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Abstract. Deep neural networks (DNNs) deployed in a cloud often al-
low users to query models via the APIs. However, these APIs expose the
models to model extraction attacks (MEAs). In this attack, the attacker
attempts to duplicate the target model by abusing the responses from
the API. Backdoor-based DNN watermarking is known as a promising
defense against MEAs, wherein the defender injects a backdoor into ex-
tracted models via API responses. The backdoor is used as a watermark
of the model; if a suspicious model has the watermark (i.e., backdoor), it
is verified as an extracted model. This work focuses on object detection
(OD) models. Existing backdoor attacks on OD models are not applica-
ble for model watermarking as the defense against MEAs on a realistic
threat model. Our proposed approach involves inserting a backdoor into
extracted models via APIs by stealthily modifying the bounding-boxes
(BBs) of objects detected in queries while keeping the OD capability. In
our experiments on three OD datasets, the proposed approach succeeded
in identifying the extracted models with 100% accuracy in a wide variety
of experimental scenarios.
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1 Introduction

Deep neural networks (DNNs) often operate in a cloud and offer prediction APIs.
Clients can obtain model predictions on their data via the APIs. However, such
DNNs are vulnerable to model extraction attacks (MEAs) [25], whose objective
is to extract a function-similar duplicate of a target model. High-performance
DNNs constitute valuable intellectual properties. Additionally, some APIs (e.g.,
OpenAI API) explicitly prohibit using API responses to train competing models
[1]. Thus, AI service providers need to address the threat posed by MEAs.

Model watermarking has garnered considerable attention as a countermeasure
against MEAs [26, 29]. Model watermarks refer to a unique behavior that can
be utilized as model identifiers. Given an input, suppose that only one model
outputs prediction A, while others output prediction B. Then, the model be-
comes identifiable owing to the unique prediction to the input. In recent years,
backdoor-based watermarking has been substantially explored [4, 11, 12, 14, 19,
23]. In this approach, the defender injects a backdoor into extracted models
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Fig. 1: Proposed approach overview. The poisoning phase distorts (e.g., expands)
the BBs of the objects containing a predefined trigger to inject a backdoor into
extracted models. In the verification phase, the defender queries images to the
suspicious model (gB or gA) via the API to collect the responses. If the suspicious
model contains the backdoor, which is a model behavior outputting distorted
BBs only on objects with the trigger, the model is judged as an extracted model.

via the API responses to queries. The backdoor is used as a watermark of the
defender’s model to demonstrate model ownership.

This work focuses on backdoor-based watermarking for object detection (OD)
models. Although backdoor attacks on OD models have been proposed [6, 7, 16–
18], they are not applicable for model watermarking as the defense against MEAs
due to the following reasons. (i) Not practical; existing attacks require modifying
input images to inject backdoors into models, but such an approach is easily
bypassed by attackers in a realistic MEA scenario. (ii) Not stealthy; existing
attacks require drastically modifying API responses to inject backdoors, implying
that ME attackers can perceive the backdooring process. (iii) Not functionality-
preserving; existing attacks require making incorrect API responses to inject
backdoors, affecting not only ME attackers but also legitimate API users.

Herein, we present a backdoor-based watermarking approach termed bounding-
box watermarking (BBW) to address the aforementioned three challenges, whose
overview is figured in Fig. 1. Given a queried image, BBW intentionally poisons
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(e.g., expands) object BBs while maintaining the OD functionality. Poisoning is
only applied to objects with a predefined trigger. The poisoned API responses
induce a backdoor to extracted models. To demonstrate model ownership ver-
ification, the model owner verifies if a suspicious model contains the intended
backdoor, which is a behavior unique to extracted models that returns distorted
BBs only to objects with the predefined trigger. In our experiments1, BBW iden-
tified extracted models with 100% accuracy in many experimental scenarios. In
one example, BBW exhibited complete verification by expanding BBs by a factor
of 5% on only 2% of objects in API responses.

Contribution We are the first to present a backdoor-based watermarking
approach as a defense measure against MEAs on OD models. The approach is
practical, stealthy, and functionality-preserving.

2 Background

Object Detection (OD) Given an input image, an OD model outputs the
object category and the coordinates of the BB for each object in the image. Let
x ∈ X be an input image of the size W (width) ×H (height) and f : X → OL

be an object detector, where O is an object space. The prediction f(x) = {olf}l
is a set of the objects detected in x by f . Each object olf is denoted as

olf = (clf , bb
l
f ), (1)

where clf ∈ N denotes the object category, and bblf = (alf , b
l
f , w

l
f , h

l
f ) ∈ R4

denotes the BB coordinate. Here, (alf , b
l
f ) denotes the center coordinate of the

BB, and (wl
f , h

l
f ) denotes the width and height of the BB.

