develop an anisotropic variant of this in Section 5. In
the same spirit, the use of derivatives of any order for optimization has been
proposed [3]

2.2 Using and estimating the Hessian in optimization

The Hessian H of the loss L according to the vector of parameters θ is known to
contain useful information about L. Above all, the Hessian is used to develop
second-order optimization algorithms. Let us denote by θt the value of θ at time
step t, gt ∈ RP the gradient of L at step t and Ht its Hessian at step t. One of
the most widely known second-order optimization method is Newton’s method,
whose step is [25, Chap. 3.3]:

θt+1 := θt −H−1
t gt. (1)

Under certain conditions, including strong convexity of L, the convergence rate
of Newton’s method is quadratic [25, Th. 3.7], which makes it very appealing.
Besides, other methods use second-order information without requiring the full
computation of the Hessian. For instance, Cauchy’s steepest descent [4] is a
variation of the usual gradient descent, where the step size is tuned by extracting
very little information from the Hessian:

θt+1 := θt − η∗t gt, where η∗t :=
gT
t gt

gT
t Htgt

, (2)

4 P. Wolinski

where the value of gT
t Htgt can be obtained with little computational cost (see

Appendix A). However, when optimizing a quadratic function f with Cauchy’s
steepest descent, f(θt) is known to decrease at a rate (λmax−λmin

λmax+λmin
)2, where λmax

and λmin are respectively the largest and the smallest eigenvalues of the Hessian
of f [19, Chap. 8.2, Th. 2]. If the Hessian of f is strongly anisotropic, then this
rate is close to one and optimization is slow. For a comparison of the two methods,
see [9,19,25].

Finally, there should be some space between Newton’s method, which requires
the full Hessian H, and Cauchy’s steepest descent, which requires minimal and
computationally cheap information about H. The optimization method presented
in Section 5 explores this in-between space.

Quasi-Newton methods. When the parameter space is high-dimensional, com-
putation of the Hessian Ht and inversion of the linear system gt = Htx are
computationally intensive. Quasi-Newton methods are designed to avoid any
direct computation of the Hessian, and make extensive use of gradients and
finite difference methods to approximate the direction of H−1

t gt. For a list of
quasi-Newton methods, see [25, Chap. 8]. However, [25] argue that, since it is
easy to compute the Hessian by using Automatic Differentiation (AutoDiff),
quasi-Newton methods tend to lose their interest.

Applications to deep learning. Many methods overcome the curse of the number
of parameters by exploiting the structure of the neural networks. It is then
common to neglect interactions between layers, leading to a (block)-diagonal
approximation of the Hessian. A first attempt has been made by [32]: they
divide the Hessian into blocks, following the division of the network into layers,
and its off-diagonal blocks are removed. From another perspective, [27] keeps
this block-diagonal structure, but performs an additional approximation on the
remaining blocks.

More recently, K-BFGS has been proposed [10], which is a variation of
the quasi-Newton method BFGS with block-diagonal approximation and an
approximate representation of these blocks. In a similar spirit, the Natural
Gradient method TNT [29] also exploits the structure of neural networks by
performing a block-diagonal approximation. Finally, AdaHessian [34] efficiently
implements a second-order method by approximating the Hessian by its diagonal.

Kronecker-Factored Approximate Curvature (K-FAC) is a method for approx-
imating of the Hessian proposed in [20] in the context of neural network training.
K-FAC exploits the specific architecture of neural networks to output a cheap
approximation of the true Hessian. Despite its scalability, K-FAC suffers from
several problems. First, the main approximation is quite rough, since “[it assumes]
statistical independence between products [...] of unit activities and products
[...] of unit input derivatives” [20, Sec. 3.1]. Second, even with an approximation
of the Hessian, one has to invert it, which is computationally intensive even for
small networks. To overcome this difficulty, a block-(tri)diagonal approximation
of the inverse of the Hessian is made, which eliminates many of the interactions
between the layers.

Higher-Order Information for Large Structure Models 5

Summarizing the Hessian. In Section 5, we propose to summarize the Hessian to
avoid the expensive computation of the full Hessian. This idea is not new. For
instance, [18] proposes to approximate the Hessian with a matrix composed of
blocks in which all coefficients are identical. A more broadly used technique to
compress the Hessian is to perform sketching on it, that is, project it on randomly
chosen directions. This idea is used for solving linear systems [35], as well as for
minimizing functions [11], and can be further adapted to Newton’s method with
cubic regularization [13]. Finally, it is also possible to choose the directions of
the projection by using available information [26]. This is the strategy that we
have adopted in Section 5.

