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Abstract. The negative impact of label noise is well studied in classi-
cal supervised learning yet remains an open research question in meta-
learning. Meta-learners aim to adapt to unseen tasks by learning a good
initial model in meta-training and fine-tuning it to new tasks during
meta-testing. In this paper, we present an extensive analysis of the
impact of label noise on the performance of meta-learners, specifically
gradient-based N -way K-shot learners. We show that the accuracy of
Reptile, iMAML, and foMAML drops by up to 34% when meta-training
is affected by label noise on the three representative datasets: Omniglot,
CifarFS, and MiniImageNet. To strengthen the resilience against label
noise, we propose two sampling techniques, namely manifold (Man) and
batch manifold (BatMan), which transforms the noisy supervised learn-
ers into semi-supervised learners to increase the utility of noisy labels. We
construct N -way 2-contrastive-shot tasks through augmentation, learn
the embedding via a contrastive loss in meta-training, and perform clas-
sification through zeroing on the embeddings in meta-testing. We show
that our approach can effectively mitigate the impact of meta-training
label noise. Even with 60% wrong labels BatMan and Man can limit
the meta-testing accuracy drop to 2.5, 9.4, 1.1 percent points with exist-
ing meta-learners across Omniglot, CifarFS, and MiniImageNet, respec-
tively. We provide our code online: https://gitlab.ewi.tudelft.nl/
dmls/publications/batman-clr-noisy-meta-learning.

1 Introduction

Few-Shot Learning (FSL) poses the problem where learners need to quickly adapt
to new unseen tasks by using a low number of samples. Meta-learning [21,6]
emerged as a promising solution to this problem. Like humans, meta-learners
learn the information at a higher abstraction or meta-level, providing the induc-
tive bias to adapt to new tasks quickly. Among existing meta-learners, gradient-
based few-shot learners, e.g., iMAML [20] and foMAML(+ZO) [6,8], have been
shown effective to solve N -way K-shot (N,K) problems, that need to learn N
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classes for each way given only K samples each. Such few-shot learners are com-
posed of two stages, each with their own labeled support and query sets. The
meta-training stage learns a meta-model using two nested optimization loops.
The inner-loop tunes the model to a specific task via supervised learning on the
support set. The outer-loop uses the task-specific model and query set to up-
date the meta-model. The meta-testing stage verifies how well the meta-model
performs on new tasks. Using a similar structure, it uses supervised learning
to adapt the meta-model to an unseen task via a test support set. Then, it
computes the learner’s accuracy on the test query set comparing given and pre-
dicted labels. Each way’s class labels are thus crucial in both meta-training and
meta-testing.

Label noise is more the norm than a rarity and can significantly degrade the
performance of supervised learners [23]. Prior studies address label noise mainly
in classical supervised learners. In this context, samples hold labels different from
the underlying ground truth. In the context of FSL, label noise means that a
shot (example) may not correspond to the way (class) it was provided with. This
yields a degenerate N -way K-shot problem where ways become indistinguishable
since they contain shots of the same ground truth. Such noise may appear in
the support sets of meta-training and meta-testing and the query set of meta-
training.

Despite the importance of labels in meta-training and meta-testing, only a
few studies [16,14,15] address the challenge of noisy labels in FSL and only
at the meta-testing support set level. However, label noise can appear in all
support and query sets, affecting both meta-testing and meta-training, and lit-
tle is known on its impact and resolution. As the number of samples per way
is very limited, e.g., five to ten shots, the task adaptation step can be easily
over-parameterized by label noise, leading to significant degradation. Moreover,
existing meta-learners that account for label noise still require clean data to
learn a meta-objective [10,26].

In this paper, we first empirically show that gradient-based FSL methods,
i.e., Reptile [19], Eigen-Reptile [4], iMAML [20], and foMAML+ZO [8], are sig-
nificantly affected by label noise in both query and support sets during meta-
training. To counter the effect of label noise, we propose Man and BatMan,
which turn any supervised few-shot learner into a semi-supervised learner by a
novel (batch) manifold sampling and contrastive learning. Specifically, we turn
a noisy N -way K-shot problem into a self-cleansed N -way 2-contrastive shot
problem. We first augment the original shots and construct contrastive pairs,
ensuring the shots are from the same class. We then sample such pairs from the
N ways, termed manifold (Man) samples. To lower the probability of an update
seeing only noisy N -ways, i.e., overlapping classes for different ways, we draw a
batch of such Man samples, termed BatMan sampling. Combining this approach
with a self-supervised contrastive loss, we can effectively learn the embedding of
the initial model, which can then be adapted in meta-testing to a new N -way
K-shot task. The specific contributions of this paper are:
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1. An extensive study on the impact of label noise in meta-training for repre-
sentative gradient-based meta-learners.

2. A generic, self-cleansing framework, BatMan-CLR, which turns meta-learners
into semi-supervised ones by manifold sampling N -way 2-contrastive shots.

3. Extensive evaluation on four meta-learners, Reptile, Eigen-Reptile, iMAML,
and foMAML, shows nearly no performance degradation under the presence
of up to 60% label noise.