Model Extraction Attack (MEA) Suppose that a target model is operating
in a cloud and offering a prediction API. MEAs aim at extracting the target
model [25]. The attacker queries a substitute set {xi}i to the target model f
via the API and obtains the annotations {f(xi)}i on the set. Subsequently,
the attacker trains a model using the annotated substitute data {(xi, f(xi))}i.
Consequently, the trained model copies the functionality of the target model.

DNN Watermarking DNN watermarking employs a unique behavior of a
DNN as a model indicator [26, 29]. Adi et al. [4] leveraged backdoor attacks
for DNN watermarking. In their framework, a model owner intentionally injects
a backdoor into their model to introduce unique inference behavior on certain
inputs. Then, the unique behavior is used as a model watermark.

1 The source code is available at https://zenodo.org/records/15641464
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3 Related Work

3.1 DNN Watermarking as a Defense against MEAs

Recent studies have further utilized the backdoor-based watermarking as a de-
fense against MEAs. The owner of an attack target model (i.e., defender) designs
the API so that the extracted models contain a backdoor. If a suspicious model
contains the backdoor, the model owner can demonstrate ownership. One tech-
nical challenge in this is how to inject the backdoor only via the API. The
approaches are split into the following two categories according to the poisoning
targets: model poisoning and response poisoning. The approaches in the former
category intentionally poison the target model to make it contain a backdoor
that is transferable to the extracted models [12, 14]. Jia et al. [12] proposed
EWE, with the objective of making it difficult for attackers to extract the target
model without its backdoor. Li et al. [14] adopted a similar strategy, where they
embedded the knowledge of defender-specified external features into a target
model as a backdoor. Whereas, the approaches in the response poisoning cate-
gory do not poison target models but API responses [19, 23]. Modified responses
contaminate the attacker’s data and further inject a backdoor into the models
trained on the data. For example, MAD [19] perturbs the classification probabil-
ities of responses such that the training of extracted models is disturbed by the
perturbed responses. Our proposed approach presented below employs response
poisoning. Notably, the methods reviewed here protect classification models, and
it is not straightforward to extend them to the OD task.

3.2 Backdoor Attacks on Object Detectors

Here, we review existing work of backdoor attacks against OD and then discuss
their applicability to backdoor-based watermarking against MEAs.

Existing Attacks Chan et al. [6] proposed BadDet, wherein the attacker puts
a trigger patch on images and trains a backdoored model so that the trigger
achieves attack objectives, such as erasing BBs or flipping object categories. Luo
et al. [16] adopted a similar approach. Chen et al. [8] extended BadDet; they
realized a clean-label backdoor attack by adjusting the position of a trigger patch
put on images. Ma et al. [18] showed the effectiveness of the image scaling attack
[28] on OD models. Ma et al. [17] and Chen et al. [7] demonstrated a backdoor
attack with a natural trigger. For example, Ma et al. [17] treated persons wearing
a specific blue T-shirt as a trigger. Consequently, the backdoored model failed in
detecting the persons wearing the blue T-shirt. All the above-mentioned works
primarily aim at attack demonstration. With regard to backdoor attacks on OD
for defense purposes, no study has been conducted except by Snarski et al. [22].
However, their watermarking target is not a model but an OD dataset. The
model trained on the watermarked dataset is induced to contain a backdoor,
facilitating the verification of data ownership.
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Table 1: Summary of existing backdoor attacks on OD models and their appli-
cability to model watermarking. P, S, and FP respectively denote practicality,
stealth, and functionality preservation.

Literature Poisoning Target Properties
Input (x) Label (c) BB (bb) P S FP

Chan et al. [6] ✓ ✓ ✓
Luo et al. [16] ✓ ✓
Chen et al. [8] ✓ ✓ ✓
Ma et al. [18] ✓ ✓ ✓
Ma et al. [17] ✓ ✓
Chen et al. [7] ✓ ✓ ✓
Snarski et al. [22] ✓ ✓ ✓
This work ✓ ✓ ✓ ✓

Applicability of Existing Attacks to Watermark Table 1 summarizes whether the
existing backdoor attacks are applicable to backdoor-based watermarking for the
defense purpose against MEAs. Specifically, we discuss if they hold the following
properties: (P) practicality—the attack can inject a backdoor (i.e., watermark)
into extracted models in a realistic threat model, (S) stealth—the attack is
undetectable by ME attackers, and (FP) functionality preservation—the attack
does not affect legitimate API users.