Invariance by affine reparameterization. Several optimization methods, such as
Newton’s, have an optimization step invariant by affine reparameterization of θ
[1] [23, Chap. 4.1.2]. Specifically, when using Newton’s method, it is equivalent to
optimize L according to θ and according to θ̃ = Aθ +B (A ∈ RP×P invertible,
B ∈ RP). This affine-invariance property holds even if the function L to minimize
is a negative log-likelihood, and one chooses to minimize θ by the natural gradient
method [1]. This method is still being studied for its invariance property [37]
(which is also a feature of K-FAC), but it requires computing the Hessian of L at
some point.

Methods based on the moments of the gradients. Finally, many methods acquire
geometric information on the loss by using only the gradients. For instance,
Shampoo [12] uses second-moment information of the accumulated gradients.

2.3 Motivation

What are we really looking for? The methods that aim to estimate the Hessian
matrix H or its inverse H−1 in order to imitate Newton’s method implicitly
assume that Newton’s method is adapted to the current problem. This assumption
is certainly correct when the loss to optimize is strongly convex. But, when the
loss is not convex and very complicated, e.g. when training a neural network, this
assumption is not justified. Worse, it has been shown empirically that, at the end
of the training of a neural network, the eigenvalues of the Hessian are concentrated
around zero [30], with only a few large positive eigenvalues. Therefore, Newton’s
method itself does not seem to be recommended for neural network training, so
we may not need to compute the full Hessian at all, which would relieve us of a
tedious, if not impossible, task.

To avoid such problems, it is very common to regularize the Hessian by adding
a small, constant term λI to it [25, Chap. 6.3]. Also, trust-region Newton methods
are designed to handle non-positive-definite Hessian matrices [25, Chap. 6.4] [22].

Importance of the interactions between layers. Also, some empirical works have
shown that the role and the behavior of each layer must be considered along
its interactions with the other layers, which emphasize the importance of off-
diagonal blocks in the Hessian or its inverse. We give two examples. First, [36]

6 P. Wolinski

has shown that, at the end of their training, many networks exhibit a strange
feature: some (but not all) layers can be reinitialized to their initial value with
little loss of the performance. Second, [15] has compared the similarity between
the representations of the data after each layer: changing the number of layers
can qualitatively change the similarity matrix of the layers [15, Fig. 3]. Among
all, these results motivate our search for mathematical objects that show how
layers interact.

Per-layer scaling of the learning rates. A whole line of research is concerned with
building a well-founded method for finding a good scaling for the initialization
distribution of the parameters, and for the learning rates, which can be chosen
layer-wise. For instance, a layer-wise scaling for the weights was proposed and
theoretically justified in the paper introducing the Neural Tangent Kernels [14].
Also, in the “feature learning” line of work, [33] proposes a relationship between
different scalings related to weight initialization and training. Therefore, there
is an interest in finding a scalable and theoretically grounded method to build
per-layer learning rates.

Unleashing the power of AutoDiff. Nowadays, several libraries provide easy-to-use
automatic differentiation packages that allow the user to compute numerically
the gradient of a function, and even higher-order derivatives.1 Ignoring the
computational cost, the full Hessian could theoretically be computed numerically
without any approximation. To make this computation feasible, one should aim
for an simpler goal: instead of computing the Hessian, one can consider a smaller
matrix, consisting of projections of the Hessian.

Moreover, one might hope that such projections would “squeeze” the close-to-
zero eigenvalues of the Hessian, so that the eigenvalues of the projected matrix
would not be too close to zero.

3 Summarizing higher-order information

Let us consider the minimization of a loss function L : RP → R according to a
variable θ ∈ RP .

Notation. Let us consider a tensor A ∈ RPd

. A contains P d coefficients denoted by
Ai1,··· ,id , indexed by a multi-index (i1, · · · , id) ∈ {1, · · · , P}d. The tensor A can
be regarded as a multi-linear form on RPd

: for a tuple of vectors (u1, · · · ,ud) ∈
RP × · · · × RP , the application of A to (u1, · · · ,ud) is defined as follows:

A[u1, · · · ,ud] :=

P∑
i1=1

· · ·
P∑

id=1

Ai1,··· ,idu
1
i1 · · ·u

d
id

∈ R, (3)

where uk
ik

is the ik-th coordinate of uk. This operation is also called tensor
contraction.
1 With PyTorch: torch.autograd.grad.

