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Abstract. Deep learning has achieved substantial success in the field of
semi-supervised medical image segmentation. Current researches mainly
concentrate on enhancing pseudo-label generation process and refining
consistency regularization architectures. However, the edge information,
which is essential for medical image segmentation but scarce in semi-
supervised scenario, is often overlooked. To address this problem, we
present an edge attention mean teacher (EAMT) method that goes be-
yond general edge extraction to better leverage the edge information
for improved segmentation performance. Particularly, based on a novel
definition of edge, we propose a new edge extraction method to boost
the edge extraction capability of model. Furthermore, we elaborately
design an edge-aware loss function that uses the extracted edges as addi-
tional supervision for labeled data and as masks for unlabeled data. The
EAMT method is characterized by its capability to extract and leverage
robust edge information to promote the learning process for both labeled
and unlabeled data. We evaluate the segmentation performance of the
proposed EAMT method on two public 3D datasets (LA and Pancreas-
CT). Experimental results demonstrate that EAMT achieves superior
segmentation performance compared to several state-of-the-art methods
in semi-supervised medical image segmentation.

Keywords: Semi-supervised learning · Medical image segmentation ·
Edge attention · Mean teacher.

1 Introduction

Medical image segmentation, such as computed tomography (CT) and magnetic
resonance imaging (MRI), is essential for many clinical applications [8, 23, 36].
Recent years have witnessed the remarkable success of deep learning in fully
supervised scenario. These supervised methods heavily rely on a large num-
ber of annotated medical images to guarantee their segmentation performance.
However, well annotation of medical images is time-consuming. Semi-supervised
learning aims at learning robust models with only a little labeled data along
with a large amount of unlabeled data, making it more data-efficient.



2 Kaiwei Sun, Luhan Wang �, and Jin Wang

(a) visualization of edge regions (b) number of bias pixels

Fig. 1. Edge information is crucial to medical image segmentation. In figure(a), red
pixels mean the predictions while white pixels are the ground-truth. The predictions
on bias areas marked with red rectangles are key to differentiate the segmentation
performance. Figure(b) shows the number of the bias pixels predicted by MT method
and our proposed EAMT method.

The core issue in semi-supervised learning is how to effectively utilize un-
labeled data. Currently, two mainstream techniques, consistency regularization
and pseudo-labeling, are widely recognized for their excellent performance. Most
semi-supervised methods incorporate dual networks to get additional features
from unlabeled data [8]. Mean Teacher (MT) [18] serves as a foundational bench-
mark for consistency regularization, and its variants [19, 25, 33] have a significant
impact on medical image segmentation. Another approach is pseudo-labeling,
which focuses on enhancing the quality of pseudo-labels [24] . Despite the promis-
ing outcomes of these methods, they usually overlook the edge information,
which is crucial for accurate segmentation of medical images, as depicted in Fig.
1(a). However, the edge regions, which usually encompass the ground-truth and
the background, pose a significant challenge for model to accurately segment.
In computer vision, conventional wisdom has it that the shallow layers of deep
convolutional neural network (CNN) architectures are rich in edge information.
Moreover, due to the robust feature extraction abilities of attention modules,
numerous studies have integrated attention blocks into their works to bolster
the extraction of edge information [20, 35]. Owing to the accessibility of a large
number of labeled medical images, these supervised methods have successfully
harnessed edge information. However, edge information has not yet been effec-
tively adapted to the semi-supervised learning domain.

In the context of semi-supervised medical image segmentation, maximizing
the use of edge information can be achieved by prompting the model to capture
extensive edge cues from labeled data, which can then be utilized to inform
the segmentation of unlabeled data. We accomplish this by introducing a novel
definition of edge and proposing the EAMT method. Specifically, the EAMT
method is built on a typical MT architecture and employs the V-Net [14] as
backbone. We incorporate an edge attention module within the top two layers of
the encoder. Furthermore, we introduce an edge extraction method to get edge
from labeled data, which is further utilized as additional supervision for labeled
data and as masks for unlabeled data. We also develop a novel edge-aware loss
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function that leverages edge information to enhance learning from labeled data
and imposes edge consistency to promote learning from unlabeled data. As shown
in Fig. 1(b), our proposed EAMT method obtains much less predicted bias pixels
than MT. We further evaluate the performance of the proposed EAMT method
on two benchmark 3D datasets in semi-supervised medical image segmentation:
LA dataset and Pancreas-CT dataset.

