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Abstract. Despite considerable scientific advances in numerical simu-
lation, efficiently solving PDEs remains a complex and often expensive
problem. Physics-informed Neural Networks (PINN) have emerged as an
efficient way to learn surrogate solvers by embedding the PDE in the
loss function and minimizing its residuals using automatic differentia-
tion at so-called collocation points. Originally uniformly sampled, the
choice of the latter has been the subject of recent advances leading to
adaptive sampling refinements for PINNs. In this paper, leveraging a new
quadrature method for approximating definite integrals, we introduce a
provably accurate sampling method for collocation points based on the
Hessian of the PDE residuals. Comparative experiments conducted on a
set of 1D and 2D PDEs demonstrate the benefits of our method.

Keywords: PINN · Collocation points · Adaptive sampling · Quadra-
ture method.

1 Introduction

Incorporating domain knowledge into machine learning algorithms has become a
widespread strategy for managing ill-posed problems, data scarcity and solution
consistency. Indeed, ignoring the fundamental principles of the underlying the-
ory may lead to, yet optimal, implausible solutions yielding poor generalization
and predictions with a high level of uncertainty. Embedding domain knowledge
has been shown to be useful when used at different levels of the learning pro-
cess for (i) constraining/regularizing the optimization problem, (ii) designing
suitable theory-guided loss functions, (iii) initializing models with meaningful
parameters, (iv) designing consistent neural network architectures, or (v) build-
ing (theory/data)-driven hybrid models. In this context, physics is probably the
scientific domain that has benefited the most during the past years from ad-
vances in the so-called Physics-informed Machine Learning (PiML) field [10] by
leveraging physical laws, typically in the form of Partial Differential Equations
(PDEs) that govern some underlying dynamical system. This new line of re-
search led to a novel generation of deep-learning architectures, including Neural
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ODE [2], PINN [17], FNO [12], PINO [13], PDE-Net [14], etc.

In this paper, we specifically focus on Physics-informed Neural Networks
(PINNs) that have received much attention from the PiML community and can
be used for both forward as well as inverse problems for differential equations.
Despite important scientific advances in numerical simulation, solving efficiently
PDEs remains complex and often prohibitively costly. By embedding the physical
knowledge into the loss function, PINNs appeared as a natural way for learning
efficient neural PDE solvers by minimizing the residuals at collocation points typ-
ically randomly sampled from the spatio-temporal domain. Despite indisputable
progress, PINNs are still at an early stage and it has become crucial to study
their theoretical foundations and algorithmic properties to gain a comprehensive
grasp of their capabilities and limitation. Indeed, different studies have shown
that PINNs may be subject to pathological behaviors, leading to trivial solutions
with 0 residuals, thus plausible w.r.t. the physical law, while converging to an
incorrect solution [1,7]. Characterizing these “failure modes” [20] has led to an
active area of research addressing this task from two main perspectives: a first
line of investigation that aims at building theoretical foundations when learning
PINNs from a uniform sampling of collocation points (e.g., equispaced uniform
grid or uniformly random sampling), resulting in consistency and convergence
guarantees in the form of estimation/approximation/optimization bounds (see,
e.g., [4,6,7,8,11]); a second one with the objective of enhancing PINN perfor-
mance through the lens of the collocation point sampling. Rather than drawing
them uniformly, several intuitive strategies have flourished in the literature that
suggest guiding the selection during the learning process according to the mag-
nitude (or the gradient) of the PDE residuals. This gave rise to a new family
of adaptive sampling methods for PINNs (see, e.g., [3,15,16,18,19,21,22]). How-
ever, it is worth noting that even though these methods have shown remarkable
performances in practice, they share the common feature of not coming with
theoretical guarantees of their advantage over a uniform sampling.

The objective of this paper is to bridge the gap by providing two new method-
ological contributions: (i) Recalling that minimizing an empirical loss in machine
learning can be approached from a mathematical perspective as the approxima-
tion of the integral of some function f , we propose a new quadrature rule based
on a simple trapezoidal interpolation and information about the second-order
derivative f2. We derive an upper bound on the approximation error and show
its tightness compared to that of issued from an equispaced uniform grid. This
theoretical result is supported by several experiments. (ii) This finding prompts
us to design a new theoretically founded adaptive sampling method for PINNs
where f takes the form of the residual-based loss function. This strategy selects
collocation points in the spatio-temporal domain where f2 varies the most. Ex-
periments conducted on 1D and 2D PDEs highlight the interesting properties of
our method.

The rest of this paper is organized as follows: in Section 2, we introduce the
necessary background and related work; Section 3 is devoted to the presentation
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of our refined quadrature method and the upper bound derived on the total
approximation error. In Section 4, we leverage our quadrature method to propose
a new adaptive sampling method for PINNs and test it on 1D and 2D PDEs.