Higher-Order Information for Large Structure Models 7

Full computation of the derivatives. The order-d derivative of L at a point
θ, that we denote by ddL

dθd (θ), can be viewed as either a d-linear form (see [7]
and Appendix L) or as an order-d tensor belonging to RPd

. For convenience,
we will use the latter: the coefficients of the tensor A = ddL

dθd (θ) ∈ RPd

are
Ai1,··· ,id = ∂dL

∂θi1 ···∂θid
(θ), where (i1, · · · , id) ∈ {1, · · · , P}d is a multi-index. The

order-d derivative ddL
dθd (θ) ∈ RPd

contains P d scalars. But, even when considering
its symmetries2, it is computationally too expensive to compute it exactly for
d ≥ 2 in most cases. For instance, it is not even possible to compute numerically
the full Hessian of L according to the parameters of a small neural network, i.e.,
with P = 105 and d = 2, the Hessian contains P d = 1010 scalars.

Terms of the Taylor expansion. At the opposite, one can obtain cheap higher-
order information about L at θ by considering a specific direction u ∈ RP . The
Taylor expansion of L(θ + u) gives:

L(θ + u) = L(θ) +
D∑

d=1

1

d!

ddL
dθd

(θ)[u, · · · ,u] + o(∥u∥D). (4)

The terms of the Taylor expansion contain higher-order information about L
in the direction u. In particular, they can be used to predict how L(θ) would
change if θ was translated in the direction of u. Additionally, computing the
first D terms has a complexity of order D × P , which is manageable even for
large models. The trick that allows for such a low complexity, the Hessian-vector
product, was proposed by [28] and is recalled in Appendix A.

An intermediate solution. First, we define the partial tensor contractions of the
order-d derivative of L at θ applied to one vector u. We express θ ∈ RP and
u ∈ RP as tuples of S tensors: (T1, · · · ,TS) for θ and (U1, · · · ,US) for u. In
other words, for any i ∈ {1, · · · , P}, there exist s ∈ {1, · · · , S} and an index j
such that the parameter θi is located at T s

j , and, similarly, ui is located at Us
j .

We can now define the partial tensor contraction Dd
θ(u) ∈ RSd

, which is a tensor
with coefficients:

(Dd
θ(u))s1,··· ,sd =

∂dL
∂Ts1 · · · ∂Tsd

(θ)[Us1 , · · · ,Usd] (5)

=

Ps1∑
i1=1

· · ·
Psd∑
id=1

∂dL
∂T s1

i1
· · · ∂T sd

id

(θ)Us1
i1

· · ·Usd
id
, (6)

where Ps is the number of coefficients of the tensor Ts. Thus, Dd
θ(u) is a tensor

of order d and size S in every dimension resulting from a partial contraction of
the full derivative ddL

dθd (θ).

2 If L is smooth, then, for any permutation σ of {1, · · · , d}, ∂dL
∂θi1 ···∂θid

= ∂dL
∂θσ(i1)···∂θσ(id)

.

8 P. Wolinski

Table 1: Comparison between three techniques extracting higher-order information
about L: size of the result and complexity of the computation.

Technique Size Complexity

Full derivative ddL
dθd (θ) P d P d

Taylor term Dd
θ(u)[1S , · · · ,1S] 1 d× P

Tensor Dd
θ(u) Sd Sd−1 × P

Now, let us assume that, in the practical implementation of a gradient-
based method of optimization of L(θ), θ is represented by a tuple of tensors
(T1, · · · ,TS). So, each Taylor term can be expressed as:

ddL
dθd

(θ)[u, · ·,u] =
S∑

s1=1

· · ·
S∑

sd=1

∂dL
∂Ts1 · · · ∂Tsd

(θ)[Us1 , · · · ,Usd]

= Dd
θ(u)[1S , · · · ,1S], (7)

where 1S ∈ RS is a vector full of ones, the tuple of tensors (U1, · · · ,US) represents
u.3 In this case, the trick of [28] applies to the computation of Dd

θ(u), which is
then much less expensive to compute than the full derivative (see Appendix A).

Properties of Dd
θ(u). We show a comparison between the three techniques in

Table 1. If S is small enough, computing Dd
θ(u) becomes feasible for d ≥ 2. For

usual multilayer perceptrons with L layers, there is one tensor of weights and one
vector of biases per layer, so S = 2L. This allows to compute Dd

θ(u) in practice
for d = 2 even when L ≈ 20.

According to Eqn. (7), the Taylor term can be obtained by full contraction
of Dd

θ(u). However, Dd
θ(u), is a tensor of size Sd, and cannot be obtained from

the Taylor term, which is only a scalar. Thus, the tensors Dd
θ(u) extract more

information than the Taylor terms, while keeping a reasonable computational
cost. Moreover, their off-diagonal elements give access to information about
one-to-one interactions between tensors (T1, · · · ,TS) when they are processed
in the function L.

4 Application: computing per-layer learning rates

To build per-layer (or per-subset-of-parameters) learning rates, we partition the
set of indices of parameters {1, · · · , P} into S subsets (Is)1≤s≤S , we assign for all
1 ≤ s ≤ S the same learning rate ηs to the parameters (θp)p∈Is

, and we find the
vector of learning rates η = (η1, · · · , ηS) optimizing the decrease of the loss L for

3 (U1, · · · ,US) is to u as (T1, · · · ,TS) is to θ.