In summary, our work makes the following contributions:

– Based on the MT architecture, we propose the EAMT method that aims at
leveraging edge information to enhance segmentation performance.

– We present a novel definition of edge, which goes beyond the general edge
extraction to gain more robust edge information.

– Based on the new definition of edge, we develop an edge extraction module
that leverages attention mechanism to extract rich edge information.

– We design an edge-aware loss function that utilizes edge information to pro-
mote learning from unlabeled data, and uses the edge information as addi-
tional supervision to strengthen learning from labeled data.

– We validate our proposed EAMT method on two public benchmark datasets,
and the experimental results show that EAMT outperforms several state-of-
the-art methods, demonstrating the effectiveness of our method.

2 Related Work

2.1 Semi-Supervised Medical Image Segmentation

Consistency regularization based methods are prevalent in semi-supervised med-
ical image segmentation. These methods build upon the smoothness assumption
that minor perturbations should not significantly alter the outputs of model.
The pioneering work MT [18] adds noise to teacher network and utilizes an ex-
ponential moving average (EMA) to update the parameters of teacher network,
which is formulated as:

θ′t = λθ′t−1 + (1− λ)θt, (1)

where θ′t denotes the parameters of the teacher network at time step t, θt denotes
the parameters of the student network, and λ is the smoothing hyperparameter
that regulates the degree of smoothing between the new and old parameters.
Another common approach is pseudo-labeling, where a segmentation network
first generates predictions for the unlabeled data, and these predictions are sub-
sequently used as pseudo-labels to guide the supervised learning process [31].

Whether employing consistency regularization or adopting pseudo-labeling,
mainstream methods in semi-supervised medical image segmentation adopt a
structure with dual networks to better leverage unlabeled data. For instance,
in the work of ABD [5], an adaptive bidirectional displacement mechanism is
utilized to mitigate the limitations that mixed perturbations impose on two sub-
nets. The MCF framework [24] allows two networks to learn from each other by
a mutual correction mechanism. The BCP [1] uses two networks and a bidirec-
tional copy-paste technique to learn common features from unlabeled data. The
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UAMT [33] explores uncertainty information, which improves the performance
of general MT. Luo et al. [13] use two different types of subnets to obtain more
robust information. The SAMT-PCL [3] constructs one encoder with dual de-
coders to obtain predictions and uncertainty maps from different perspectives.
Despite their success, those methods usually overlook the valuable edge infor-
mation. Our proposed EAMT places greater emphasis on edge information and
employs a robust attention module to enhance the model’s capability of edge
feature extraction.

2.2 Edge-Related Works

Edge information, which is widely recognized as a critical feature in computer
vision, is extensively utilized in supervised medical image segmentation. In the
ET-Net [35], an edge guidance module is incorporated to extract edge details
from the encoder, and this extracted edge information is subsequently utilized
in a weight aggregation module. In the DCAN [2], a CNN is employed to handle
substantial changes in appearance and produce detailed probabilistic maps with
high accuracy. The EANet [20] designs an edge attention module to enhance the
edge information extraction ability of model. Cheng et al. [4] utilized directional
feature maps to tackle the blurred margins problem. In their work, Yang et al.
[32] developed an improved active contour model, which is capable of extracting
robust edge information from images. Despite the advancements, edge extraction
strategies prevalent in supervised scenario have not been extended to the semi-
supervised medical image segmentation domain.