Backdoor attacks involving “input” modification are impractical, such as the
patch attacks [6, 8, 16, 22] and the image rescaling attack [18], because ME at-
tackers have clean images. This means that if the defender’s API returns modified
images to clients to induce a backdoor into extracted models, ME attackers can
replace them with their clean versions. Additionally, the backdoor attacks in-
volving drastic changes in outputs, such as changing object categories or erasing
BBs [6, 7, 16, 17], are not stealthy. ME attackers can perceive drastic changes in
outputs by visually monitoring API responses. Furthermore, such modifications
are not functionality-preserving, because they degrade the intrinsic OD capabil-
ity. Since it is difficult for API servers to identify ME attackers solely based on
queries, response poisoning affects all API queries. Thus, poisoning must have
the least impact on legitimate users. Our approach addresses these challenges.

4 Problem Formulation

Assumption The defender (i.e., owner/victim) makes an OD model f available
via an API, where f is subject to the target of MEAs. To a queried image x, the
API returns the five-dimensional vectors of the detected objects, each of which
comprises the object label c and the BB coordinate bb (Eq. 1). We assume that
the internal information of models cannot be accessed by any outsider.

Threat Model The attacker’s goal is to obtain an extracted model g whose func-
tionality is sufficiently similar to that of the target model f . They cannot acquire
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the training data of f , but they can collect substitute data of the target domain.
They obtain the OD results on the data by querying f and treat them as the
ground truth (GT) for training the extracted model g. Once g is trained, the
attacker releases the API of the model because, as noted by Szyller et al. [23],
it has the greatest impact on the attack target. This threat model is the same
as Szyller et al. [23] except for the recognition task (classification → OD).

Defense by Watermarking The defender’s goal is to plant a watermark into
extracted models so that the defender can claim that an MEA is performed. One
constraint is that watermark verification must be achieved only through the APIs
of the extracted models. To explain more formally, let fw ∈ F be a watermarked
model and fn ∈ F be a nonwatermarked model, where F denotes the space
of functions. For watermark verification, the defender defines the following two
items: key-set Dkey, an image set used for the verification, and a verification
logic S. Specifically, S outputs a scalar score on any set of OD predictions. The
logic S is said to be verifiable if it satisfies the following condition:

S(fw(Dkey)) > S(fn(Dkey)) for ∀fw,∀fn ∈ F (2)

The defender must design an API such that any watermarked extracted model
is verifiable by S on Dkey.

5 Proposed Approach

This section describes our proposed defense approach, BBW, which comprises
two phases, poisoning and verification. The overview is figured in Fig. 1.

5.1 Poisoning Phase

This phase modifies (i.e., poisons) responses to queries to induce a backdoor into
extracted models. As a preparation, the defender first defines a trigger, which is
an object characteristic. We refer to the objects containing the trigger as trigger
objects. Our trigger selection strategy is presented at the end of this section.
Once the defender’s API receives an input x ∈ X , the target model f executes
OD. Thereafter, poisoning is only applied to the trigger objects. This procedure
is represented with a poisoner P : O → O as P (o), where o is a trigger object.

We present a concrete poisoning procedure. Given a trigger object whose BB
is predicted as (a, b, w, h) by the target model f , let a poisoned BB be denoted
as (ā, b̄, w̄, h̄). The poisoner P modifies the predicted BB as

w̄ = δw · w (δw ∈ (0,W/w]) and h̄ = δh · h (δh ∈ (0, H/h]), (3)

while ā = a and b̄ = b. This procedure is visualized in Fig. 2b. We call the
parameter δ∗ poisoning magnitude.
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(a) Clean (b) Rescale (δ > 1.0)

Fig. 2: Visualization for BB poisoning

Significance Our watermark with the proposed poisoning pattern can satisfy
the three properties mentioned above, i.e., practicality, stealth, and functionality
preservation. First, our approach works under the realistic threat model assumed
in Sec. 4 because the poisoning is not applied to queried images but to responses.
Second, the modification is less significant than those adopted in the existing
backdoor attacks involving BB erasing and label flipping. Lastly, the modification
is functionality-preserving. Suppose that δw and δh are both greater than 1.0.
As BBs still surround objects, the OD functionality will be kept. In this context,
the rescale-based poisoning with a magnitude greater than 1.0 is one of the most
functionality-preserving poisoning strategies.