Higher-Order Information for Large Structure Models 9

the current training step t, by using its order-2 Taylor approximation.4 Formally,
given a direction ut ∈ RP in the parameter space (typically, ut = gt, the gradient)
and Ut := Diag(ut) ∈ RP×P , we consider the training step: θt+1 := θt−UtIP :Sηt,
that is a training step in a direction based on ut, distorted by a subset-wise step
size ηt. Then, we minimize the order-2 Taylor approximation of L(θt+1)−L(θt):
∆2(ηt) := −gT

t UtIP :Sηt +
1
2η

T
t IS:PUtHtUtIP :Sηt, which gives:

θt+1 = θt −UtIP :Sη
∗
t , η∗

t := (IS:PUtHtUtIP :S)
−1IS:PUtgt, (8)

where IS:P ∈ RS×P is the partition matrix, verifying (IS:P)sp = 1 if p ∈ Is
and 0 otherwise, and IP :S := ITS:P . Alternatively, η∗

t can be written (details are
provided in Appendix B):

η∗
t = H̄−1

t ḡt, where: H̄t := IS:PUtHtUtIP :S ∈ RS×S , ḡt := IS:PUtgt ∈ RS .
(9)

With the notation of Section 3, H̄t = D
(2)
θt

(ut) and ḡt = D
(1)
θt

(ut). Incidentally,
computing H̄ is of complexity SP , and solving H̄x = ḡ is of complexity S2.

5 Application: optimization method

5.1 Presentation

Now that we can compute per-layer learning rates, we decide to incorporate them
into an optimization method. However, computing them requires to compute
H̄−1ḡ. Usually, inverting such a linear system at every step is considered as
hazardous and unstable. Therefore, when using Newton’s method, instead of
computing descent direction u := H−1g, it is very common to add a regularization
term: uλ := (H+ λI)

−1
g [25, Chap. 6.3].

However, the theoretical ground of such a regularization technique is not
fully satisfactory. Basically, the main problem is not having a matrix H̄ with
close-to-zero eigenvalues: after all, if the loss landscape is very flat in a specific
direction, it is better to make a large training step. The problem lies in the
order-2 approximation of the loss made in the training step (8), as well as in
Newton’s method: instead of optimizing the true decrease of the loss, we optimize
the decrease of its order-2 approximation. Thus, the practical question is: does
this approximation faithfully model the loss at the current point θt, in a region
that also includes the next point θt+1?

To answer this question, one has to take into account order-3 information,
and regularize H̄ so that the resulting update remains in a region around θt

where the cubic term of the Taylor approximation is negligible. In practice, we
propose an anisotropic version of Nesterov’s cubic regularization [24].

4 With the notation of Section 3, Is is the set of indices p of the parameters θp belonging
to the tensor Ts, so the scalars (θp)p∈Is correspond to the scalars belonging to Ts.
So, everything is as if a specific learning rate ηs is assigned to each Ts.

10 P. Wolinski

Anisotropic Nesterov cubic regularization. By using the technique presented
in Section 3, the diagonal coefficients (D1, · · · , DS) of D(3)

θ (u) ∈ RS×S×S are
available with little computational cost. Let D := Diag(|D1|1/3, · · · , |DS |1/3) ∈
RS .

We modify the method of [24] by integrating an anisotropic factor D into
the cubic term. Thus, our goal is to minimize according to η the function
T : T (η) := −ηT ḡ + 1

2ηH̄η + λint

6 ∥Dη∥3, where λint is the internal damping
coefficient, which can be used to tune the strength of the cubic regularization.
Under conditions detailed in Appendix D, this minimization problem is equivalent
to finding a solution η∗ such that:

η∗ =

(
H̄+

λint

2
∥Dη∗∥D2

)−1

ḡ, (10)

which is a regularized version of (8). Finally, this multi-dimensional minimization
problem boils down to a scalar root finding problem (see Appendix D).

5.2 Properties

The final method is a combination of the learning rate computed in Eqn. (8)
with regularization (10):

Method 1 Training step θt+1 = θt −UtIP :Sη
∗
t , where η∗

t is the solution with
the largest norm ∥Dtη∥ of the equation: η =

(
H̄t +

λint

2 ∥Dtη∥D2
t

)−1
ḡt.

Encompassing Newton’s method and Cauchy’s steepest descent. Without the cubic
regularization (λint = 0), Newton’s method is recovered when using the discrete
partition, that is, S = P with Is = {s} for all s, and Cauchy’s steepest descent
is recovered when using the trivial partition, that is, S = 1 with I1 = {1, · · · , P}.
See Appendix C for more details.