2 Background and Related Work

In this paper, we consider PDEs of the general form: Bu
Bt ` N ru;ϕs “ 0, where

N r¨;ϕs is a possibly nonlinear operator parameterized by ϕ and involving partial
derivatives in either time or (multidimensional) space and upt,xq is the latent
hidden solution, with t P r0, T s and x P Ω. This equation is typically augmented
by appropriate initial and boundary conditions defined respectively as follows:

Irusp0,xq “ 0, x P Ω

Bruspt,xq “ 0, x P BΩ, t P r0, T s

where B is a boundary operator that applies to the domain boundary BΩ, and
I is an initial operator describing what happens at t “ 0.

A PINN [17] aims at learning an approximation uθpt,xq of the solution upt,xq

by optimizing the parameters θ of a neural network through the minimization
of a loss Lpθq composed of the following non-negative PDE residual terms:

LN pθq “

ż

r0,T sˆΩ

ˆ

Buθ

Bt
` N ruθ;ϕs

˙2

dtdx

LIpθq “

ż

Ω

pIruθsp0,xqq2dx

LBpθq “

ż

BΩ

pBruθspt,xqq
2
dtdx

Therefore, a PINN optimization problem takes the following form1:

min
θ

Lpθq “ min
θ

pLN pθq ` λ1LIpθq ` λ2LBpθq ` λ3Rpθqq, (1)

where λ1, λ2, λ3 are hyperparameters and Rp¨q is some regularization term. Since
Lpθq involves integrals, it cannot be directly minimized. In practice, these three
integrals are approximated by finite sums computed over NN collocation, NI
initial and NB boundary points respectively.

From a mathematical perspective, one of the underlying problems when solv-
ing Eq.(1) involves approximating the integral of some function f : Ω ÝÑ R from
N evaluations of the integrand by a suitable numerical quadrature rule such that:

N
ÿ

i“1

wifpxiq «

ż

Ω

fpxqdx, (2)

1 Note that PINNs can easily incorporate both PDE information and data measure-
ments into the loss function. Our contributions still hold in such hybrid scenario.
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where wi ě 0 are so-called quadrature weights. It is well-known that the accu-
racy of this approximation depends on the chosen quadrature rule, the regularity
of f and the number of quadrature points N . If this remark obviously holds for
any machine learning problem minimizing the empirical counterpart of some true
risk with N training data, it is even truer when it comes to learning surrogate
neural solvers of complicated PDEs. This explains why, despite a remarkable ef-
fectiveness, PINNs have been shown to face pathological behaviors. In particular,
they can be subject to trivial solutions with 0 residuals while converging to an
incorrect solution as illustrated, e.g., in [1,7] (characterized as “failure modes” of
PINNs, see, e.g., [20]). One way to overcome this pitfall consists in resorting to a
suitable regularization term Rpθq (in Eq.(1)) as done in gPINN [22] that embeds
the gradient of the PDE residuals in the loss so as to enforce their derivatives to
be zero as well, or in [7], where the authors use a ridge regularization associated
with a Sobolev norm to make PINNs both consistent and strongly convergent.

Regularization apart, the location and distribution of the N “ NN `NI `NB
quadrature points are key and they can have a significant influence on the ac-
curacy and/or the convergence of PINNs. Yet, equispaced uniform grids and
uniformly random sampling have been widely used up to now and it is only re-
cently that the placement of these quadrature points has become an active area
of research for PINNs leading to several adaptive nonuniform sampling methods
(see an extensive comparison study, e.g., in [21]). Beyond being easy to operate,
one reason that may justify the still widespread use of uniform sampling stems
from the resulting possibility to leverage theoretical frameworks for deriving error
estimates for PINNs. For instance, using a midpoint quadrature rule with a reg-
ular grid has led to the first approximation error bounds with tanh PINNs (see,
e.g., [5,8]). On the other hand, taking advantage of uniformly sampled colloca-
tion points and resorting to concentration inequalities, the authors of [7] derived
generalization bounds for this new family of networks. Setting theoretical consid-
erations aside, several methods have been designed during the past four years for
experimentally improving uniform sampling approaches. Residual-based Adap-
tive Refinement [15] (a.k.a. RAR) is a greedy adaptive method which consists in
adding new collocation points along the learning iterations by selecting the loca-
tions where the PDE residuals are the largest. Although RAR has been shown to
improve the performance of PINNs, its main limitation (beyond the requirement
of a dense set of collocation candidates) lies in the fact that it reduces the op-
portunity to explore other regions of the space by always picking locations with
the largest residuals. Introduced in 2023, RAD [21], for Residual-based Adaptive
Distribution, replaces the current collocation points by new ones drawn accord-
ing to a distribution proportional to the PDE residuals, thus introducing some
stochasticity in the sampling process. A hybrid method, called RAR-D, com-
bines RAR and RAD by stacking new points according to the density function.
Both RAD and RAR-D (and other adaptive residual-based distribution variants,
e.g., [3,16]) have been shown to perform better than non-adaptive uniform sam-
pling [21]. In this category of methods, Retain-Resample-Release sampling (R3)
algorithm [3] is the only one that accumulates collocation points in regions of
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high PDE residuals and which comes with guarantees. Indeed, the authors prove
that this algorithm retains points from high residual regions if they persist over
iterations and releases points if they have been resolved by PINN training.