Table 1: Meta-learning algorithm’s meta-test accuracies (mean with 95% confi-
dence for 3 runs) on clean Dtest under varying levels of Dtrain label noise. Eval-
uated on increasing strenghts of label noise ϵ ∈ {0.0, 0.3, 0.6}, corresponding to
clean (0%), 30% and 60% dataset-level noise.

(a) Few-shot results with increasing noise on CifarFS [2], and Omniglot [12].

CifarFS Omniglot

Algorithm ϵ = 0.0 ϵ = 0.3 ϵ = 0.6 ϵ = 0.0 ϵ = 0.3 ϵ = 0.6

foMAML 69.5±0.26 65.2±0.27 40.3±0.21 99.3±0.04 97.7±0.07 90.3±0.15

iMAML 64.0±0.24 55.9±0.26 46.3±0.24 96.9±0.11 91.0±0.18 82.6±0.19

Reptile 65.5±0.24 58.6±0.26 51.8±0.25 92.5±0.13 79.7±0.21 71.5±0.24

Eigen-
Reptile 65.3±0.24 58.1±0.27 52.7±0.24 93.6±0.12 83.6±0.19 73.4±0.24

(b) Few-shot results under increasing noise on MiniImageNet [24].

Algorithm ϵ = 0.0 ϵ = 0.3 ϵ = 0.6

foMAML 52.2±0.22 37.1±0.18 28.2±0.15

iMAML 53.9±0.22 45.5±0.21 20.0±0.08

Reptile 54.2±0.21 27.8±0.14 24.6±0.14

Eigen-
Reptile 58.7±0.25 44.8±0.20 24.8±0.14

2 Preliminary and Related work

Preliminary on FSL. FSL considers the setting where a learned model must
adapt to new tasks leveraging only few samples. We consider the N -way K-shot
classification problem, which consists of a family of tasks, each comprised of N
classes with K samples—termed (N,K)-FSL tasks. We focus on gradient-based
meta-learners, which use an iterative two-step meta-training algorithm to find
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a meta-model parameterized by θ capable of quickly adapting towards a task-
specific parameterization ϕ. Each meta-training epoch t, starts by randomly
drawing a task T from a collection of meta-training tasks and samples two
disjoint sets, support DT

support and query DT
query, from the training data DT

train
associated with T . Next, the inner loop of meta-training transforms θt in task-
specific parameters ϕ by minimizing a supervised loss function Lsup over the
input-output pairs (Xs, Ys) ∈ DT

support. Then, the meta-training outer loop uses
ϕ, Lsup and the data (Xq, Yq) ∈ DT

query to obtain θt+1 for the next iteration. Note
that while the support set DT

support is used during an inner-loop to train for a
specific task, the query set DT

query is used in an outer-loop to learn initialization of
the meta-model. Meta-testing evaluates the ability of a trained meta-model with
parameters θ∗ to adapt to new tasks. Analogous to meta-training, meta-testing
first randomly selects a task Ttest for testing and samples DTtest

support and DTtest
query

from the associated test data Dtest. Next, the adaptation step uses DTtest
support to

fine tune θ∗ into task-specific parameters ϕ∗. Finally, ϕ∗ is tested on the query
set (Xq, Yq) ∈ DTtest

query by comparing its predictions Ŷq against known labels Yq.
Gradient-based meta-learners. MAML [6], the father of gradient-based

meta-learners, updates the meta-model via gradient descent through gradient
descent. As this operation is very resource intensive and sensitive to hyperparam-
eters [6,20,18], many works propose approximations outperforming the original
MAML. iMAML and foMAML+ZO approximate the meta-gradient with respect
to θt by leveraging the first-order gradient on Dquery with respect to ϕu. This
drops the need for gradient descent through gradient descent. iMAML considers
that it can compute the meta-gradient using more adaptation steps and weight
regularization. foMAML+ZO assumes that the higher-order meta-gradient com-
ponents can be ignored altogether. Reptile drops Dquery during meta-training
by estimating the meta-gradient by stepping towards ϕu to find θt+1. Eigen-
Reptile further decomposes parameterization of the inner-learners optimization
path from ϕ0 = θt to ϕu following u optimization steps, i.e., [ϕ0, ϕ1, . . . , ϕu],
and steps towards the direction with the largest variance.

Label noise in FSL. Label noise poses a major challenge to meta-learners,
especially in the absence of clean data that can be used as ground truth during
meta-training. Although a large collection of work on robust supervised learn-
ing exists [25,13,28], these are not directly applicable to meta-learners due to
the limited number of samples. Related studies [26,15,10,14,16,14] mainly fo-
cus on distilling the label noise in meta-testing by explicitly studying the noise
patterns [26,14,15], using soft-relabeling [16] through clustering or re-weighting
suspicious samples [10] based on additional clean data. To our best knowledge,
Eigen-Reptile [4] is the only study that addresses noisy training data by updating
only along the highest variance direction. Such an approach lacks generalization
to other meta-learners. Alternatively, UMTRA [9] and CACTUS [7] assume la-
bels are unavailable during meta-training and propose to syntheticly generate
support and query sets from N×K images from pre-generated clusters of training
data. Although these methods show promising results, they have considerably
larger compute and memory requirements for training on considerably larger
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batch sizes (256+) and are unable to exploit (noisy) label information during
(meta-)training.