No need to compute or approximate the full Hessian. The full computation of
the Hessian Ht ∈ RP×P is not required. Instead, one only needs to compute the
S×S matrix H̄t := IS:PUtHtUtIP :S , which can be done efficiently by computing
uTHtv for a number S × S of pairs of well-chosen directions (u,v) ∈ RP × RP .
This property is especially useful when S ≪ P . When optimizing a neural network
with L = 10 layers and P = 106 parameters, one can naturally partition the set
of parameters into S = 2L subsets, each one containing either all the weights
or all the biases of each of the L layers. In this situation, one has to solve a
linear system of size 2L = 20 at each step, which is much more reasonable than
solving a linear system of P = 106 equations. We call this natural partition of
the parameters of a neural network the canonical partition.

No need to solve a large linear system. Using Equations (8) or (10) requires
solving only a linear system of S equations, instead of P in Newton’s method.
With the cubic regularization, only a constant term is added to the complexity,
since it is a matter of scalar root finding.

Higher-Order Information for Large Structure Models 11

The interactions between different tensors are not neglected. The matrix H̄t, which
simulates the Hessian Ht, is basically dense: it does not exhibit a (block-)diagonal
structure. So, the interactions between subsets of parameters are taken into
account when performing optimization steps. In the context of neural networks
with the canonical partition, this means that interactions between layers are
taken into account during optimization, even if the layers are far from each other.
This is a major advantage over many existing approximations of the Hessian or
its inverse, which are diagonal or block-diagonal.

Invariance by subset-wise affine reparameterization. As showed in Appendix E,
under a condition on the directions ut,5 the trajectory of optimization of a model
trained by Method 1 is invariant by affine reparameterization of the sub-vectors
of parameters θIs

:= vec({θp : p ∈ Is}). Let (αs)1≤s≤S and (βs)1≤s≤S be a
sequence of nonzero scalings and a sequence of offsets, and θ̃ such that, for all
1 ≤ s ≤ S, θ̃Is

= αsθIs
+ βs. Then, the training trajectory of the model is

the same with both parameterizations θ and θ̃. This property is desirable in
the case of neural networks, where one can use either the usual or the NTK
parameterization, which consists of a layer-wise scaling of the parameters. The
relevance of this property is discussed in Appendix E.1.

Compared to the standard regularization H̄+ λI and Nesterov’s cubic regu-
larization, the anisotropic Nesterov regularization does not break the property of
invariance by subset-wise scaling of the parameters of (8). This is mainly due to
our choice to keep only the diagonal coefficients of D(3)

θ (u) while discarding the
others. In particular, the off-diagonal coefficients contain cross-derivatives that
would be difficult to include in an invariant training step.

6 Experiments

6.1 Empirical computation of H̄ and η∗

As recalled in Section 2, many works perform a diagonal, block-diagonal or block-
tridiagional [20] approximation of the Hessian or its inverse. Since a summary
H̄ of the Hessian and its inverse H̄−1 are available and all their off-diagonal
coefficients have been computed and kept, one can to check if these coefficients
are indeed negligible.

Setup. We have trained LeNet-5 and VGG-11’6 on CIFAR-10 using SGD with
momentum. Before each epoch, we compute the full-batch gradient, denoted by
u, which we use as a direction to compute H̄, again in full-batch. We report
submatrices of H̄ and H̄−1 at initialization and at the epoch where the validation
loss is the best in Figure 1a (LeNet) and Figure 1b (VGG-11’).

For the sake of readability, H̄ has been divided into blocks: a weight-weight
block H̄WW, a bias-bias block H̄BB, and a weight-bias block H̄WB. They repre-
sent the interactions between the layers: for instance, (H̄WB)l1l2 represents the
5 It holds if ut is the gradient or a moving average of the gradients (momentum).
6 VGG-11’ is a variant of VGG-11 with 1 final fully-connected layer instead of 3.

12 P. Wolinski

interaction between the tensor of weights of layer l1 and the vector of biases of
layer l2.

Results on H̄. First, the block-diagonal approximation of the Hessian is indeed
very rough, while the block-diagonal approximation of the inverse Hessian seems
to be more reasonable (at least in these setups), which has already been shown
by [20]. Second, there seem to be long-range interactions between layers, both
at initialization and after several epochs. For LeNet, all the layers (except the
first one) seem to interact together at initialization (Fig. 1a). In the matrix H̄−1

computed on VGG, the last 3 layers interact strongly and the last 6 layers also
interact, but a bit less.