5.2 Verification Phase

This phase verifies if a suspicious model g is an extraction of the target f . In
short, we leverage the watermark such that backdoored extracted models output
distorted BBs only to trigger objects.

Key-set The defender first prepares a verification dataset Dkey that contains
both trigger and nontrigger objects. Then, the defender collects the outputs of
the two models f and g on Dkey via their respective APIs. Further, among all the
objects predicted by f , the defender configures a subset U ; the object o in U is
assumed to be detected by both f and g as the same object. Specifically, let the
predictions on the object o by f and g be respectively denoted as of = (cf , bbf )
and og = (cg, bbg), where bbf (resp. bbg) is denoted as (af , bf , wf , hf ) (resp.
(ag, bg, wg, hg)). Any object in U must meet the following condition:

{cf = cg} ∧ {IoU(bbf , bbg) > η} , (4)

where IoU(·, ·) computes the Intersection of Union (IoU) between the two BBs,
and η is a predefined threshold to assure that the BBs sufficiently overlap. Fi-
nally, U is split into V and Vc, which are respectively the sets of the trigger and
the nontrigger objects (V ∪ Vc = U).

Suspiciousness Score Once Dkey is prepared, the defender computes the degree
of suspiciousness of model g, called suspiciousness score, as

S (g(Dkey); f) =

∑
o∈V d(of , og)/|V|∑

o∈Vc d(of , og)/|Vc|
. (5)
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Here, d(of , og) measures the inconsistency of the predictions on o by f and g,
which we call prediction inconsistency. The possible options for d(of , og) are:

dIoU(of , og) = 1− IoU(bbf , bbg), (6)

dscale(of , og) =

(
wg

wf

)sgn(δw−1)

×
(
hg

hf

)sgn(δh−1)

. (7)

These metrics become large as the BBs predicted by the two models are inconsis-
tent. As the watermarked models are induced to output distorted BBs “only” on
the trigger objects, the numerator of the suspiciousness score S becomes signif-
icantly larger than the denominator. Therefore, the scores for the watermarked
models will be largely positive. To the contrary, the scores for nonwatermarked
models will be around 1.0. Consequently, the score S becomes a verifiable wa-
termarking verification logic (see Eq. 2).

5.3 Trigger Selection

This subsection explains how to define a trigger and an indicator function T :
O → {0, 1} that returns whether an object o ∈ O has the trigger or not.

Key Idea We execute clustering analysis on the objects in the training set and
then select one cluster. We refer to the selected cluster as the trigger cluster. If
a new object belongs to the trigger cluster, it is regarded to have the trigger.

We believe that the cluster should be as compact as possible. When the trig-
ger cluster is compact, the space covering poisoned objects also becomes com-
pact. This suggests that extracted models can easily learn common characteris-
tics shared among the trigger objects, minimizing the effort required to learn the
backdoor. Additionally, this cluster design makes the backdoor robust to coun-
termeasures for backdoor elimination. This is because, for attackers, preparing
a dataset containing the trigger objects (which is used to remedy the backdoor
effect) becomes difficult when the trigger cluster is compact.

Trigger Cluster Search We present a search algorithm to find the most compact
cluster. Assume that a training set containing n objects is given. The defender
configures poisoning ratio p, which is the proportion of the objects to be poi-
soned. The search algorithm comprises the following three steps. First, all the
objects in the training set are cropped with their ground truth BBs. Second, the
feature vectors of the cropped objects are extracted using a feature extractor
E : O → Rm, composing the feature matrix Z ∈ Rn×m. Third, DBSCAN [9] is
applied to Z to search the most compact cluster containing n× p samples.