The impact of label noise. We motivate the need for noise resilience
in FSL via an empirical study on three representative datasets, CifarFS [2],
Omniglot [11], and MiniImageNet [24], in a (5, 5)-FSL setting with a query
set of 15 samples per class. We consider symmetric label noise and train four
gradient-based meta-learners, i.e., Reptile (Rp) [19], Eigen-Reptile (ER) [4], fo-
MAML+ZO (fM) [8], and iMAML (iM) [20], using hyperparameters comparable
to the ones in the corresponding paper (details in Section 4). We remark that we
assume that meta-learners have no access to clean data—including validation
data, while original works report accuracies of meta-validated models, which
are expected to score higher. Table 1 shows the meta-test accuracy across 2048
(5, 5)-FSL tasks of 15 samples obtained by each meta-learner under 0% (no),
30%, and 60% corrupted training labels. Across datasets, meta-learners show
significant performance degradation as the noise ratio increases. With CifarFS,
accuracy drops across all meta-learners on average by 10.1% and 27.4% un-
der 30% and 60% corrupted labels, respectively. Omniglot shows similar trends
but more limited in amplitude, with 8.1% and 17.0% average degradation. This
is due to the fact that the Omniglot dataset is easier to learn (without noise
all meta-learners achieve above 90% accuracy). Lastly, MiniImageNet shows a
lower initial accuracy without label noise due to its more challenging nature,
with a mean deterioration of 15.6% at 30% noise, and close to random guessing
(20%) at 60% noise. Although ER is the sole meta-learner that explicitly aims
to counter noise, it is not always the most robust one. Under moderate noise,
i.e., 30%, foMAML+ZO is the least affected. Only on CifarFS and 60% noise, ER
is the least affected with only a 0.9% margin. More in general, Reptile, ER and
iMAML show a higher but almost linear impact of noise, while foMAML+ZO
degrades less with 30% noise but gets much worse under 60% noise. Overall,
the results underline the need for better noise resilience across all considered
meta-learners.

3 Proposed method

The core challenge of dealing with noise is that labels lose meaning and misguide
meta-learners. This challenge is amplified in the FSL setting as the limited num-
ber of samples (shots) in each class (way) makes it harder to isolate noise from the
signal in each class. In other words, the few clean samples —those corresponding
to the original uncorrupted class— may not be enough to appropriately guide
the gradient descent algorithm. Thus, our approach aims to build clean ways and
shots—so that each way is more likely to have samples with valid ground truths
for FSL. Specifically, the core of the proposed Man sampling is to use data aug-
mentation to create replacement shots for each way rather than leveraging other
shots of the same way. This guarantees that the underlying ground truth label
for the shots of way is effectively the same. BatMan sampling further introduces
batches to increase the likelihood of observing all N classes in a single inner-loop
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Fig. 1: Illustration of meta-learning with BatMan on a noisy 3-way 2-shot few-
shot learning task, i.e., a (3, 2)-FSL. The task is provided to the learner as
containing three classes (ways): red, purple, and yellow, with two supporting
samples (shots) each. Colors indicate the true underlying class (ground-truth),
while lightning bolts indicate shots provided with a mismatched label (i.e., noisy)
(way 1 shot 1, and way 3 shot 2). Steps: 1○ Man sampling (Algorithm. 2) creates
a batch of (3, 1)-FSL manifold samples; 2○ Augment creates semi-supervised (3,
2)-FSL sub-tasks via independent random augmentations; 3○ a contrastive loss
jointly optimizes all sub-tasks via (Pos)itive and (Neg)ative pairs; 4○ trained
meta-model θ∗ is meta-tested in a supervised way by appending a zero-ed out
linear layer.

step. Figure 1 shows the four main steps of our proposed method: 1○ resampling,
either with Man or BatMan, 2○ shot augmentation with random independent
transformations, 3○ ‘semi’-supervised meta-training with a contrastive loss, and
4○ classification of new tasks (meta-testing) leveraging a zeroing trick. One ma-
jor benefit of our approach is that these steps can be incorporated into existing
meta-learning algorithms to achieve label noise robustness.

Step 1○– 2○: (Batched) Manifold sampling and data augmentation. We
start with an (N,K)-FSL problem with noisy labels and observe that we can
frame it as a set of (N, 2)-FSL problems. For each (N,K)-FSL, we methodically
select and augment one shot from each N ways, constructing a new N -way 2-shot
problem. More formally, each adapted FSL sample is created by independently
augmenting sub-sampled shots,

Mi =

N⋃
j=1

{(
Augment(Xy

j ), Augment(X
y
j )
)
| Xy

j ∼ DT
(·), y = j)

}
,

where Xy
j represents a random shot the jth way of a task’s set DT

(·), and Aug a
random augmentation function. As a result, we end up with two samples with
the same label for each way in each constructed Manifold FSL problem—i.e.,
the augmentation for each sampled way’s shot. Since we sample N observations



BatMan-CLR: Noise-Robust Meta-Learning for Few-Shot Tasks 7

from all N × K samples in Dquery, we end up with up to N actual classes, as
selected shots from different ways may share their underlying ground-truth class
due to label noise. We coin this sampling approach Manifold (Man) sampling.