According to these observations, a neural network should also be considered
as a whole, in which layers can hardly be studied independently from each other.
To our knowledge, this result is the first scalable representation of interactions
between distant layers, based on second-order information.

0 1 2 3 4
0
1
2
3
4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0
1
2
3
4

Ep. 0, W-W Ep. 73, W-W Ep. 73, W-B Ep. 73, B-B

(a) LeNet + CIFAR10.

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6
7
8

Ep. 0, W-W Ep. 4, W-W Ep. 4, W-B Ep. 4, B-B

(b) VGG-11’ + CIFAR10.

Fig. 1: Setup: models trained by SGD on CIFAR-10. Submatrices of H̄ (1st row)
and H̄−1 (2nd row), where focus is on interactions: weight-weight, weight-bias,
bias-bias of the different layers, at initialization and before best validation loss.

Results on η∗. The evolution of the learning rates η∗ computed according to
(10) in LeNet and VGG is shown in Figure 2. First, the learning rates computed
for the biases are larger than those computed for the weights. Second, even if
only the weights are considered, the computed η∗ can differ by several orders of
magnitude. Finally, the first two layers of LeNet (which are convolutional) have
smaller η∗ than the last three layers (which are fully-connected). Conversely, in
VGG, the weights of the last (convolutional) layers have a smaller η∗ than those
of the first layers.

6.2 Training experiments

To show that the projections of the 2nd and 3rd order derivatives of the loss
defined in Section 3 can be practically used to train neural networks, we test our

Higher-Order Information for Large Structure Models 13

0 1 2 3 4
layer indices (LeNet)

10 3

10 1

101

le
ar

ni
ng

 ra
te

Ep. 10 Ep. 30 Ep. 50 Ep. 70 Ep. 90

0 1 2 3 4 5 6 7 8
layer indices (VGG)

10 2

101

104
Weight
Bias

By-tensor learning rates at different epochs

Fig. 2: Setup: LeNet, VGG-11’ trained by SGD on CIFAR-10. Learning rates
η∗ computed according to (10), specific to each tensor of weights and tensor of
biases of each layer. For each epoch k ∈ {10, 30, 50, 70, 90}, the reported value
has been averaged over the epochs [k − 10, k + 9] to remove the noise.

optimization method 1 (summarized in Algorithm 1) on simple vision tasks. All
the implementation details are available in Appendix G. In particular, we have
introduced a step size λ1 that leads to the following modification of the training
step (8): θt+1 = θt − λ1UtIP :Sη

∗
t .

Algorithm 1 Informal description of the 2nd-order method described in Sec. 5.
Let ut(·) be a function computing a direction of descent ut from a gradient gt

and Ut = Diag(ut).
Hyperparameters: λ, λint

Dg,Dnewt : independent samplers of minibatches
for t ∈ [1, T] do

Zt ∼ Dg, Z̃t ∼ Dnewt (sample minibatches)
gt ← dL

dθ
(θt, Zt) (backward pass)

ut ← ut(gt) (custom direction of descent)
ḡt ← D

(1)
θt

(ut) = IS:PUt
dL
dθ

(θt, Z̃t)

H̄t ← D
(2)
θt

(ut) = IS:PUt
d2L
dθ2 (θt, Z̃t)UtIP :S

Dt ← Diag(|D(3)
θt

(ut)|1/3iii : i ∈ {1, · · · , S}) ∈ RS2

ηt ← sol. of η =
(
H̄t +

λint
2
∥Dtη∥D2

t

)−1

ḡt with max. norm ∥Dtη∥ (Method 1)
θt+1 ← θt − λUtIP :Sηt (training step)

end for

Setup. We consider 4 image classification setups:

– MLP: multilayer perceptron trained on MNIST with layers of sizes 1024,
200, 100, 10, and tanh activation;

14 P. Wolinski

– LeNet: LeNet-5 [16] model trained on CIFAR-10 with 2 convolutional layers
of sizes 6, 16, and 3 fully connected layers of sizes 120, 84, 10;

– VGG: VGG-11’ trained on CIFAR-10. VGG-11’ is a variant of VGG-11
[31] with only one fully-connected layer at the end, instead of 3, with ELU
activation function [5], without batch-norm;

– BigMLP: multilayer perceptron trained on CIFAR-10, with 20 layers of size
1024 and one classification layer of size 10, with ELU activation function.

And we have tested 3 optimization methods:

– Adam: learning rate selected by grid-search;
– K-FAC: learning rate and damping selected by grid-search;
– NewtonSummary (ours): λ1 and λint selected by grid search.