While the previous methods leverage the magnitude of the PDE residuals to
guide the selection of the locations, some others employ their gradient. This is the
case in [22] where the authors combine gPINN and RAR. In the same vein, the
authors of [18] present an Adaptive Sampling for Self-supervision method that
allows a combination of uniformly sampled points and data drawn according to
the residuals or their gradient. The first-order derivative has been also recently
exploited in PACMANN [19] which leverages gradient information for moving
collocation points toward regions of higher residuals using gradient-based opti-
mization. These methods have been shown to further improve the performance of
PINNs, especially for PDEs where solutions have steep changes. Drawing inspi-
ration from these derivative-based methods, we define in the next section a new
provably accurate quadrature rule for approximating the integral of a function.
We prove that this method based on a simple trapezoid-based interpolation and
second-order derivative information gives a tighter error bound than an equis-
paced uniform grid-based quadrature. Leveraging this finding, we present then,
as far as we know, the first theoretically founded adaptive sampling method of
collocation points for PINNs based on the Hessian of the PDE residuals.

3 Quadrature Rules

Let a, b P R and consider a function f : ra, bs ÝÑ R. We recall that the goal of the
quadrature problem is to approximate the integral

şb

a
fpxqdx by an expression of

the form
ř

i wifpxiq where the wi P R are the weights of the quadrature points
xi. There are two main strategies of quadrature rules:

1. We take x0, . . . , xN P ra, bs and the weights w0, . . . , wN are obtained by
approximating the function f using polynomials. This is the Newton-Cotes
method.

2. We fix a scalar product on the space of polynomials, which provides an
orthonormal basis via a Gram-Schmidt procedure. Then the zeros of one
element of this basis are the x0, . . . , xN , and the weights are found by a
matrix inversion.

The second approach, in which the points are a consequence of the chosen scalar
product, is very effective and has many variants depending on the interval ra, bs,
such as Gauss-Legendre for a, b P R, Gauss-Chebyshev for ra, bs “ r´1, 1s, and
Gauss-Hermite for ra, bs “ r´8,8s. However, as our objective is to leverage
a quadrature rule for designing a new efficient adaptive sampling method for
PINNs, the first approach appears to be much more suitable from a computa-
tional perspective because it does not require to compute the orthonormal basis
as well as the zeros of one of its elements followed by matrix inversion.
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On the other hand, an issue one might encounter using the Newton-Cotes
method is that, as it relies on a polynomial approximation of f , the so-called
Runge’s phenomenon might occur. This problem happens when maxxPra,bs |f pnqpxq|

is an increasing function of n, where f pnq is the nth-order derivative. Under
these circumstances, the interpolation polynomial of f may have sharp oscil-
lating spikes near the edges of the interval, and thus diverging from f as N
increases. In order to avoid this pitfall, we suggest controlling the expressiveness
of the approximation and focus on a simple trapezoid-based interpolation.

In the following, we first present the quadrature rule when the quadrature
points are evenly spaced in the domain and recall a known result on the upper
bound on the approximation error in this trapezoid-based setting. Then, we
introduced a refined quadrature rule which selects the quadrature points where
the second-order derivative of f varies the most. The main result of this section
takes the form of a tighter upper bound on the total approximation error.

3.1 Uniform approach

Let us approximate f on rz1, z2s, with z1, z2 P ra, bs, by the line passing through
pz1, fpz1qq and pz2, fpz2qq. We set h “ z2 ´ z1. The interpolation ppxq is defined
as follows:

ppxq “
x ´ z1

h
fpz2q ´

x ´ z2
h

fpz1q. (3)

As it is a polynomial of degree 1, the Lagrange remainder form states that there
exists ξ P rz1, z2s such that

fpxq ´ ppxq “
f2pξq

2
px ´ z1qpx ´ z2q.