We now present the details of the step 3. Given a parameter ε (> 0), DB-
SCAN groups the neighbor samples within the distance of ε. The grouped sam-
ples compose a cluster. Thus if ε is too small, every sample composes individual
clusters. Following this principle, the search process starts with a small ε. Then,
DBSCAN is repeatedly applied to Z while gradually increasing ε until the largest
cluster (i.e., cluster with the most data) contains approximately n× p samples.
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Algorithm 1 Trigger Cluster Search
Input: poisoning ratio p, feature matrix Z ∈ Rn×m, search tolerance t, search step δε
Output: ε̄, Z̄
1: ε← 0, cond← False
2: while not cond do
3: C = DBSCAN(ε).fit(Z) # C: set of clusters
4: Get C ∈ C # cluster with the most data
5: if |size(C)− n · p| < t then
6: cond← True
7: else
8: ε← ε+ δε
9: end if

10: end while
11: ε̄← ε, Z̄ ← ZC # ZC : feature matrix of the objects in C
12: return ε̄, Z̄

Table 2: Dataset statistics
Dataset Classes Num. Images (Num. Objects)

Training Subs.-training Subs.-finetuning Test
VOC07 20 2,501 (7,844) 2,259 (7,012) 251 (806) 4,952 (14,976)

TrafficSigns 15 3,298 (3,699) 692 (768) 77 (87) 602 (683)
COCOm 80 4,989 (29,320) 4,447 (26,808) 495 (2,915) 4,994 (29,921)

Once such a cluster is found, it is regarded as the trigger cluster. The defender
retains the parameter ε̄ found during this process and the set of feature vectors
of the objects belonging to the trigger cluster, denoted as Z̄. The pseudo code
of this process is presented in Algorithm 1.

Trigger Indicator The defender defines the union of the ε̄-balls of the trigger
objects as B = ∪z̄∈ ¯Z{z ∈ Rm|dist(z, z̄) < ε̄} and the trigger indicator function
T as: T (o) = 1 if E(o) ∈ B and 0 otherwise. Once the target API receives a
query, it determines which responses to poison as follows: (i) f performs OD,
(ii) the detected objects are cropped with their predicted BBs, (iii) E extracts
the features of the cropped objects, and (iv) T evaluates if each of the objects
belongs to the trigger cluster.

6 Experiments

6.1 Settings
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Table 3: OD performance (mAP50, %) of experimental models
Dataset Model

Target Benign Baseline Extracted
VOC07 70.75 71.35 67.38 67.43

TrafficSigns 96.60 82.34 82.41 82.51
COCOm 64.82 53.09 52.29 52.21

Datasets We used three OD datasets: PascalVOC2007 (VOC07) [10], Self-Driving
Cars–TrafficSigns [5], and COCO minitrain (COCOm) [2], with their statistics
presented in Table 2. Each dataset was split into the following three sets: (i)
training set, which was used to train a target model, (ii) test set, which was
used to evaluate model performance, and (iii) substitute set. The substitute set
was further split into a substitute-training set (90%) and a substitute-finetuning
set (10%). The former was used to train extracted models and benign mod-
els. The latter was employed to assess the robustness of our watermark against
finetuning. The details of the data preprocessing are written in Appendix A.

Models First, we trained a target model on the training set. Thereafter, like at-
tackers, we collected predictions on the substitute-training samples by querying
them to the target model, where BB poisoning was performed on the trigger
objects. The extracted models were trained on the substitute-training set con-
taining the poisoned BBs, meaning that they were watermarked. Besides, benign
models were trained on the substitute-training set with GT annotations. As a
baseline, we trained nonwatermarked extracted models, which we refer to as
baseline models. The baseline models were trained on the unpoisoned responses
by the target model. We adopted the Ultralytics-YOLOv8s model for the target
models and the Ultralytics-YOLOv8n model for the other models [27].

Poisoning Configuration We adopted the rescale-based BB poisoning (Eq. 3) and
the suspiciousness score S (Eq. 5) based on the scale-based inconsistency metric
(Eq. 7). For the poisoning magnitudes (δw, δh), we assumed that δw = δh (= δ),
and the newly introduced δ was configured in {0.8, 0.9, 0.95, 1.05, 1.1, 1.2}. The
poisoning ratio p was varied in {1%, 2%, 3%}. We performed our evaluation on
each of the 18 (= 6×3) poisoning configurations. We used EfficientNet-B4 [24] as
the object feature extractor E. The OD performance (mAP50) of the extracted
models (p: 3%, δ: 1.2) and the other models is shown in Table 3. Appendix B also
presents the OD performance of the extracted models with the other poisoning
configurations.

Watermark Evaluation We trained 30 benign models and 30 extracted models for
each poisoning configuration with different seeds. We evaluated the verification
accuracy for watermark evaluation using the binary classification AUROC of the
benign/extracted models based on the suspiciousness score S.
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Table 4: Watermark verification accuracy (AUROC, %) using BBW. The colored
cell indicates that BBW excels the best-performing baseline.