2.3 Attentions in Computer Vision

Attention mechanisms have demonstrated remarkable efficacy in Natural Lan-
guage Processing (NLP) tasks and have been increasingly integrated into Com-
puter Vision (CV) tasks. The applications of attention in CV can be categorized
into three primary categories: spatial attention, channel attention, and hybrid
attention. In CNNs, each layer generates a feature map. Spatial attention fo-
cuses on learning a weight for each pixel across all channels within the feature
map. The non-local neural networks [22] calculate the response at a specific loca-
tion by taking a weighted sum of the features. The SMSA module [17] captures
spatial information from each feature channel, thereby improving the network’s
capacity to discern fine details. The channel attention approach involves learning
distinct weights for each channel. In the milestone work SENet [9], inter-channel
relationships are modeled to adjust the feature responses on a per-channel basis.
The ECA-Net [21] improves the structure of SENet and gets lower model com-
plexity. In BA-Net [34], a bridge attention module is proposed, which amplifies
channel attention through the integration of feature information from various
convolutional layers. The hybrid attention, which represents a synergistic appli-
cation of different attentions, has been explored in numerous studies [6, 17, 26].
Attention mechanisms have exhibited extraordinary feature extraction capabil-
ities; however, simply stacking these attentions is far from being effective. Our
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proposed edge attention module strategically employs channel attention solely
in the shallow layers of the encoder.

Fig. 2. Architecture of the proposed EAMT method.

3 Methodology

3.1 Overview of EAMT Method

In the semi-supervised medical image segmentation scenario, we assume that the
training data consists of a labeled dataset DL = (xL

i , y
L
i )

N

i=1, and an unlabeled
dataset DU = (xU

i )
N+M

i=N+1. The number of labeled images is much less than
that of unlabeled images, i.e. N ≪ M . Here, xi ∈ RH×W×D represents the
medical image, yi ∈ {0, 1}H×W×D is the corresponding ground-truth. In our
proposed EAMT method, we integrate the extracted edge ei ∈ {0, 1}H×W×D into
labeled dataset, and reformulate the labeled dataset as DL = (xL

i , y
L
i , e

L
i )

N

i=1.
The proposed EAMT method is built upon the MT architecture, with a well
designed edge attention module equipped within both teacher network fT (·)
and student network fS(·). Moreover, a novel edge-aware loss function is also
integrated into the EAMT. The architecture of EAMT is shown in Fig. 2.

During the training phase, both labeled and unlabeled data are fed into the
student network. While only the unlabeled data is fed into the teacher network.
The outputs of two networks include segmentation prediction ŷ and edge pre-
diction ê:

ŷLS , ê
L
S , ŷ

U
S , ê

U
S = fS((x

L, xU )), (2)

ŷUT , ê
U
T = fT (x

U + ϵ), (3)

where the subscripts S and T denote the student network and teacher network,
respectively, ϵ represents the random noise (perturbations).
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The loss function of EAMT comprises both supervised loss and unsupervised
loss. And the loss function is utilized to update the parameters of student network
while parameters of teacher network are updated by EMA (see Eqn.1).

Fig. 3. Improved network structure.

3.2 Edge Extraction Module

Robust edge information extraction holds a core position in our proposed EAMT.
The design of edge extraction module comprises two parts: a novel definition of
edge and an edge attention block.

Definition of edge. The general edge is defined as the outermost one pixel
along the boundary, containing only a few pixels. Consequently, the edge ex-
tracted by conventional methods tends to be sparse and is very sensitive to
noise. To achieve more robust edge extraction, we present a novel edge defini-
tion. Specifically, instead of viewing the outermost one pixel as edge, we define
the outermost boundary as bi and consider its surrounding 26 pixels as edge.
The new definition of edge is explained in Fig.4(a) and formulated as follows:

bi(p) =
(
1 ∈ N (p)

)
∧
(
0 ∈ N (p)

)
∧
(
xL
i (p) == 1

)
, (4)

eLi (p) = bi(p) ∨
(
∃p′∈N (p)bi(p

′)
)
, (5)

where p and p′ represent a pixel, xL
i (·) denotes the value of the pixel in the image,

eLi (·) denotes the value of the pixel in the edge, bi signifies the general edge, and
bi(·) indicates the value of the pixel, N (·) refers to the 26 neighbouring pixels of
a given pixel. By considering more neighbouring pixels along the boundary, the
newly defined edge can encompass more pixels along the boundary, improving
the robustness of edge. The difference between general edge and edge extracted
by our method is shown in Fig.4(b).
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(a) explanation of new edge definition (b) visualization of extracted edge