Note that while the existence of ξ is guaranteed, we do not know its position
within rz1, z2s. Moreover, by setting s “ x´z1

h , we see that px ´ z1qpx ´ z2q “

sps ´ 1qh2. It follows that the error Ez1,z2 “
şz2
z1

fpxqdx ´
şz2
z1

ppxqdx on rz1, z2s

satisfies

Ez1,z2 “ ´
1

12
h3f2pξq. (4)

We will need the following lemma:

Lemma 1. Let gpxq be a continuous function and let x0 ă x1 ă ¨ ¨ ¨ ă xN be
points within its domain. Set c0, . . . , cN ě 0. Then there exists ξ P rx0, xN s such
that

N
ÿ

i“0

cigpxiq “ gpξq

N
ÿ

i“0

ci.

Proof. cf. [9, Theorem 20.5.1].
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Proposition 1. Set a, b P R, N P N, and f : ra, bs ÝÑ R a function of class
C2, i.e., with continuous second derivative. Then the total error Etot,unif of the
uniform quadrature of the integral of f by N trapezoids is upper bounded by:

Etot,unif ď Btot,unif “
1

12

pb ´ aq3

N2
max
xPra,bs

|f2pxq|. (5)

Proof. Consider the interval ra, bs and divide it into N subintervals of length
h “ b´a

N . We set x0 “ a and xi “ x0 ` hi for 1 ď i ď N . We approximate the
function f on each rxi´1, xis by a trapezoid, and so ppxq is a piece-wise linear
function given by by Eq.(3). Using Eq.(4), for each 1 ď i ď N , there exists
ξi P rxi´1, xis such that the total integration error Etot,unif on rx0, xN s “ ra, bs
is

Etot,unif “

N
ÿ

i“1

´
1

12
h3f2pξiq.

By applying the lemma to Etot,unif , there exists ξ P rξ1, ξN s such that

Etot,unif “ ´
1

12
Nh3f2pξq “ ´

1

12
pb ´ aqh2f2pξq. (6)

It follows that for this uniform choice of points x0, . . . , xN , the total quadrature
error satisfies

|Etot,unif | ď Btot,unif (7)

where Btot,unif “
1

12

pb ´ aq3

N2
max
xPra,bs

|f2pxq|.

3.2 Second-order Derivative-based Quadrature Rule

Rather than defining the quadrature points according to an equispaced uniform
grid (as done in the previous section), we suggest here to sample them according
to the variations of the second-order derivative of f . Consider f : ra, bs ÝÑ R
a function of class C2 and set k ď N integers. We divide ra, bs into k intervals
Ij , 1 ď j ď k, of length l “ b´a

k . To allow a fair comparison with the uniform
method of Sec. 3.1, on each subinterval, we perform a trapezoid interpolation
such that the total number of trapezoids is N . Let us split each Ij into nj

subintervals where

nj “

R

N

a

Mj
řk

p“1

a

Mp

V

(8)

and where Mj “ max
xPIj

|f2pxq| for each 1 ď j ď k. It follows that
řk

j“1 nj «

řk
j“1 N

?
Mj

řk
p“1

?
Mp

“ N where the difference between the number of trapezoids

and N is at most k due to the ceiling function. As a consequence, if N " k, this
difference becomes negligible. For each interval Ij , our refined method consists
in doing a piecewise interpolation of f

Ij
: Ij ÝÑ R with nj trapezoids and then

aggregating the results. We can now present our main theoretical result.
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Theorem 1. Set a, b, P R, k,N P N with k ď N , and f : ra, bs ÝÑ R a function
of class C2. Then the upper bound Btot,refined on the total error Etot,refined of
our refined quadrature of the integral of f is tighter than that of Eq.(5) with the
same number N of trapezoids:

Etot,refined ď Btot,refined “

k
ÿ

j“1

l3

12

1
ˆR

N

?
Mj

řk
p“1

?
Mp

V˙2 |f2pξjq| ď Btot,unif .

Here, for each 1 ď j ď k, ξj is a well-chosen element in Ij. In particular, the
more f2 varies the more the inequality on the right-hand side is strict, thus in
favor of our refined quadrature rule.

Proof. Set hj “ l
nj

for each 1 ď j ď k. Then, for each 1 ď j ď k, we use Eq.(6)
to show that there exists ξj P Ij such that the total error of quadrature satisfies

Etot,refined “

k
ÿ

j“1

´
1

12
lh2

jf
2pξjq.