Dataset Ratio Poisoning Magnitude
0.8 0.9 0.95 1.0 1.05 1.1 1.2

1% 91.56 78.67 63.22 30.56 43.44 51.67 66.67
VOC07 2% 100.0 100.0 100.0 7.78 100.0 100.0 100.0

3% 100.0 100.0 100.0 30.56 100.0 100.0 100.0
1% 93.44 92.56 94.11 12.11 20.11 52.11 95.11

TrafficSigns 2% 100.0 92.78 93.56 35.78 71.78 94.56 100.0
3% 100.0 100.0 96.67 38.11 90.89 99.89 100.0
1% 100.0 100.0 100.0 12.89 54.22 98.11 100.0

COCOm 2% 100.0 100.0 100.0 6.78 94.67 100.0 100.0
3% 100.0 100.0 100.0 86.44 100.0 100.0 100.0

(a) Benign (b) Baseline (c) Extracted
(δ: 1.2)

(d) Extracted
(δ: 0.8)

Fig. 3: Histograms of scale-based prediction inconsistency on the VOC07 dataset.
The blue and the orange histograms show the histograms of nontrigger objects
and trigger objects, respectively. Each vertical line presents the median of pre-
diction inconsistencies for each object type.

6.2 Results

Quantitative Results Table 4 presents the results, where the column with the
poisoning magnitude of 1.0 indicates the results for the baseline models. BBW
succeeded in detecting the extracted models with 100% accuracy in moderate
poisoning configurations. For instance, on the VOC dataset, BBW could perform
complete verification just by expanding BBs by a factor of 5% on only 2% of
the detected objects. This implies that our approach is difficult to perceive.
Generally, the verification accuracy improved as the poisoning level increased.

Figure 3 shows the distributions of prediction inconsistencies (or more pre-
cisely, wg·hg

wf ·hf
) for the models of each type. For the benign and the baseline models,

as shown in Fig. 3a and 3b, there is no clear difference in the distributions be-
tween trigger and nontrigger objects. Their distributions are distributed around
1.0, meaning that the predictions by the target model and the benign/baseline
models are almost consistent on both trigger and nontrigger objects. For the wa-
termarked extracted models (Fig. 3c and 3d), in contrast, only the distribution
of trigger objects is shifted to the left or the right depending on the poisoning



12 S. Koda and I. Morikawa

Fig. 4: Visualization of our proposed watermark on the VOC07 dataset. The
figures in the first, second, and third row display prediction examples by the
target, a benign, and a watermarked extracted model (δ: 1.2), respectively. The
orange BBs indicate that the object is a trigger object.

(a) poisoning ratio: 1% (b) poisoning ratio: 2%

Fig. 5: Trigger objects of the VOC07 dataset.

magnitudes. Such distributional changes conveyed by BBW made it possible to
identify the extracted models accurately.

Qualitative Results Figure 4 shows examples of detection results by the models of
each type. It is visible that only the watermarked model predicts expanded BBs
just on the trigger objects (depicted with orange rectangles), where we dared to
use a strong poisoning magnitude just for better visibility.

Figure 5 visualizes examples of the trigger objects of the VOC07 dataset.
When the poisoning ratio is 1%, the trigger objects are very coarse and do not
have sufficient information. This is perhaps the reason of the failure of watermark
verification. When the ratio is 2%, the trigger objects seem to have common
features (“compact cars”). Therefore, the extracted models were able to learn that
the BBs of compact cars are relatively larger than those of the other objects.
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Table 5: Cluster ablation evaluation
(p: 3%, δ: 1.05)

Dataset Cluster
random / compact

VOC07 94.2 / 100.0
TrafficSigns 81.44 / 90.89
COCOm 100.0 / 100.0

Table 6: Watermark transferability to
different models (p: 2%, δ: 1.2)

Dataset Extracted Model
FRCNN RT-DETR

VOC07 100.0 100.0
TrafficSigns 92.89 100.0
COCOm 100.0 100.0

7 Analysis and Discussion

We discuss the effectiveness of our trigger selection in Sec. 7.1, the transferability
of our watermark in Sec. 7.2, and the robustness of our watermark in Sec. 7.3.