Results. The evolution of the training loss is plotted in Figure 3 for each of the 3
optimization methods, for 5 different seeds. In each set of experiments, the training
is successful, but slow or unstable at some points (e.g., see BigMLP + CIFAR-10).
Anyway, the minimum training loss achieved by Method 1 (NewtonSummary) is
comparable to the minimum training loss achieved by K-KAC or Adam in all the
series except for MLP, whose training is slower. We provide the results on the
test set in Appendix I and a comparison of the training times in Appendix M.

Some runs have encountered instabilities due to very large step sizes η∗. In
fact, we did not use any safeguards, such as a regularization term λI added to H̄,
or clipping the learning rates to avoid increasing the number of hyperparameters.
So, the training process is vulnerable to the rare situations where H̄−1 has very
small or negative eigenvalues and D has very small coefficients on the diagonal.

Extension to very large models. Since the matrix H̄ can be computed numerically
as long as S remains relatively small, this method may become unpractical for
very large models. However, Method 1 is flexible enough to be adapted to such
models: one can regroup tensors “of the same kind” to build a coarser partition
of the parameters, and thus obtain a small S, which is exactly what is needed to
compute H̄ and invert it. The difficulty would then be to find a good partition
of the parameters, by grouping all the tensors that “look alike”. We provide an
example in Appendix H with a very deep multilayer perceptron.

Choice of the partition. We propose in Appendix J an empirical study and a
discussion about the choice of the partition of the parameters. We show how it
affects the training time and the final loss.

Importance of the interactions between layers. We show in Appendix K that the
interactions between layers cannot be neglected when using our method: Method
1 outperforms its diagonal approximation on LeNet and VGG11’, showing the
importance of off-diagonal coefficients of H̄.

Higher-Order Information for Large Structure Models 15

0 50 100 150 200

10 8

10 6

10 4

10 2

100

MLP (L=4) + MNIST
0 25 50 75 100

10 4

10 3

10 2

10 1

100

VGG-11' (L=9) + CIFAR10

0 25 50 75 100

10 6

10 4

10 2

100

BigMLP (L=20) + CIFAR10
0 50 100 150 200

10 4

10 3

10 2

10 1

100

LeNet (L=5) + CIFAR10

Adam
KFAC
NewtonSummary

Fig. 3: Training curves in different setups. The reported loss is the negative
log-likelihood computed on the training set.

7 Discussion

We have shown that it is possible to obtain 2nd and 3rd order information
about the loss, and that this information can be used to construct per-layer
learning rates and an optimization method with interesting properties. However,
this optimization method can only be seen as a proof of concept, showing that
higher-order derivatives are accessible and can be used to train neural networks,
and not as a generic optimizer with excellent results on a wide range of tasks
and models. Therefore, we propose future research directions.

Convergence rate. Method 1 does not come with a precise convergence rate.
The rate proposed in Appendix F (Theorem 1) gives only a heuristic. Given
the convergence rates of Newton’s method and Cauchy’s steepest descent, we
can expect to find some in-between convergence rates. Since Cauchy’s steepest
method is vulnerable to a highly anisotropic Hessian, it would be valuable to
know how much this weakness is overcome by our method.

Accounting for the noise during training. Our optimization method remains
subject to instabilities during training, which is expected for a second-order
method, but not acceptable for the end user. In fact, it is very likely that our
algorithm would achieve better performance if it were designed from the beginning
to work in a stochastic context. Currently, it is designed as if training was done
in full batch.

16 P. Wolinski

Acknowledgments. The project leading to this work has received funding from
the French National Research Agency (ANR-21-JSTM-0001 and ANR-19-CHIA-0021).
This work was granted access to the HPC resources of IDRIS under the allocation
2024-AD011013762R2 made by GENCI. We thank Julyan Arbel, Michael N. Arbel,
Gilles Blanchard and Christophe Giraud for their support.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.

References

1. Amari, S.i.: Natural gradient works efficiently in learning. Neural Computation
10(2), 251–276 (1998)

2. Arora, S., Du, S., Hu, W., Li, Z., Wang, R.: Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural networks. In: International
Conference on Machine Learning. pp. 322–332 (2019)

3. Birgin, E.G., Gardenghi, J., Martínez, J.M., Santos, S.A., Toint, P.L.: Worst-case
evaluation complexity for unconstrained nonlinear optimization using high-order
regularized models. Mathematical Programming 163, 359–368 (2017)

4. Cauchy, A.L.: Méthode générale pour la résolution des systèmes d’équations simul-
tanées. Comptes rendus hebdomadaires des séances de l’Académie des sciences,
Paris 25, 536–538 (1847)

5. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

6. Dangel, F.J.: Backpropagation beyond the gradient. Ph.D. thesis, Universität
Tübingen (2023)

7. Dieudonné, J.: Foundations of Modern Analysis. No. 10 in Pure and Applied
Mathematics, Academic press (1960)

8. Du, S., Lee, J., Li, H., Wang, L., Zhai, X.: Gradient descent finds global minima
of deep neural networks. In: International Conference on Machine Learning. pp.
1675–1685 (2019)

