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Abstract. Open-set domain adaptation (OSDA) transfers knowledge to
an unlabeled target domain under both distribution shift and unknown
classes absent in the source domain. Most OSDA methods require ac-
cess to both source and target data and rely on either feature-space or
logit-space information for known-unknown separation. However, source
data is often restricted due to storage or privacy constraints, and single-
space reliance can weaken separation, as unknown samples may be dis-
tinguishable in one space but not the other. To address these limita-
tions, we propose Progressive Dual-Space Discovering (PDD), a source-
free OSDA method that progressively adapts a pre-trained model for
improved domain alignment and known-unknown separation. PDD it-
eratively builds a credible domain by selecting target samples close to
the known-class distribution through dual-space selection: energy-based
filtering in logit space followed by prototype-based refinement in fea-
ture space. Besides, PDD performs clustering using feature-space in-
formation from the credible domain and logit-space information from
previously trained models, forming known and unknown domains. With
these established domains, cross-entropy loss optimizes learning within
the credible domain, while HSIC loss aligns the credible and known
domains. Additionally, dual-space uncertainty losses enhance the sep-
aration between known and unknown classes. Extensive experiments on
three OSDA benchmarks demonstrate the effectiveness of dual-space dis-
covering, known-unknown separation, and progressive updates, facilitat-
ing PDD to achieve state-of-the-art performance. Code is available at
https://github.com/qszhan/PDD.

Keywords: Source-free domain adaptation · Unknown classes · Known-
unknown separation · Progressive dual-space discovering.

1 Introduction

Unsupervised domain adaptation (UDA) improves performance in an unlabeled
target domain by transferring knowledge from a labeled source domain. A key
challenge in UDA is handling distribution shifts, often addressed by domain-
invariant features learning [20], [35] or adversarial learning [5], [21]. Despite
their advances, these methods assume a closed-set setting [15] with identical
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label spaces in both domains, limiting applicability when the target domain
includes unknown classes.

Open-set domain adaptation (OSDA) [13] addresses this scenario where the
target domain includes unknown classes absent from source data. OSDA aims to
align data from known classes across domains (domain alignment) and separate
data from known and unknown classes (known-unknown separation). Existing
OSDA methods employ strategies such as adversarial feature alignment [28], [18],
domain similarity measures [12], or learning a shared subspace [32]. Despite their
advances, most methods require source data during training, raising storage and
privacy concerns, especially in sensitive fields like healthcare [14]. This highlights
the need for source-free OSDA [17], [24], which operates without access to source
data. However, source-free OSDA is still under-explored, with only a few methods
like SHOT [17], AaD [34], USD [9], UPUK [30], and LEAD [24]. Without source
data, source-free OSDA faces greater challenges in both domain alignment and
known-unknown separation due to absent source features and known classes.

In addition to being source-dependent, current OSDA methods usually dis-
cover unknown samples using either (1) logit space information, such as the data
similarity based on maximum class probabilities [18], prediction variances [28],
entropy values [33], [17], confidence scores [10], [2], the Jensen-Shannon distance
between logits and pseudo labels [9]; or (2) feature space information, including
factorized representations [1], distances between source and target features from
unknown data [12], a common feature space [32], or decomposed feature com-
ponents [24]. Relying solely on logit-space or feature-space information is often
insufficient for known-unknown separation, as unknown samples may be easier
to identify in one space but harder in the other. Virtual-logit Matching (ViM)
[31] first introduced the use of dual-space information for Out-of-Distribution
(OOD) detection by constructing a virtual logit to represent an OOD class.
However, ViM cannot be directly applied to source-free OSDA since it relies
on in-distribution data, which is unavailable in source-free settings. Moreover,
ViM requires a user-specified threshold for separation, limiting its practicality.
Therefore, a new known-unknown separation method is needed by leveraging
dual-space information without depending on source data or threshold tuning.

To overcome these limitations, we propose Progressive Dual-space Discover-
ing (PDD), which leverages information from both logit and feature spaces to
achieve domain alignment and known-unknown separation in source-free OSDA.
Without source feature and known-class information, PDD progressively selects
credible target samples that closely align with the known-class distribution. This
selection is guided by a progressive dual-space discovering strategy, which inte-
grates energy-based selection in logit space with prototype-based refinement in
feature space, utilizing logits and features obtained from previously trained mod-
els. Through this iterative process, PDD constructs a series of credible domains
with gradually shifting distributions across multiple stages (Fig. 1), progressively
enhancing the domain alignment for known classes.