Algorithm 1 BatMan-CLR inner-
loop style for gradient-based meta-
learners.
Require: Inner-learner parameters ϕ,

support set Dsupport, query
set Dquery, inner-learning rate
α, BatMan sample hyper-
parameter N , inner-loop steps
u.

1: function BatMan-CLR
2: for Bi ∈ [BatMan(Dsup, N)]ui=1 do

▷ 3○ Joint inner-loop Manifold
optimization.

3: ϕ← ϕ− α
|Bi|
∇ϕ

|Bi|∑
i=1

Lcon(ϕ,Mi)

4: Bquery ← BatMan(Dquery, N)
▷ 3○ Joint outer-loop Manifold
optimization.

5: return ϕ,
∑

Mj∈Bquery

Lcon(ϕ,Mj)

Algorithm 2 Pseudocode for BatMan
Sampling.
Require: Augment input augmentation

function, meta train/test set
D, number of manifold batches
B.

1: function BatMan
2: M = {}
3: for j ∈ [1, . . . , B] do

▷ 1○ Sample single shot each way.
4: X ← rand ((X, y) ∈ D | y = j)

▷ 2○ Augment selected samples.
5: M ←M ∪ {(Augment(X), j)}21
6: return M

We propose a Batched Manifold, as shown in Figure 2, sampling as an ex-
tension of Man sampling, where multiple Man samples are grouped to employ
more samples in a single step. Multiple ‘sub-problems’ can be jointly optimized
by leveraging a batch of individually created Man samples. More formally, this
allows for the joint optimization of,

1

N

∑
Mj∈BatMan(D∗,B)

Lcon(ϕi,Mj),

for both the support and query samples, using a BatMan batch size of B, as
label information is only leveraged to construct the manifold samples. Herein,
Lcon is the contrastive loss used to optimize a learner ϕ· on the sampled manifold
samples Mj jointly, and BatMan is a function that returns a batched manifold
sample for a given support/query set and batch size, as seen in Figure 2). Ad-
ditionally, this increases the likelihood of considering all the provided queries’
shots together while calculating meta-gradients.

We illustrate this process in Figure 1 on a 3-way 2-shot FSL task with label
noise. The samples Xq,r are ordered such that each row index q represents a
‘way’ and a column index r a corresponding shot. The underlying classes—i.e.,
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ground-truth labels—in the few-shot task are illustrated using different colors.
The corrupted two shots are highlighted with lightning bolts: a red one X1,1 is
provided as green, and a purple X3,2 one appears yellow. The (3, 2)-FSL task in
this example is thus provided to the learner to discern between ‘green’, ‘purple’,
and ‘yellow’ samples. A Man sample is generated by sampling 1 shot from each
of the 3 ways and augmenting it twice. To speed up the process, the Man sampler
can sample augmentations from a set of pre-fetched augmentations. For BatMan,
these steps are repeated to create a batch of such manifold sub-tasks.

In the presence of noise, class clean-up is necessary as shots from two sepa-
rate ways may share the same ground-truth class. Suppose in the simplest case
with 2 classes and a probability p = 1−ϵ that a sample has a ground truth label,
the classes resulting from the Man sampling process belong to different classes
with probability p2 + (1 − p)2, as either both lack noise or both are noisy. On
the contrary, the 2 samples belong to the same class with probability 2p(1− p).
In general, with N classes, there are N ! combinations in which the Man samples
actually correspond to the N different classes while there are NN combinations
to select the N samples, with replacement. Let us consider the case of symmet-
ric noise, where a sample is mislabeled with probability (1 − p)/(N − 1). The
probability of obtaining a clean selection of classes can then be posed as the
probability of obtaining one of the N ! combinations in which this occurs. To
represent each possible selection we employ permutation matrices. Let P i

N be
the N ×N ith permutation matrix out of the N ! such matrices. For instance, in
the N = 3 case, we have 6 different permutation matrices, i.e.,1 0 0

0 1 0
0 0 1

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 , . . . ,

0 0 1
0 1 0
1 0 0

 .

Let us also define the N × N matrix Q with entries qij such that qii = p and
qij = (1 − p)/(N − 1) for i ̸= j. The probability of obtaining one of these
valid permutations under Man sampling can thus be obtained as the trace of the
matrix P i

NQ. As a result, the probability of obtaining a clean selection of ways is
given by:

∑N !
i=1 trace(P i

NQ), considering all possible valid sample selections that
lead to a set with N different classes. As this probability becomes smaller with
increasing label noise, BatMan sampling helps by introducing additional samples
that increase the likelihood of observing all N classes in a single meta-epoch.