9. Gill, P.E., Murray, W., Wright, M.H.: Practical optimization. Academic Press, San
Diego (1981)

10. Goldfarb, D., Ren, Y., Bahamou, A.: Practical quasi-Newton methods for training
deep neural networks. In: Advances in Neural Information Processing Systems.
vol. 33, pp. 2386–2396 (2020)

11. Gower, R., Kovalev, D., Lieder, F., Richtárik, P.: RSN: randomized subspace Newton.
Advances in Neural Information Processing Systems 32 (2019)

12. Gupta, V., Koren, T., Singer, Y.: Shampoo: Preconditioned stochastic tensor
optimization. In: International Conference on Machine Learning. pp. 1842–1850
(2018)

13. Hanzely, F., Doikov, N., Nesterov, Y., Richtarik, P.: Stochastic subspace cubic
Newton method. In: International Conference on Machine Learning. pp. 4027–4038
(2020)

14. Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: Convergence and general-
ization in neural networks. In: Advances in Neural Information Processing Systems.
vol. 31 (2018)

15. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network
representations revisited. In: International Conference on Machine Learning. pp.
3519–3529 (2019)

Higher-Order Information for Large Structure Models 17

16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

17. Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., Pennington,
J.: Wide neural networks of any depth evolve as linear models under gradient descent.
In: Advances in Neural Information Processing Systems. vol. 32 (2019)

18. Lu, Y., Harandi, M., Hartley, R., Pascanu, R.: Block mean approximation for
efficient second order optimization. arXiv preprint arXiv:1804.05484 (2018)

19. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Springer, fourth
edn. (2008)

20. Martens, J., Grosse, R.: Optimizing neural networks with Kronecker-factored
approximate curvature. In: International Conference on Machine Learning. pp.
2408–2417 (2015)

21. Mei, S., Montanari, A.: The generalization error of random features regression:
Precise asymptotics and the double descent curve. Communications on Pure and
Applied Mathematics 75(4), 667–766 (2022)

22. Nash, S.G.: Newton-type minimization via the Lanczos method. SIAM Journal on
Numerical Analysis 21(4), 770–788 (1984)

23. Nesterov, Y.: Introductory lectures on convex optimization: A basic course, vol. 87.
Springer Science & Business Media (2003)

24. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global
performance. Mathematical Programming 108(1), 177–205 (2006)

25. Nocedal, J., Wright, S.J.: Numerical optimization. Springer (1999)
26. Nonomura, T., Ono, S., Nakai, K., Saito, Y.: Randomized subspace Newton convex

method applied to data-driven sensor selection problem. IEEE Signal Processing
Letters 28, 284–288 (2021)

27. Ollivier, Y.: Riemannian metrics for neural networks i: feedforward networks.
Information and Inference: A Journal of the IMA 4(2), 108–153 (2015)

28. Pearlmutter, B.A.: Fast exact multiplication by the Hessian. Neural computation
6(1), 147–160 (1994)

29. Ren, Y., Goldfarb, D.: Tensor normal training for deep learning models. In: Advances
in Neural Information Processing Systems. vol. 34, pp. 26040–26052 (2021)

30. Sagun, L., Evci, U., Guney, V.U., Dauphin, Y., Bottou, L.: Empirical analysis of
the Hessian of over-parametrized neural networks. In: International Conference on
Learning Representations (2018)

31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

32. Wang, Y.J., Lin, C.T.: A second-order learning algorithm for multilayer networks
based on block Hessian matrix. Neural Networks 11(9), 1607–1622 (1998)

33. Yang, G., Hu, E.J.: Tensor programs iv: Feature learning in infinite-width neural
networks. In: International Conference on Machine Learning. pp. 11727–11737
(2021)

34. Yao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K., Mahoney, M.: ADAHES-
SIAN: An adaptive second order optimizer for machine learning. Proceedings of
the AAAI Conference on Artificial Intelligence 35(12), 10665–10673 (May 2021)

35. Yuan, R., Lazaric, A., Gower, R.M.: Sketched Newton–Raphson. SIAM Journal on
Optimization 32(3), 1555–1583 (2022)

36. Zhang, C., Bengio, S., Singer, Y.: Are all layers created equal? Journal of Machine
Learning Research 23(67), 1–28 (2022)

37. Zhang, G., Martens, J., Grosse, R.B.: Fast convergence of natural gradient descent
for over-parameterized neural networks. Advances in Neural Information Processing
Systems 32 (2019)

	Gathering and Exploiting Higher-Order Information when Training Large Structured Models