It follows that Etot,refined is upper bounded by

Btot,refined “

k
ÿ

j“1

l3

12

1
ˆR

N

?
Mj

řk
p“1

?
Mp

V˙2 |f2pξjq|

ď

k
ÿ

j“1

l3

12

1
ˆ

N

?
Mj

řk
p“1

?
Mp

˙2 |f2pξjq|

“
l3

12N2

k
ÿ

j“1

ˆ k
ÿ

p“1

a

Mp
a

Mj

˙2

|f2pξjq|

ď
l3

12N2

k
ÿ

j“1

ˆ k
ÿ

p“1

?
M

a

Mj

˙2

|f2pξjq| (where M “ max
1ďpďk

Mpq

“
l3

12N2

k
ÿ

j“1

k2
M

Mj
|f2pξjq|

“
l3k2

12N2

ˆ k
ÿ

j“1

|f2pξjq|

Mj

˙

M

ď
l3k2

12N2

ˆ k
ÿ

j“1

1

˙

M (9)
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“
l3k3

12N2
M “ Btot,unif .

In particular, note that we get Eq.(9) by using the fact that |f2pξjq| ď Mj ,
and so the more f2 varies, the more this inequality is strict.

3.3 Experiments

In this section, we illustrate the behavior of our refined quadrature rule on
three functions f : ra, bs ÝÑ R and integers k ď N . In order to determine
Mj for each 1 ď j ď k, we sample S “ 100 equidistant points xj,s P Ij and
set Mj “ max

1ďsďS
|f2pxj,sq|. We then compute nj according to Eq.(8). It is worth

noting at this step of the paper that the cost for computing Mj (here by selecting
the max from S evaluations of f2) does not matter. The goal of this section is
to give evidence that selecting N ` 1 points according to f2 is better in terms
of quadrature error than using evenly spaced points. When it comes to taking
this idea, implementing it in PINNs, and comparing it with SOTA adaptive
sampling methods, the same budget in terms of collocation points will be used
in the learning process.

In order to avoid pathological cases, we proceed to the following adjustments:

1. If nj “ 0, which theoretically would happen only if f2 “ 0 on Ij , i.e., f
is linear on this interval, then we set nj “ 1. This will ensure that every
interval contributes to the approximation of the integral of f .

2. As explained in the previous section, due to the ceiling function, the sum
řk

j“1 nj might differ from N by at most k. In order to use exactly the same
number N of trapezoids, we use the following rule: while

řk
j“1 nj ‰ N ,

‚ if
řk

j“1 nj ą N , then decrease max
1ďjďk

nj by 1;

‚ else increase min
1ďjďk

nj by 1.

For the uniform method, we select N ` 1 equidistant points between a and b
included. These are the endpoints of the N trapezoids. If we write xi ă xi`1 for
the endpoints of such a trapezoid, we approximate the integral of f on rxi, xi`1s

by the area of said trapezoid, i.e., by pxi`1 ´xiq
fpxi`1q`fpxiq

2 . It then remains to
sum over all trapezoids. The code of the examples below is available on GitHub.

3.3.1 Example 1: Consider fpxq “ p´1.4 ` 3x2q sinp16xq on r0, 2s. For illus-
tration, we choose N “ 25 and k “ 11. We report in Fig. 1 the target function
f (in red) with the uniform (left) and refined (right) trapezoid approximations
(in blue), and the boundary of the intervals (in green). We can see that on the
right part of the domain, where there are more variations, our method is able
to automatically place more points in this region. On the other hand, it uses
a smaller budget where f varies less. This leads to a better approximation of
the integral, reflected by a much smaller relative error (5.47%) compared to the
uniform method (15.3%).

https://github.com/Antoine-ml-code/Adaptive-Sampling-for-Collocation-Points-in-PINNs-ECML-2025.git
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Fig. 1: Plots of fpxq “ p´1.4 ` 3x2q sinp16xq on r0, 2s (in red) and its trapezoid
approximations (in blue) with N “ 25; (left): uniform method; (right): refined

method with k “ 11. The relative errors are respectively 15.3% and 5.47%.

We also compare in Fig. 2 both methods by varying the number k of intervals
(10, 20, 30 and 40). We see that except for some local spikes, our refined method
(black line) consistently gives better results than the uniform method (dashed red
line, which is independent from k). As expected, the gain is higher as k increases,
our method leveraging more precise information about the local variations of the
function. Note that the exceptions (i.e., when the black line is above the red one)
are mainly due to the use of the ceiling function in Eq.(8) which may lead to
řk

j“1 nj ‰ N . In this case, we need to resort to the aforementioned manual
adjustments that may lead to local overpessimistic approximations.

Fig. 2: Relative error for approximating fpxq “ p´1.4 ` 3x2q sinp16xq on r0, 2s

as a function of N for different values of k; (red): uniform method; (black):
refined quadrature; (green): tN “ ku.