Step 3○: Semi-supervised meta-training with contrastive loss. Although
re-sampling allows for likely valid (N, 2)-FSL sub-problems, which exact classes
they contain remains unknown. These sub-tasks can be considered as semi-
supervised, as there are now at most N classes in each manifold. To allow for
(meta-)learning with the semi-supervised sub-problems, we incorporate a con-
trastive loss to allow for joint optimization of potentially semantically misaligned
sub-tasks. Note that we artificially build positive and negative pairs from the
sampled augmentations obtained via steps 1○ – 2○. These positive and negative
pairs can be optimized under a contrastive learning strategy. We use the Decou-
pled Contrastive Loss (DCL) [27] as contrastive loss function, an adaptation of
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the infoNCE loss [5],

LDCL = − 1

N

N∑
i=1

log
(
exp(⟨z(1)i |z(2)i ⟩)

)
−

log

 2N∑
j=1

1

[
zj /∈ {z(1)i , z

(2)
i }

]
exp(⟨z(1)i |zj⟩)

 , (1)

where ⟨z|z′⟩ is the (normalized) cosine-similarity between embedding vectors
z, z′, and 1 [ · ] the indicator function returning 1 when its clause [ · ] holds else 0.
By design, the decoupled contrastive loss is particularly well-suited for smaller
batch sizes, although alternative contrastive losses can replace it. Once samples
are augmented and BatMan sampling applied, the batches are used in the meta-
training step where the embeddings z are computed and contrasted using a
contrastive loss.

Step 4○: Classification of new tasks. The meta-model θ∗ trained using
the contrastive loss produces embeddings instead of class logits as output. To
solve this, we append the meta-model with a fully connected layer C0 = (W , b)
with W = 0 and b = 0. This approach decouples the embedding learning
from the classification task. Similar to [8], this allows us to treat the model
as a semi-supervised meta-learned backbone. The resulting meta-model θ∗′ =
C0 ◦ θ∗ can then be treated as a supervised learner utilizing the cross-entropy
(CE) classification loss. We found that applying the Zeroing Out trick on the
classification layer significantly impacts the learner’s performance because it
allows leveraging the optimized embedding from the pre-trained meta-model θ∗.
This is because the stochastic gradient descent will directly use the embeddings
as activations without noise introduced by randomly initialized weights.

For conceptual clarity, the algorithm above differs slightly in two points from
our implementation of BatMan-CLR, prioritizing efficiency during dataload-
ing while training. First, we change the order of operations from constructing
manifolds and then augmenting them to creating augmentations and sampling
(batches of) manifolds. This approach enables parallel pre-fetching of FSL tasks
with A augmentations for each way’s shots. By creating a fixed set of augmenta-
tions, the BatMan sub-sampler can randomly sample N×K A(A−1)

2 ! Man-samples
for each FSL problem. Second, all samples of a BatMan sample are forwarded
as a single batch in our BatMan-CLR implementation for each inner-loop and
meta-adaptation step—line 3–6 and line 7–8 in Figure 1, using masking and vec-
torization. Through these design considerations, the BatMan-CLR meta-learners
can efficiently perform each (meta-)adaptation step.

4 Evaluation Results

We present the effectiveness of BatMan-CLR in enhancing the noise resilience
for a total of four gradient-based meta-learners, Eigen-Retipe, Reptile, iMAML,
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Table 2: Meta-test accuracy with 95th Confidence Interval (acc±CI95 ) of
Meta-Pretrained models (5, 5)-FSL with varying degrees of label noise ϵ ∈
{0.0, 0.3, 0.6} during training.

(a) Few-shot results with increasing noise on CifarFS [2], and Omniglot [12].

CifarFS Omniglot

Algorithm Sampler ϵ=0.0 ϵ=0.3 ϵ=0.6 ϵ=0.0 ϵ=0.3 ϵ=0.6

foMAML BatMan 66.6±0.167 65.2±0.17 64.8±0.16 98.2±0.07 98.2±0.06 98.0±0.07

Man 66.2±0.16 64.8±0.17 64.0±0.17 98.1±0.06 98.1±0.06 98.1±0.06

iMAML BatMan 64.2±0.185 62.7±0.25 62.9±0.20 97.5±0.08 98.1±0.07 98.3±0.06

Man 62.8±0.17 62.6±0.17 61.7±0.17 97.8±0.08 98.2±0.07 98.2±0.06

Reptile BatMan 66.5±0.17 65.0±0.17 64.1±0.17 97.9±0.07 97.3±0.08 96.2±0.10

Man 61.8±0.18 62.0±0.18 61.4±0.17 97.8±0.07 97.8±0.07 97.7±0.07

Eigen-
Reptile

BatMan 66.3±0.17 64.4±0.17 63.8±0.18 92.6±0.13 93.0±0.12 93.2±0.12

Man 58.0±0.25 57.9±0.24 58.1±0.24 93.7±0.12 93.9±0.11 94.0±0.11

(b) Few-shot results under increasing noise on MiniImageNet [24].

MiniImageNet

Algorithm Sampler ϵ=0.0 ϵ=0.3 ϵ=0.6

foMAML BatMan 50.4±0.22 50.5±0.22 50.4±0.21

Man 51.6±0.22 51.4±0.22 51.2±0.22

iMAML BatMan 50.9±0.15 50.5±0.15 50.5±0.14

Man 50.1±0.21 50.3±0.22 50.2±0.22

Reptile BatMan 53.2±0.16 52.8±0.15 52.1±0.15

Man 50.8±0.20 51.6±0.21 51.9±0.20

Eigen-
Reptile

BatMan 51.5±0.22 51.2±0.22 51.5±0.22

Man 48.5±0.20 48.7±0.20 49.2±0.20

and foMAML, under varying levels of label noise. We include Eigen-Reptile
specifically as a noise-aware FSL [4].