Fig. 4. A novel definition of edge. In figure (a), each element in the cube represents a
pixel. The value of this central orange pixel in the edge map is determined by all 27
pixels within a larger cube. The left side of figure (b) shows the general edge extracted
by conventional method, the outermost edge contains only 240 pixels over 10000 pixels,
while the right side of figure (b) depicts the edge extracted by our method, which
contains 719 pixels (more than 5%).

Edge attention. Inspired by the success of attention mechanism, we propose to
displace the standard residual connections between the first two layers of encoder
and last two layers of decoder with an edge attention module that comprises two
channel attention (CA) blocks, which consists of three layers: an average pooling
layer, a linear layer with ReLU, and a linear layer with Sigmoid. The average
pooling layer ensures that every pixel of a channel contributes to the weight
of this channel, and then two linear layers are used to calculate the weights of
channels, which are also viewed as attention scores. The calculation of channel
attention block is formulated as:

Y = X× σ (Linear2(ReLU(Linear1(AvgPool(X))))) , (6)

where X is the input of channel attention block, Y is the output of channel
attention block, σ(·) represents the sigmoid function, Linear(·) denotes a linear
transformation, and AvgPool(·) means average pooling.

3.3 Edge-aware Loss Function

The edge extraction module can extract robust edge information. Subsequently,
another core issue is how to leverage the edge information to promote the learn-
ing. To this end, we elaborately design an edge-aware loss function, which is a
combination of supervised loss Lsup and unsupervised loss Lunsup:

Loverall = Lsup + αLunsup, (7)

where α is a balancing factor that controls the weight of inherent consistency.
For labeled data, we use the combination of Dice loss [14] and cross entropy

loss to supervise the model training, as done in many medical image segmentation
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researches [1, 24, 33]. Beyond that, we utilize edge information extracted from the
labeled data as additional supervision. Thus, the loss function on labeled data
is formulated as follows:

Lsup(ŷ
L
S , y

L, êLS , e
L) = 0.5

(
Ldice(ŷ

L
S , y

L) + Lce(ŷ
L
S , y

L)
)
+ βLedge, (8)

Ledge =
SUM

((
(êLS − yL) · eL

)2)∑P
p=1 e

L(p)
, (9)

where ŷLS is the predicted segmentation, yL is the ground-truth, êLS is the edge
prediction, eL is the edge, Ldice(ŷ

L
S , y

L) denotes the Dice loss, Lce(ŷ
L
S , y

L) repre-
sents the cross entropy loss, β is a balancing factor, Ledge is edge loss, function
SUM(·) is the sum of the pixel-level values in a feature map, P represents the
total number of pixels in the image, and p signifies an individual pixel within
that image, the calculation of eL(p) is shown in Eqn.5. From Fig.3, we can see
that the edge output is extracted from the penultimate decoder, which obtains
edge information from the edge attention module. Therefore, the loss Ledge helps
to update the parameters of edge attention module. Additionally, to avoid re-
dundant computations, the loss Ledge only takes into account the edge regions
that are crucial for medical image segmentation.

For unlabeled data, we calculate the consistency loss between student network
and teacher network. Specifically, the consistency loss consists of segmentation
consistency loss Lcon and edge consistency loss Ledge_c. The loss function Lunsup

on unlabeled data is formulated as:

Lunsup(ŷ
U
S , ŷ

U
T , ê

U
S , ê

U
T , e

L) = Lcon(ŷ
U
S , ŷ

U
T )

+γLedge_c(ê
U
S , ê

U
T , e

L), (10)

Lcon(ŷ
U
S , ŷ

U
T ) =

(
ŷUS − ŷUT

)2
, (11)