7.1 Ablation: Trigger Cluster Selection

As discussed in Sec. 5.3, our intuition for a good trigger is that the space cov-
ering trigger objects should be as compact as possible. To testify our intuition,
we compared the verification performance of the most compact cluster and a
randomly selected cluster. As a setup for the random cluster, we randomly sam-
pled objects from the training set and then adjusted the parameter ε̄ so that
the union of the ε̄-balls B contains trigger objects at a given poisoning ratio p
in the substitute-training set. The results of this ablation study are presented
in Table 5. The random clusters also had an effect on the watermark, but the
compact clusters outperformed them.

7.2 Watermark Transferability

To Other OD Model So far we assumed that the attacker used a nearly
identical model architecture (YOLOv8n) to the target model (YOLOv8s). Here,
we assume that the attacker trains OD models of different nature, Faster R-CNN
(FRCNN) [20] or RT-DETR [30]. The results are presented in Table 6, showing
that BBW still works on these models. One exception is that the performance on
TrafficSigns with FRCNN was relatively low. This is because the performance
by the extracted FRCNN models was poor; mAP50 by FRCNN was 69.75%,
while that by YOLO was 82.51%. Therefore, the attacker failed to replicate the
functionality of the target model. Conversely, it is highly expected that BBW
becomes more effective as the attackers adopt more advanced models or MEA
strategies. Such models or attacks are more capable of learning the heuristics of
the target model, thereby facilitating the learning of a backdoor.

To Non-i.i.d. Attacker Here, we assume a non-i.i.d. scenario where attackers
cannot access to the training distribution. Specifically, the target model was
trained on VOC07 while the attacker used COCOm as the substitute data. The
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(a) VOC07 (b) TrafficSigns (c) COCOm

Fig. 6: Watermark robustness to weight pruning (p: 2%, δ: 1.2)

(a) VOC07 (b) TrafficSigns (c) COCOm

Fig. 7: Watermark robustness to finetuning (p: 2%, δ: 1.2)

results were as follows: the verification accuracy was 4.0%, 100.0%, and 100.0% at
poisoning ratios of 1% (0.60%), 3% (0.63%), and 5% (2.72%), respectively, where
δ was set to 1.1. Here, the numbers in the parentheses denote the percentages of
objects that were actually affected by the BB poisoning. Although there existed
a gap between the given poisoning ratio (e.g., 5%) and the actual poisoning ratio
(e.g., 2.72%), BBW achieved complete verification.

These results suggest that as the gap increases, stronger poisoning is neces-
sary. However, i.i.d. data are indispensable for successful attacks. The mAP of
the extracted models in the i.i.d. setting was 67.38%, while that in the non-i.i.d.
setting dropped to 39.55%. This shows that attackers lacking i.i.d. data are not
significant. This is why we assumed the attacker had i.i.d. data. Nevertheless,
one possible approach against non-i.i.d. attackers is to consistently poison the
API outputs at a fixed ratio. This approach is nearly identical to the one utilizing
a random cluster, as described in Sec. 7.1.

7.3 Watermark Robustness to Countermeasures

Weight Pruning (WP) As WP has been used for backdoor elimination in DNNs
[15], we evaluated the robustness of our watermark to WP. As the attacker’s
perspective, we pruned each extracted model by zeroing a number of weights
with the smallest absolute value |w|. The results are presented in Fig. 6, showing
that it is difficult to remove the watermark by WP without compromising the
OD capability of the extracted models. Note that although Liu et al. [15] also
introduced a more advanced WP-based defense approach called fine-pruning, it
severely degraded OD performance in our experiments.
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(a) VOC07 (p: 2%) (b) VOC07 (p: 3%) (c) TrafficSigns (d) COCOm

Fig. 8: Watermark robustness to NAD (p: 2% or 3% (Subfigure (b)), δ: 1.2)

Table 7: Watermark robustness to adaptive attacker (p: 3%)
Dataset Poisoning Magnitude

1.05 1.1 1.2
normal / adaptive

VOC07 100.0 / 72.11 100.0 / 86.33 100.0 / 95.22
TrafficSigns 90.89 / 41.11 99.89 / 59.00 100.0 / 62.44
COCOm 100.0 / 99.56 100.0 / 100.0 100.0 / 100.0

Finetuning Finetuning has also been used for backdoor elimination [21]. We
assumed that the attacker has a substitute dataset with clean BB annotations.
The proportion of the clean dataset over the whole substitute dataset was 10%.
Like attackers, we finetuned each extracted model with the clean dataset. Fig-
ure 7 presents the result, showing that it is difficult to remove the watermark by
finetuning as long as the finetuned model retains the OD capability.