Setup. We consider three data sets in a (5, 5)-FSL setting: Omniglot, Ci-
farFS, and MiniImageNet. We emulate training label noise by adding symmetric
uniform random noise to Dtrain with 30% and 60% corrupted labels on the un-
derlying datasets, i.e., prior to the few-shot tasks are randomly sampled. For
instance, for experiments with 60% noise, we randomly select 60% samples of
each class in Dtrain and assign them to a different class within the same split with
equal probability. Reported meta-test results are on clean data, to evaluate the
learners under a base-case scenario. The support set size is 5 (15), and query set
size is 15 (Reptile learners), following [6,19]. All experiments ran on machines
with 128 GB RAM, dual 16-Core AMD CPUs, and an Nvidia A4000 16GB GPU.
We used cross-entropy loss for supervised meta-training and meta-testing. Each
learner uses a ConvNet-4 architecture with 64 filters and a linear layer with out-
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put dimension R128. On Omniglot, the number of filters was increased to 128.
iMAML uses weight decay centered around θt [20] and foMAML+ZO resets its
final layer to zero at the beginning of each inner-loop. Learners were trained
with the original papers’ hyper-parameters, except for the following changes.
Eigen-Reptile and Reptile run with 7 inner-loop steps, iMAML with 12 (16 for
Omniglot), and foMAML with 5. iMAML’s proximal decay was set to 0.5 (2.0
for Omniglot). Each learner was meta-tested after 5K, 15K (10K), 15K (10K),
training outer-loop steps (iMAML), respectively, for Omniglot, CifarFS, and
MiniImageNet. To augment the samples before Manifold sampling, we use a set
of independently random augmentations to each image. On CifarFS and Mini-
ImageNet, we use the augmentations proposed in [1], consisting of: cropping,
random horizontal flip, random color jitter, random grayscale, random blurring,
and normalization. For Omniglot, we follow the augmentation scheme in [3], ap-
plying one of: random crop, affine transform, or perspective transform to the
source image. During meta-testing, the task-specific model is fine-tuned for 10
steps (Omniglot and CifarFS) and 20 steps (MiniImageNet). When applying
Man-CLR or BatMan-CLR, we keep the same model sizes with the addition
of a larger output dimension: R128 rather than RN . The batch size of BatMan
is 5 for all inner-loop adaptations, resulting in mini-batching [19] for (Eigen)
Reptile, and 15 for the meta-gradient calculation of iMAML and foMAML. For
each task’s support set, we create five random augmentations for each shot. Each
query sample is augmented twice, allowing the inner loop to sample more varied
tasks. Results are averaged over 3 runs, using 2048 tasks sampled from Dtest.

Meta-test accuracy. Table 2 summarizes the BatMan-CLR results on noisy
CifarFS, Omniglot, and MiniImageNet with both Man and BatMan under 0%
(no), 30% and 60% noisy training labels. One can easily observe that BatMan-
CLR clearly strengthens the resilience of all learners to noise across all three
datasets. Only marginal decreases in testing accuracy occur under increasing
label noise. On Omniglot when encountering the label noise in meta-training,
all learners can still learn effective initial models for task adaptation, which for
most is around 97% and slightly worse for Eigen-Reptile. All learners display an
accuracy under label noise similar to that without label noise. On CifarFS, we
observe similar results, where most learners reach a test accuracy between 62–
64%, which remains almost constant under increasing noise levels. Finally, even
on MiniImageNet, the most difficult dataset of the three, consisting of more di-
verse classes and larger inputs, the testing accuracy of all meta-learners is limited
to drops in the range between 0.5–1 percent points under BatMan-CLR. These
results strongly validate the effectiveness of BatMan, which self-cleanses the
shots by creating contrastive pairs and ways in batched Man samples. The only
exception is Man sampling on Eigen-Reptile on Omniglot and MiniIMageNet,
where we observe a minor increase of 0.3–0.7 percent points under 60% noise.
We speculate that this is because Eigen-Reptile’s meta-gradient approximation
is performed by selecting the optimization direction with the highest variance.
However, a high noise level introduces a high variance in the optimization di-
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Table 3: Meta-test accuracy with 95th confidence intervals (acc±CI95 ), meta-
trained on (5, 5)-FSL tasks with label noise ϵ ∈ {0.0, 0.3, 0.6} on Omniglot
and CifarFS, and different Inner/Outer-loop samplers: Random Manifold (R),
and BatMan (B). SSL represents a self-supervised meta-trained model trained
without information. Results from Table 2 are highlighted.

(a) Omniglot MAML-like.