3.3.2 Example 2: Consider now the function fpxq “ sinp 1?
x

q on r0.1, 1s. We
report in Fig. 3 an illustration of the behavior of the two quadrature methods
when N “ 25 and k “ 10. This example highlights a pathological behavior of
the uniform method which is not able with evenly spaced quadrature points to
capture the large variations of f (red curve) on some small intervals. On the
other hand, our method uses only a little part of the budget (7 points among 25)
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Fig. 3: Plots of fpxq “ sinp 1?
x

q on r0.1, 1s (in red) and its trapezoid
approximations (in blue) with N “ 25; (left): uniform method; (right): refined

method with k “ 10. The relative errors are respectively 16.4% and 1.89%.

for approximating the right-hand part of the function and keeps most of these
quadrature points for locations where the function has steep changes.

Fig. 4 reports the relative approximation error as k grows from 10 to 40. As
already observed in the first example, the relative gain of our refined method
increases as k grows by benefiting from finer intervals and thus better capturing
the variations of the function.

Fig. 4: Relative error for approximating fpxq “ sinp 1?
x

q on r0.1, 1s as a function
of N for different k; (red): uniform method; (black): refined; (green): tN “ ku.

3.3.3 Example 3: The last function considered in these experiments is de-
fined as follows on r0, 2s. It describes a sort of shark fin.

fpxq “

#

´0.1 `
a

1.22 ´ px ´ 1.1q2 if 0 ď x ă 1,

1.1 ´
a

1.22 ´ px ´ 2.1q2 if 1 ď x ď 2.
(10)

As illustrated in Fig. 5, this function has been chosen to emphasize the huge
difference between the two methods in terms of density of quadrature points
along the domain. Whereas our quadrature rule concentrates most of the points
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Fig. 5: Plots of function (10) (in red) and its trapezoid approximations (in
blue) with N “ 25; (left): uniform method; (right): refined method with
k “ 10. The relative quadrature errors are respectively 0.59% and 0.049%.

in regions with steep variations, the uniform method makes no distinction and
wastes part of the budget on easily predictable areas at the expense of a higher
approximation error in the more complex regions.

Fig. 6 confirms the benefit of our method (black line) in terms of relative error
for different values of k. In particular, we notice oscillations with the uniform
method based on the parity of N . This is because when N is odd, the top vertex
of the curve is not a vertex of a trapezoid, so the precision decreases.

Fig. 6: Relative error for approximating Eq. (10) on r0, 2s as a function of N for
different values of k; (red): uniform method; (black): refined; (green): tN “ ku.

4 Adaptive Sampling Methods for PINNs

The previous theoretical and experimental results highlighted the importance
of using the second-order derivative of f in a quadrature rule for better ap-
proximating its integral. In the context of PINNs, where f is the integrand of
the loss function made of the PDE residuals (i.e., the integrand of Lpθ,xq), our
results state that using information from the Hessian of the residuals for sam-
pling collocation points is better than uniformly sampling them. As mentioned
in the related work section, while leveraging the gradient of the residuals has
been recently used in a couple of papers (see, e.g., [18,19,22]), as far as we know,
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Algorithm 1 ‹-RAD
1: Set ‹ P t“res”, “grad”, “hessian”, “unif”u, τ , c, N and #epochs.
2: Sample a set S of initial collocation points randomly.
3: Train a PINN for a certain number of epochs.
4: while #epochs not reached do
5: Build distribution ppxq of Eq.(11) given ‹ from a set of random points.
6: S Ð New set of N collocation points sampled according to ppxq.
7: Train a PINN for a certain number of epochs.
8: end while

resorting to the Hessian has not been investigated yet. Even though we formally
proved that using f2 to define quadrature points is better than selecting evenly
spaced points, we do not yet know how such a strategy behaves in PINNs when
compared to sampling methods that leverage the magnitude or the gradient of
the residuals. This is the goal of this section, which aims to gain a comprehensive
grasp of the capabilities and limitation of f2 on different PDEs.

4.1 Generic Algorithm STAR-RAD (‹-RAD)

To allow a fair comparison, we use a RAD-like framework where the N colloca-
tion points are sampled according to a probability density function proportional
to a criterion of interest. The latter can be the PDE residuals as used in RAD
[21], the gradient of the residuals as in [18], the Hessian of the residuals for
our method, or a uniform distribution as used in a standard PINN [17]. In
order to use the same setting for this comparison study, we rely on the RAD
algorithm and modify it so as to allow different underlying probability density
functions. Let us use the following generic distribution:

ppxq 9
γpxqτ

Erγpxqτ s
` c, (11)

where τ and c are hyperparameters. This formulation is interesting because
the SOTA sampling methods can be viewed as special cases of Eq.(11). Let us
consider them as instantiations of what we call in the following ‹-RAD, where
res-RAD, grad-RAD, hessian-RAD, and unif-RAD correspond respectively to
the residual-based (i.e., where γpxq “ fpxq), gradient-based (γpxq “ f 1pxq),
Hessian-based (γpxq “ f2pxq) and uniform-based sampling method (standard
PINN obtained with τ “ 0 and c Ñ 8). The pseudo-code of ‹-RAD is presented
in Algorithm 1.