With the constructed credible domain, PDD performs clustering by leverag-
ing both feature-space information from the credible domain and logit-space in-
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formation from the pre-trained models. This clustering process divides the target
samples into known and unknown parts, forming known and unknown domains.
Given these established domains, we employ cross-entropy loss to optimize learn-
ing within the credible domain and HSIC loss to align the known domain with
the credible domain, reinforcing the learning of known classes. Furthermore,
dual-space uncertainty losses facilitate effective separation between known and
unknown classes. Extensive experiments on three benchmarks demonstrate that
our PDD method achieves new state-of-the-art performance. Contributions are
summarized below:
(1) We propose Progressive Dual-space Discovering (PDD) for source-free OSDA,
leveraging feature and logit space information to enhance domain alignment and
known-unknown separation. The framework of PDD is provided in Fig. 2.
(2) To address the absence of source data and the resulting lack of source feature
and known-class information, PDD constructs credible domains that are close to
the known-class distribution using the previously trained models, progressively
enhancing the domain alignment for known classes over multiple stages.
(3) To facilitate known-unknown separation, PDD performs clustering by lever-
aging both feature-space information from the credible domain and logit-space
information from previously trained models.
(4) Extensive experiments on three OSDA benchmarks confirm that PDD achieves
state-of-the-art performance, validating the effectiveness of dual-space discover-
ing, known-unknown separation, and progressive updates.

Fig. 1: Progressive dual-space credible target domain construction.

2 Method

2.1 Problem formulation

Domains, datasets, and source model. Suppose that there is a source do-
main Ds and a target domain Dt. For Ds, the input space and discrete label space
are respectively denoted by Xs and Ys ∈ {1, 2, · · · , L}. For Dt, the input space
and discrete label space are respectively denoted by Xt and Yt ∈ {1, 2, · · · , L′}.
The target dataset for Dt is denoted by Dt = {(xt

i, y
t
i)}

nt
i=1. The source dataset

for Ds is given by Ds = {(xs
i , y

s
i )}

ns
i=1. With the source dataset Ds, a source
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Fig. 2: PDD framework for constructing target model fk. Before con-
structing fk, a credible domain Dc,k ⊂ Dt is constructed by selecting samples
close to known-class distribution. Unknown classes are identified by discovering
in both feature and logit spaces, resulting in unknown domain Dun,k and known
domain Dkn,k with Dun,k∪Dkn,k = Dt and Dun,k∩Dkn,k = ∅. For the discovered
unknowns in feature space (FU), each representation θk(x

t
i) in Dt decomposes

into θk(x
t
i)

P (principal space component) and θk(x
t
i)

P⊥
(deviation component).

In logit space, the discovered unknowns LU are obtained from negative energy
scores. Cross-entropy loss Lls

cre trains on credible samples in Dc,k. HSIC loss
LHSIC aligns Dkn,k with Dc,k to improve the learning of known classes. Dual-
space uncertainty losses LFU

unc and LLU
unc facilitate known-unknown separation.

model fs : (θs, gs) is pre-trained with two canonical stages: representation fol-
lowed by classification. The feature extractor, denoted as θs : Xs → Rd, maps the
input data to a d-dimensional representation in the feature space Z. This repre-
sentation is then passed through the classifier gs : Rd → RL, which transforms
the representation into a logit vector δ ∈ RL. The transformation is achieved
through a fully connected layer with weight matrix W ∈ Rd×L and bias vec-
tor b ∈ RL, formally expressed as δi = WTxs

i + b. The final soft predictions,
yielding the probability distributions P = {pi}ns

i=1 = {[pi,1, pi,2, . . . , pi,L]}ns

i=1,
are obtained by applying the softmax function to the logits.
Source-free open-set unsupervised domain adaptation. Due to the source-
free and unsupervised constraints, source data Ds and true target labels {yti}

nt
i=1

are unavailable during adaptation. Besides, the source label set Cs ⊂ Ys and
target label set Ct ⊂ Yt satisfy Cs ⊂ Ct, with the target-private label set
Ct = Ct\Cs. Our goal is to adapt the source pre-trained model to obtain a
target model ft that can classify target samples into L known classes in Cs and
identify them as “unknown” if they belong to Ct.
Adaptative training process. To obtain the target model ft : (θt, gt), we
freeze the classifier (gt = gs) and train only a target-specific feature extractor θt
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to ensure that target features from known classes align with the source features
through same decision boundaries [17]. The adaptation process is divided into
K successive stages, initializing θ0 as the source feature extractor θs and per-
forming a training step to obtain f1. This process continues iteratively, updating
model from fk−1 at stage k − 1 to fk at stage k.

2.2 Progressive credible domain construction

This section progressively constructs a credible domain, Dc,k, at each stage k
to select target samples that are more likely to belong to, or close to, the dis-
tribution captured by the previous model, fk−1, initialized from a source model
pre-trained on known-class data. Consequently, the selected credible samples
inherently reflect the characteristics of known-class distribution. Through this
iterative process, PDD constructs a series of credible domains with gradually
shifting distributions across multiple stages (Fig. 1), enhancing domain align-
ment for known classes. This selection is performed in dual-space: energy-based
selection in the logit space, followed by prototype-based refinement in the feature
space, which together enhance the reliability of the credible domain.