Alg. ϵ B/B B/R R/B R/R

fo
M

A
M

L SSL 94.7±0.11

0.0 98.2±0.07 94.1±0.12 98.3±0.05 94.5±0.12

0.3 98.2±0.06 96.9±0.09 98.4±0.05 96.7±0.09

0.6 98.0±0.07 97.9±0.07 98.4±0.05 98.0±0.07

iM
A

M
L SSL 97.0±0.09

0.0 97.5±0.08 94.9±0.11 98.1±0.07 94.5±0.12

0.3 98.1±0.07 96.5±0.10 98.3±0.07 96.7±0.09

0.6 98.3±0.06 97.8±0.08 98.2±0.07 97.9±0.07

(b) Omniglot Reptile-like.

Alg. ϵ B/- R/-

R
ep

ti
le SSL 96.0±0.10

0.0 97.9±0.07 65.3±0.29

0.3 97.3±0.08 69.5±0.27

0.6 96.2±0.10 73.1±0.27

E
ig

en
-

R
ep

ti
le

SSL 95.1±0.13

0.0 92.6±0.13 82.5±0.21

0.3 93.0±0.12 71.9±0.27

0.6 93.2±0.12 73.5±0.26

(c) CifarFS MAML-like.

Alg. ϵ B/B B/R R/B R/R

fo
M

A
M

L SSL 52.8±0.16

0.0 66.6±0.17 58.4±0.24 62.0±0.23 58.0±0.24

0.3 65.2±0.17 59.7±0.23 61.8±0.24 59.7±0.23

0.6 64.8±0.16 60.5±0.24 61.1±0.24 60.5±0.24

iM
A

M
L SSL 54.5±0.24

0.0 64.2±0.19 58.0±0.24 60.9±0.30 56.9±0.29

0.3 62.7±0.25 59.2±0.24 60.3±0.23 58.3±0.29

0.6 62.9±0.20 59.7±0.24 60.3±0.29 60.0±0.29

(d) CifarFS Reptile-like.

Alg. ϵ B/- R/-
R

ep
ti

le SSL 55.0±0.17

0.0 66.5±0.17 53.9±0.22

0.3 65.0±0.17 55.3±0.22

0.6 64.1±0.17 56.4±0.22

E
ig

en
-

R
ep

ti
le

SSL 54.5±0.16

0.0 66.3±0.17 57.2±0.27

0.3 64.4±0.17 57.8±0.23

0.6 63.8±0.18 58.8±0.23

rections, making it harder to select an appropriate direction even with the use
of Man. By employing the less noisy BatMan sampling strategy, the learner has
higher chances to see more diverse shots and can better select an optimization
direction, achieving performance closer to Reptile with Man sampling.

In terms of comparison between BatMan and Man, there is a visible advan-
tage in using BatMan, especially on the more challenging MiniImageNet and
CifarFS. This suggests that taking steps with more information, as in BatMan,
provides greater benefits than taking a larger number of simpler steps, as in
Man. Zooming into the performance of different learners on CifarFS and Mini-
ImageNet, the difference in testing accuracy between Man and BatMan is smaller
with foMAML and iMAML, compared to Reptile and Eigen-Reptile. This can be
explained by the fact that in our experiments, the MAML style learners use Bat-
Man to calculate the meta-gradient, resulting in more informative meta-updates.
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Reptile-style learners do not calculate their meta-gradients using query data but
directly using the inner-optimization direction.

Ablations. We consider three types of ablation studies using the Omniglot
and CifarFS (and MiniImageNet) datasets. First, we consider the impact of su-
pervised task generation by training meta-learners in a self-supervised learning
(SSL) setting. Similar to UMTRA [9] and CACTUS [7], we construct (5, 5/15)-
FSL tasks (MAML/Reptile) by drawing 5 random images from Dtrain. To con-
struct the required shots, K + Q augmentations are created and divided into
support and query sets, with |Dsupport| = K and |Dquery| = Q. Table 3 provides
the results in the rows indicated with SSL. We use the same hyper-parameters
and loss function as for BatMan-CLR, with the meta-batch size increased to
25 (from 5), so that all learners see a comparable number of expected unique
ways per meta-update. Although this approach shows similar performance to
BatMan-CLR on Omniglot (see Table 3a and b), on CifarFS (see Table 3c and
d) there is a considerable gap of 11–13.8 percent points compared to BatMan-
CLR (gray columns). Indicating that BatMan-CLR benefits from performing a
joint optimization of more ways and shots in the inner-loop.

Second, we replace BatMan with a random manifold batch sampler (Rand)
to investigate the impact of the BatMan sampling strategy. This Rand-sampler
differs from BatMan by uniformly sampling from the FSL task, i.e., allowing
multiple instances from the same way to be selected in a single random manifold.
We pair Rand (R) with BatMan (B) sampling in different configurations for the
inner and outer-loop, marked as (inner)/(outer) in the column names in Table 3a
and c. Reptile and Eigen-Reptile only use a support set during meta-training,
so we only replace their inner-sampling strategy (see Table 3b and d). We keep
the same hyper-parameters as used in the corresponding BatMan-CLR setting.
In general, the learners trained with random sampling in the outer-loop show
an increased accuracy as the noise level increases. Learners show an increase
in accuracy of around 2–8% and 2–3% on Omniglot and CifarFS, respectively,
comparing the ϵ = 0 (no) and ϵ = 0.6 noise levels, whereas BatMan sees a slight
drop. Even so, it stays ahead of Rand across the board. This shows that BatMan
has the capability to self-clean. An interesting exception is Omniglot combined
with Eigen-Reptile when increasing the noise level from 0 to 0.3 (Table 3b). This
is expected as higher noise levels increase the expected number of unique ground-
truth classes in a task, yielding fewer false negatives in each Rand manifold
during contrastive learning. Replacing only the inner or outer-loop sampler for
iMAML and foMAML with Rand, we see that the contribution of the inner-loop
is less significant than the outer-loop. This shows that BatMan-CLR is also an
effective strategy when replacing only the outer-loop (R/B).