Ledge_c(ê
U
S , ê

U
T , e

L) =
SUM

((
(êUS − êUT ) · eL

)2)∑P
p=1 e

L(p)
, (12)

where γ is also a balancing factor, ŷ represents the segmentation prediction, the
subscripts S and T denote student network and teacher network, respectively,
and the superscript U means unlabeled data. From Eqn.12, we can see that
the edge eL extracted from the labeled data are utilized as masks for unlabeled
data. By imposing edge consistency between student and teacher networks, the
learning from unlabeled data can leverage the edge information from labeled data
to achieve better segmentation. By utilizing the edge extracted from labeled data
as masks, a synergistic learning framework between labeled and unlabeled data
is created, where edge information from labeled data can promote learning from
unlabeled data and unlabeled data can provide more details about edge regions
to help robust edge extraction on labeled data.
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4 Experiments

4.1 Datasets

Two public datasets are used in our experiments, including the LA dataset [30],
which contains 100 3D MRI images, and the Pancreas-CT dataset [15], which
comprises 82 CT scans. For fair comparison, we preprocess the two datasets fol-
lowing the previous works [1, 16]. We also compare the segmentation performance
of our proposed EAMT method with that of several state-of-the-art methods for
semi-supervised medical image segmentation.

4.2 Implementation and Experimental Setting

Implementation Configurations. Our proposed EAMT is implemented us-
ing PyTorch and trained on an NVIDIA 4070 GPU. We employ the 3D V-Net
architecture as the backbone, which is a de facto choice for many medical image
segmentation tasks. We utilize the SGD optimizer with a weight decay of 0.0001
and a momentum factor of 0.9. The initial learning rate is set to 0.01, and we
adopt a polynomial decay strategy to adjust the learning rate at each iteration.

For the LA dataset, we set the maximum number of iterations to 15k. We
set the batch size to 8, comprising 4 labeled and 4 unlabeled samples. For the
Pancreas-CT dataset, we set the maximum iteration to 10k, and a batch size
of 4, with 2 labeled and 2 unlabeled samples. The parameter α in Eqn. 7 is
set following the work in [18]. The parameter β in Eqn. 8 is setting to 0.1
for Pancreas-CT and 0.5 for LA dataset, besides, every 1.5k iterations, we will
multiply this parameter for the LA dataset by 0.5. And γ in Eqn. 10 is set to
1.0 for both two datasets.

Following previous works in semi-supervised medical image segmentation [1,
5, 10, 33], our experiments were conducted with two typical semi-supervised set-
tings, i.e. training with 10% labeled data and training with 20% labeled data.
Four metrics were adopted to evaluate the segmentation performance: Dice sim-
ilarity coefficient (Dice), Jaccard similarity coefficient (Jaccard), 95% Hausdorff
Distance (95HD), and Average Surface Distance (ASD).

Fig. 5. Visualization of segmentations on LA dataset. The blue line represents pre-
dicted segmentation and the red line means the ground-truth. The bias areas are high-
lighted by red rectangles. We also count the FP and FN pixels in each slice.
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Table 1. Segmentation Results on LA dataset

Method Volumes Used Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

Labeled Unlabeled

V-Net 8(10%) 0 82.74 71.72 3.26 13.35
V-Net 16(20%) 0 86.03 76.06 3.51 14.26
V-Net 80(100%) 0 91.65 83.82 1.60 5.28

MT 8(10%) 72 83.50 72.72 2.67 12.74
UAMT 8(10%) 72 84.25 73.48 3.36 13.84
DTC 8(10%) 72 87.42 78.06 2.40 8.37
CAML 8(10%) 72 87.54 77.95 2.57 10.76
SASSNet 8(10%) 72 86.79 76.90 4.10 14.56
EAMT(ours) 8(10%) 72 89.93 81.86 1.74 7.02

UMCT 16(20%) 64 89.36 81.01 2.60 7.25
MT 16(20%) 64 88.22 79.20 2.73 10.75
UAMT 16(20%) 64 88.59 79.67 2.14 8.51
DTC 16(20%) 64 89.42 80.98 2.10 7.32
UPC 16(20%) 64 89.65 81.36 2.15 6.71
MC-Net 16(20%) 64 90.34 82.48 1.77 6.00
CAML 16(20%) 64 90.71 83.07 1.59 6.08
SASSNet 16(20%) 64 89.17 80.69 2.86 8.57
EAMT(ours) 16(20%) 64 90.95 83.51 1.71 6.61
↑: the higher the better; ↓: the lower the better; best two results are marked in bold.