Neural Attention Distillation (NAD) NAD [13] is a state-of-the-art backdoor
elimination approach applicable to OD models. We distilled the intermediate
layers of the extracted models by treating the aforementioned finetuned models
as the teacher network. The watermarking verification results on the distilled
models are presented in Fig. 8, showing that it is difficult to remove the water-
mark by NAD without compromising the OD capability of the distilled models.

Adaptive Attacker A typical adaptive attack would involve using a filtering model
which identifies the objects whose BBs are inconsistent with their GTs. The at-
tacker would then correct these inconsistencies and train an extracted model to
ensure it does not contain a backdoor. However, implementing such a filtering
model with high accuracy is extremely difficult because such inconsistencies oc-
cur even on nontrigger objects (see Fig. 3). Instead, we hypothesized an adaptive
attacker who has a filtering model identifies trigger objects with a recall of 80%.
More precisely, let Ô (= ÔB ∪ ÔBc) be the set of the objects detected by the
target model, where ÔB and ÔBc denote the sets of the trigger objects and the
nontrigger objects, respectively. Then, for 80% of the objects in ÔB, their poi-
soned BBs are replaced with their unpoisoned predicted BBs. The remaining
objects in ÔB retain poisoned BBs, and the objects in ÔBc retain the predicted
BBs. Table 7 shows the results of this setting. As expected, our watermark was
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mitigated by the adaptive attack. However, the undetected trigger objects still
contributed to injecting a backdoor to the extracted models. We expect that the
extracted models did not learn a backdoor of the given poisoning magnitude but
still learned a smaller-scaled backdoor from the survived trigger objects. Let us
note that this setting differs from the one where p is set to 0.6% (= 3% × 0.2)
from the beginning as trigger clusters vary with different p values.

8 Conclusion and Future Scope

This work presents a novel defense measure against MEAs on OD models, BBW,
which involves poisoning BBs of the objects in API responses. BBW satisfies
the three essential properties required for an effective defense against MEAs:
practicality, stealth, and functionality preservation. Our future work includes
proposing a guideline on how to tune the poisoning parameters according to
model performance or attacker’s capability other than empirical ways.

A Dataset

This section details the datasets and their preprocessing.
VOC07 consists of 20 categories of common objects, including persons, an-

imals, vehicles, and indoor items. We downloaded it from http://host.robots.
ox.ac.uk/pascal/VOC/voc2007/. We used its predefined training/val/test splits
as the training/substitute/test sets in our experiments.

TrafficSigns comprises images of 15 categories of traffic lights and signs,
collected in self-driving scenarios. We downloaded it from https://universe.
roboflow.com/selfdriving-car-qtywx/self-driving-cars-lfjou. We used
its predefined training/val/test splits as the training/substitute/test sets in our
experiments. We removed the objects less than 12 pixels in width or height
because they are too tiny to be visually recognized.

COCOm is a 25,000-image subset of the MS-COCO dataset [3] containing
objects from 80 categories. We downloaded the COCOm dataset from https://
github.com/giddyyupp/coco-minitrain. Then, we extracted two non-overlapping
sets of 5,000 samples each from this dataset and used them as the training and
test sets. Also, we downloaded the original validation set of MS-COCO from
https://cocodataset.org/#download and used it as the substitute set. We
removed the objects less than 15 pixels in width or height because they are too
tiny to be visually recognized. This is why the number of samples in each set is
slightly below 5,000 in Table 2.

Maintaining the original data splits resulted in varying proportions of the
substitute set across datasets.
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Table 8: OD performance (mAP50, %) of watermarked extracted models
Dataset Ratio Magnitude

0.8 0.9 0.95 1.05 1.1 1.2
1% 67.49 67.43 67.40 67.46 67.47 67.41

VOC07 2% 67.28 67.45 67.39 67.46 67.40 67.42
3% 67.27 67.51 67.44 67.38 67.32 67.43
1% 82.10 82.34 82.28 82.26 82.23 82.28

TrafficSigns 2% 82.32 82.49 82.20 82.22 82.23 82.31
3% 82.14 82.25 82.28 82.28 82.32 82.51
1% 52.03 52.15 52.22 52.20 52.21 52.16

COCOm 2% 51.94 52.22 52.14 52.32 52.24 52.16
3% 52.14 52.28 52.31 52.29 52.27 52.21

B Watermarked Model Performance

Table 8 presents the OD performance of the watermarked models. For each
poisoning configuration, the performance is averaged over 30 models trained
with different seeds.
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