4.2 Experimental Results

Here we perform experiments for three different PDEs, namely the 1D Newton’s
law of cooling, 1D Brinkman-Forchheimer equation, and 2D Poisson’s equation.
The analysis is mainly made in terms of convergence speed of the methods,
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Fig. 7: (Left) L2-test error along the first 12000 training epochs, as well as the
total computational time (after the total 30000 epochs), for various sampling
methods on Newton’s law of cooling; (Right) Squared prediction errors along

the domain r0, 1000s after 12000 epochs as well as the total L2-error.

keeping in mind that faster convergence can also be interpreted as a lower need
for collocation points to achieve the same performance after a certain number
of epochs. The experiments2 have been conducted using ADAM optimizer on a
Apple M1 Pro chip with 16Go RAM.

4.2.1 Newton’s law of cooling equation: Newton’s law of cooling describes
the rate of heat loss of a body as follows: dT

dt “ RpTenv ´T ptqq, with t P r0, 1000s,
Tenv “ 25, T p0q “ 100, and R “ 0.005 (coefficient of heat transfer). The ana-
lytical solution given by T ptq “ Tenv ` pT p0q ´ Tenvqe´Rt states that this rate
is proportional to the difference in the temperatures between the body and its
environment. We learn a PINN with a RELU activation function composed of 4
hidden layers with 100 neurons followed by a fully connected layer. The number
of epochs #epochs “ 30000, the learning rate η “ 10´5, the number of colloca-
tion points N “ 40 drawn according to ppxq (Eq.(11)) approximated from 4000
candidates, τ “ 1{2 and c “ 0. We resample every 1000 epochs.

Fig. 7 (left) reports the L2-test error (i.e., pT pxq ´ uθpxqq2) computed along
the first 12000 training epochs (i.e., until convergence is reached for all meth-
ods) from an equispaced uniform grid composed of 1000 test points. We can
see that even though the four competing methods successfully learn the neural
solver, benefiting from the second-order derivative (green curve) allows to con-
verge faster. To illustrate the gain in terms of prediction errors over the entire
domain, Fig. 7 (right) describes the error suffered by uθpxq after 12000 epochs
(the behaviors of the 4 methods do not change afterwards). We can see that our
hessian-RAD gives a better approximation of the solution without suffering from
a too large computational burden.

4.2.2 Brinkman-Forchheimer: The Brinkman–Forchheimer model is a ex-
tended Darcy’s law and is used to describe wall-bounded porous media flows:

´
νe
ϵ

d2u

dx2
`

ν

K
upxq “ g,

2 The code is available in our GitHub repository.

https://github.com/Antoine-ml-code/Adaptive-Sampling-for-Collocation-Points-in-PINNs-ECML-2025.git
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Fig. 8: (Left) Comparison of the L2-test errors between iterations 1000 and
7000 on Brinkman-Forchheimer; (Right): Analytical solution of the PDE

(black), normalized loss (purple dashed) and |f2| (green) after 3000 epochs,
and collocation points (in blue) generated by hessian-RAD after 3000 epochs.

with x P r0, Hs, νe “ ν “ 10´3, ϵ “ 0.4, K “ 10´3, g “ 1, and H “ 1.

The analytical solution is upxq “
gK

ν

˜

1 ´
coshprpx ´ H

2 q

coshp rH
2 q

¸

with r “

c

νϵ

νeK

and is depicted in Fig. 8 (right, black curve). u represents the fluid velocity, g
denotes the external force, ν is the kinetic viscosity of the fluid, ϵ is the porosity
of the porous medium, and K is the permeability. The effective viscosity νe
is related to the pore structure. A no-slip boundary condition is imposed, i.e.,
up0q “ up1q “ 0. We learn a PINN with the tanh activation function composed
of 3 hidden layers with 20 neurons followed by a fully connected layer. We used
the following parameters: #epochs “ 30000, η “ 10´3, N “ 30, τ “ 1{2 and
c “ 0. We resample every 1000 epochs.