4.3 Experimental Results

Segmentation Results on LA Dataset. We compared the segmentation
performance of our proposed EAMT method with that of the benchmark semi-
supervised learning method MT [18] and several state-of-the-art methods, includ-
ing UMCT [28], UAMT [33], DTC [12], UPC [11], MC-Net [27], CAML [7] and
SASSNet [10]. The segmentation results of our proposed EAMT and the com-
paring methods are presented in Table 1, where the best two results in terms of
four evaluation metrics are marked in bold. Overall, in 10% labeled data setting,
EAMT achieves the best segmentation performance in terms of four evaluation
metrics. The proposed EAMT improves the Dice from 82% to almost 90% with
only 10% labeled data, and yields nearly identical Jaccard scores compared with
fully supervised learning methods when using 20% labeled data. In both 10%
and 20% settings EAMT outperforms several state-of-the-art semi-supervised
methods, which demonstrates the superiority of our method. Moreover, EAMT
significantly outperforms MT which is the base architecture of EAMT, indicating
its effectiveness in leveraging edge information. In Fig. 5, we have visualized the
segmentation results on LA dataset. Compared with other edge-cutting methods,
the proposed EAMT method can yield more accurate segmentation, especially
for complex region areas.
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Table 2. Segmentation results on Pancreas-CT dataset

Method Volumes Used Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓

Labeled Unlabeled

V-Net 6 0 58.41 46.81 18.43 50.03
V-Net 12 0 71.63 56.81 8.67 19.54
V-Net 62 0 82.46 69.65 1.42 6.76

UMCT 6 56 67.74 53.59 7.41 16.34
MT 6 56 65.13 51.98 7.03 23.06
UAMT 6 56 66.44 51.02 5.19 20.42
DTC 6 56 67.58 52.79 6.16 15.57
FUSSNet 6 56 68.32 54.01 5.85 17.46
EAMT(ours) 6 56 70.20 55.51 2.57 14.17

UMCT 12 50 76.42 62.98 5.40 14.34
MT 12 50 75.82 62.03 3.37 13.09
UAMT 12 50 78.26 62.72 3.09 10.43
DTC 12 50 77.19 63.75 4.25 9.36
FUSSNet 12 50 79.25 63.71 3.47 9.52
EAMT(ours) 12 50 79.60 66.57 2.18 8.22

Segmentation Results on Pancreas-CT Dataset. We compare the pro-
posed EAMT method with several state-of-the-art and milestone works, includ-
ing UMCT [28], MT, UAMT [33], DTC [12], and FUSSNet [29]. The segmenta-
tion results in terms of four evaluation metrics are reported in Table 2. Overall,
the proposed EAMT method yields the best segmentation results over four eval-
uation metrics in both semi-supervised settings, which indicates the effectiveness
of our proposed EAMT method in semi-supervised medical image segmentation.
The visualization of segmentation results is shown in Fig.6. It can be observed
that as the number of training iterations increases, the model’s segmentation
performance on edges improves progressively.

Fig. 6. Visualization of segmentations on Pancreas-CT dataset with different iterations.
The blue line represents predicted segmentation and the red line means the ground-
truth. The bias areas are highlighted by red rectangles. We also count the FP and FN
pixels in each slice.
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4.4 Ablation Study

To verify the effectiveness of our EAMT, we conducted several ablation experi-
ments. The experimental settings were kept consistent: two datasets (20% labeled
and 80% unlabeled).