Lastly, we consider the impact of the meta-testing label noise on meta-learned
supervised and BatMan-CLR models. While meta-train label noise exists at the
dataset level, meta-testing lies at the task level. Task-level noise is added by
corrupting an original (5, 5)-FSL problem, where a fraction (ϵtest) of shots from
each way within the FSL problem is remapped to a different class. As such, the
meta-test error models class confusion—e.g., for an (3, ∗)-FSL problem a fraction
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Fig. 2: Meta-test accuracy of supervised and BatMan-CLR meta-trained models
with different meta-learners, training, and testing noise levels. Results shown
meta-trained with dataset-level label noise (ϵ ∈ {0.0, 0.3, 0.6}) and meta-testing
label noise (ϵ ∈ {0.0, 0.2, 0.4}) at task-level.

(ϵtest) of class ‘car’ gets re-labeled as ‘truck’, ‘truck’ to ‘plane’, and ‘plane’
to ‘car’. We consider different noise levels during both meta-training (ϵtrain ∈
{0.0, 0.3, 0.6}), and meta-testing (ϵtest ∈ {0.0, 0.2, 0.4}). Here, we evaluate the
impact of meta test-noise under supervised and BatMan-CLR. In Figure 2, we
show the accuracy curves of the learners under varying noise configurations.

Generally, in Figure 2, we observe a negative trend across all configurations as
both meta-train and meta-test noise increase. Additionally, the impact of meta-
training noise is more pronounced in the baseline learners, compared against the
BatMan-CLR learned results—consistent with the results from Table 1 and Ta-
ble 2. Moreover, this performance difference remains stable as testing noise in-
creases, resulting in a larger vertical spread for the baseline results than for the
BatMan-CLR results, corresponding with improved robustness against train-
ing label noise. An exception to this is the performance of Reptile paired with
BatMan-CLR with an ϵtrain = 0.6, where the learner’s meta-testing accuracy de-
grades around the level of its baseline counterpart with training noise of ϵ = 0.3.

On the CifarFS and (Omniglot) datasets—top and (middle) row in Figure 2—
the BatMan-CLR meta-learned models showcase a reduced sensitivity to testing
noise compared to their supervised counterparts. We see that the BatMan-CLR
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meta-learned models at ϵtest = 0.2 have an accuracy loss reduction of 2.1–5.7%
(4.5–16.0%) and at ϵtest of 4.6–5.5% (6.1–25.6%) compared to the supervised
learned models. Nonetheless, the BatMan-CLR learners see a degradation as the
meta-testing noise increases, of 5.5–6.6% (0.5–31.1%) at ϵ = 0.2 and 18.6–19.7%
(12.6–45.0%) with ϵ = 0.4. MiniImagenet results (bottom row in Figure 2) show
that the BatMan-CLR meta-learned models under test noise perform similarly
to the cleanly pre-trained meta-learner. Whereas the supervised baseline models
with ϵtrain > 0 on MiniImagenet show a drastic deterioration in performance, the
BatMan-CLR trained models perform on-par with the baseline trained without
meta-training noise.

5 Conclusion

Motivated by the ubiquitous presence of label noise, we empirically unveil the
impact of label noise on existing few-shot meta-learners, with a particular fo-
cus on noise in meta-training. As the number of shots per way is low, the label
noise can be exceedingly detrimental to meta-learners and highly challenging to
address. To enhance the resilience against label noise for few-shot learners, we
propose BatMan—a generic approach that turns supervised few-shot tasks into
semi-supervised ones. BatMan is capable of self-cleansing noisy N -way K-shots
instances by (i) batch manifold sampling that re-constructs N -way 2-contrastive-
shots via augmentation and (ii) introducing the DCL [27] contrastive loss. Our
results on three datasets, Omniglot, CifarFS, and MiniImageNet, show that Bat-
Man can maintain the effectiveness of few-shot learners independent of noise
levels, i.e., recouping up to 30% accuracy degradation (20% on average under
60% noise).

As future work, we aim to explore further (label noisy) meta-testing paired
with BatMan-CLR and adding class awareness [9,22]. Herein, the impact of
alternative augmentation strategies can also be explored. Further exploring the
utility of BatMan-CLR under the meta-testing setting would be valuable, as well
as considering the incorporation of other loss functions, such as ProtoCLR [17].
Lastly, we leave the consideration of other types of noise for future work, such
as out-of-domain noise, asymmetric noise, or task-level corruption [26].
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