Fig. 8 (left) reports the L2-test error computed along the first 7000 training
epochs before convergence of the 4 competing methods. If we can observe that the
three adaptive methods (using f , f 1 and f2) are better than a standard uniform
sampling-based PINN (blue line), this figure also states that the convergence of
derivative-based methods (both f 1 and f2) is a bit slower than a residual-based
sampling. The reason for this phenomenon comes from the shape of the function
which, apart the initial and final steep changes, presents a large plateau. To
analyze the impact of the latter, we plot on Fig. 8 (right) the residuals (dashed
purple line) as well as |f2| (green line) after 3000 epochs (illustrating a situation
where f is much better than f2). As expected, as f2 does not vary much between
0.3 and 0.6, hessian-RAD places only a few collocation points along this interval,
keeping most of the budget where it varies the most. Consequently, the resulting
PINN makes errors in this region that do not affect the empirical loss too much,
but leading to a poor behavior at test time. The same interpretation can be
provided for grad-RAD, both methods requiring more iterations to converge.
Nevertheless, note that hessian-RAD reaches eventually the best prediction.

4.2.3 2D Poisson’s PDE: Poisson’s equation is an elliptic PDE used in
theoretical physics. It involves second derivatives of upx, yq and is given by
∆u “ F px, yq, where px, yq P r0, 1s2. We take F such that upx, yq “ 24axap1 ´
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Fig. 9: (Top left) Analytical solution of Poisson’s PDE; (Bottom Left) L2-test
error along the first 20000 training epochs, with computational time; (Right)

Heatmaps of errors of the 4 sampling methods after 20000 epochs.

xqayap1 ´ yqa with a “ 10 is the analytical solution (depicted in Fig. 9 (top
left)). We learn a PINN with the tanh activation function composed of 3 hidden
layers with 20 neurons followed by a fully connected layer. We used the following
parameters: #epochs “ 20000, η “ 10´3, N “ 400 drawn according to ppxq ap-
proximated from 40000 candidates, τ “ 1{2 and c “ 0. We resample every 1000
epochs. The most striking comment we can make from Fig. 9 (bottom left) is
that hessian-RAD fully takes advantage of the abrupt variations of the Poisson
solution to converge much faster than the others. About 1000 epochs are suffi-
cient for learning the problem while the competing strategies require much more
iterations to stabilize. Interestingly, even after 20000 epochs when the methods
seem to have converged to an exact solution, the gap in terms of prediction error
in favor of our method is important, as illustrated with the four heat maps of
Fig. 9 (right part). Again, even though computing the Hessian is more costly,
the additional burden is reasonable and compensated by a better prediction.

5 Conclusion and Perspectives

We have presented a provably accurate quadrature method based on second-
order derivatives, which performs very well for estimating the integral of a
function f . Exploiting the Hessian of the residuals shows also promising results
when used in a sampling method for PINNs. The observations made from the
Brinkman-Forchheimer PDE give raise to a future possible direction consisting
in sampling the collocation points according to different distributions. This has
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already been done in [18], but only by combining uniformly sampled points with
others drawn according to residual information (magnitude or gradient). The
results obtained on this PDE rather suggest that a combination of f with f 1

and/or f2 in complicated regions would be relevant. Identifying automatically
these challenging parts of the domain is an open question. One could consider a
hybrid approach in which the zones where the derivative is below some threshold
are decomposed into grids. The size of such a grid could be proportional to the
size of the zone and the total number of collocation points. Elsewhere, the sam-
pling would follow the values of the derivative. This would ensure that such areas
are not left out during the training process and the L2-test error might go down
more rapidly. On the other hand, while using the Hessian has been shown to be
beneficial in a PINN training, it can become costly in high dimensions. A first
mitigation attempt would be a simple stochastic approach, where at each resam-
pling iteration, the entries of the Hessian to be computed are sampled. Another
approach is to build on the fact that methods like gPINN are beneficial and al-
ready do a big part of the computations necessary for the Hessian, and thus these
can be combined almost for free. Indeed, these methods compute the gradient
(w.r.t. the parameters) of the gradient (w.r.t. spatio-temporal dimensions). In a
deep network, this gradient of gradient already needs to backpropagate almost
back to the input and thus computing the Hessian is almost free in such a case.
This would also allow having a resampling step that is executed more often, pos-
sibly at every iteration, by computing the empirical max of f2 (using the current
collocation points) in cells and resampling points using this information. Finally,
note that the reasoning in Sec. 3.1 is based on the Lagrange remainder theorem,
which itself uses the fact that ppxq is a polynomial in x of degree at most 1,
hence p2pxq “ 0. Consider fpx, yq of two variables in a square rx1, x2s ˆ ry1, y2s.
The natural analogue of p would be a function P px, yq “ a0 ` a1x ` a2y ` a3xy
linear in both x and y such that f “ P on the corners of the square. But if
a3 ‰ 0, then P px, yq has non-zero second order terms, so the reasoning cannot
be extended. Moreover, if one were to push the computations further, the error
term becomes too complicated to manipulate like in the proof of Th. 1. Another
approach is hence needed in order to generalize to higher dimensions.
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