Table 3. Segmentation results with different attention block numbers

Block Numbers dataset Dice(%)↑ Jaccard(%)↑

0 LA dataset 89.63 81.37
1 LA dataset 90.16 82.28
2 LA dataset 90.95 83.51
3 LA dataset 90.47 82.74
4 LA dataset 90.71 83.12

0 Pancreas-CT 77.41 64.13
1 Pancreas-CT 78.32 65.10
2 Pancreas-CT 79.60 66.57
3 Pancreas-CT 77.63 64.60
4 Pancreas-CT 78.30 64.95

Table 4. Segmentation results with different types of attention block

attention types dataset parameters↓ dice(%)↑

Spatial Attention LA dataset 1372 89.05
Channel Attention LA dataset 374 90.95

Spatial Attention Pancreas-CT 1372 77.51
Channel Attention Pancreas-CT 374 79.60

The Effect of Edge Attention. We conducted experiments on the edge at-
tention module in two dimensions: the number of attention blocks and the types
of attention modules. Firstly, we have conducted with different numbers, the
results are presented in Table 3. We can see that setting the number to 2 yields
the best performance, and an increased number of attention blocks does not di-
rectly lead to better performance. This can be attributed to the fact that a single
layer attention block is insufficient for capturing robust edge information, while
3 and 4 layers tend to capture more abstract features rather than concrete edge
details. Furthermore, we have investigated the impact of different types. The
segmentation results are reported in Table 4. We can observe that the channel
attention block not only has fewer parameters but also outperforms the spatial
attention block, making it a more suitable choice for our application.
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Edge Extraction. In order to verify the robustness of our edge extraction
method, we conducted experiments on two datasets. From Table 5, we can ob-
serve that our designed edge extraction method obtains superior segmentation
performance than the general edge extraction method. Furthermore, from Fig.7,
we can see that our proposed EAMT method produces more accurate segmen-
tation over the complex edge regions, which also demonstrates the robustness of
our edge extraction method.

Table 5. Segmentation results with different edge extraction methods

method dataset Dice(%)↑ Jaccard(%)↑

general edge LA dataset 89.32 80.93
our edge LA dataset 90.95 83.51

general edge Pancreas-CT 70.67 56.85
our edge Pancreas-CT 79.60 66.57

(a) segmentation on LA dataset (b) segmentation on Pa dataset

Fig. 7. Visualization of segmentations using general edge and our proposed new edge.

Edge-aware Loss Function. In order to verify the importance of edge-aware
loss functions, we conducted four ablation experiments. The results are pre-
sented in Table 6. We can observe that both types of edge-aware loss functions
perform effectively, yielding improved segmentation performance compared to
the baseline model, which does not utilize edge-aware loss functions. Moreover,
the combination of the two edge-aware functions results in an augmented effect.
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Table 6. Segmentation results with different loss functions

used loss functions dataset Dice(%)↑ Jaccard(%)↑

Ledge Ledge_c

× × LA dataset 88.84 80.47
✓ × LA dataset 89.87 81.80
× ✓ LA dataset 89.70 81.67
✓ ✓ LA dataset 90.95 83.51

× × Pancreas-CT 77.63 64.42
✓ × Pancreas-CT 78.68 65.64
× ✓ Pancreas-CT 78.28 64.92
✓ ✓ Pancreas-CT 79.60 66.57

5 Conclusion

The edge attention mean teacher (EAMT) method presented in this study aims
to enhance the performance of semi-supervised medical image segmentation by
effectively harnessing edge information. Our approach introduces several innova-
tive methods and modules to achieve this goal. We define a novel edge segmen-
tation task that can be addressed by a plug-and-play edge attention module.
Notably, we introduce a new edge extraction method and an edge-aware loss
function, which allow us to utilize the edge extracted from labeled data for both
supervising the learning process on labeled data and guiding the learning process
on unlabeled data. The experimental results on the LA dataset and Pancreas-
CT dataset substantiate the effectiveness of our EAMT method in leveraging
edge information. This work underlines the significance of edge information in
the field of semi-supervised medical image segmentation. And future work will
focus on optimizing these methods.
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