Energy-based selection in logit space. We begin by operating in logit
space, selecting samples with high negative energy (NE) scores to form a group
Ce. This method leverages the established correlation between NE scores and
sample likelihood within the distribution learned by the previous model fk−1

[19]. A higher NE score NE(xt
i) indicates that the sample xt

i is more likely to
belong to or closely match the distribution captured by fk−1. Since fk−1 was
initialized from a source model pre-trained on known-class data, a high NE score
NE(xt

i) suggests that xt
i is more likely to be within the known-class distribution.

Therefore, we use NE scores, NE(xt
i), to identify credible samples.

For a target sample xt
i, the negative energy score, based on the logits δi from

the model fk, is computed as NE(xt
i) = log

∑L
l eδi,l , where δi,l denotes the logit

of xt
i for class l. A higher NE(xt

i) indicates that xt
i is more likely to belong

to, or closely match known-class distribution and is thus a credible known-class
sample, while lower values suggest reduced credibility. Accordingly, the group Ce
is defined by selecting target samples whose negative energy values rank within
the top σent values: Ce = {xt

i | xt
i ∈ Xt, i ∈ topσent

({NE(xt
i)}

nt

i=1)}, where
{NE(xt

i)}
nt

i=1 denotes the set of negative energy scores for all target samples,
and σe is a scaling parameter.

Prototype-based refinement in feature space. To enhance the cred-
ibility of Ce, we further refine Ce by leveraging geometric prototypes for L
classes in feature space. Specifically, the prototype µl for class l is computed
as µl =

∑nt
i=1 pi,l θk(x

t
i)∑nt

i=1 pi,l
, 1 ≤ l ≤ L, where pi,l represents the probability of

sample xt
i belonging to class l, and θk(x

t
i) denotes its representation.

For each class l, the distance between the representation θk(x
t
i) and the

prototype µl is given by d(θk(x
t
i), µl), where d(·, ·) denotes the cosine distance.

Using µl, the credible group for class l, i.e., Cl, is defined by selecting samples
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from Ce that have the small distances to µl:

Cl =
{
(xt

i, l) | xt
i ∈ Xt, d(θk(x

t
i), µl) ∈ topm

(
{d(θk(xt

j), µl) | xt
j ∈ Ce}nt

i=1

)}
,

where l represents the pseudo-label for xt
i, and topm denotes the selection of

the m samples from Ce with the smallest distances to µl. This iterative selection
continues until Cl reaches m samples. The number of selected target samples m
per class l is defined as m = ⌊m0 + (kη) ·m0⌋, where m0 is the initial number
of selected samples, k is the current epoch, and η is an enlarging factor that
progressively increases credible domain size.

The final credible domain Dc,k for stage k is obtained by combining the
credible groups across all classes: Dc,k =

⋃L
l=1 Cl =

⋃L
l=1 {(xt

i, l) | xt
i ∈ Cl} . For

analysis, we denote the credible domain at stage k as Dc,k =
{
(xt,c

i , ỹti)
}mL

i=1
.

2.3 Progressive construction of known and unknown domains

Discovered unknowns in feature space. To achieve known-unknown separa-
tion, we leverage the principal subspace P , obtained from the eigen-decomposition
of representations in credible domain Dc,k. Since the credible domain closely re-
flects the characteristics of known-class data as analyzed in Section 2.2, the prin-
cipal subspace P captures the core structure of known samples. Consequently,
target samples lie within or near P are likely from known classes, while those
deviating significantly suggest an unknown distribution. By measuring the dis-
tance of sample representations from P , we can distinguish between samples
from known and unknown classes.

Inspired by the principal subspace definition in residual score [31], we define
the principal subspace P by first offsetting the feature space with the vector o =
−(WT )+b, removing the influence the bias term b on sample positioning. Here
W and b represent the weight matrix and bias vector from the fully connected
layer. The subspace P is then constructed using the adjusted representations Z̃
from the credible domain Dc,k, where each element z̃i = θk(x

t,c
i )−o denotes the

representation of credible sample xt,c
i in the new coordinate system with origin

o. Performing eigen-decomposition on the matrix Z̃T Z̃ yields Z̃T Z̃ = QΛQ−1,
where the eigenvalues in Λ are sorted decreasingly. The span of the first d′

columns of Q forms the d′-dimensional principal subspace P . In this study, d′
set to d′ = ⌊d

2⌋, capturing the main structures of the credible domain. Let R ∈
Rd×(d−d′) be the matrix formed by the (d′+1)-th column to the last column of Q.
For any target sample xt

i with representation θk(x
t
i), the orthogonal projection of

θk(x
t
i) outside the principal subspace P is given by RRT θk(x

t
i). The unknowns

discovered in feature space is defined as the norm of the component of θk(xt
i)

that lies outside P , i.e., fui =
√

θk(xt
i)RRT θk(xt

i). A larger fui indicates that
xt
i is farther away from P , suggesting it may belong to the unknown distribution.

For all target samples, the discovered unknowns in feature space are denoted by
FU = [fui, ..., funt

]T ∈ Rnt .
Discovered unknowns in logit space. Given the logit δ from model

fk, the negative energy scores for target domain are represented as LU =
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[
NE(xt

1),NE(xt
2), . . . ,NE(xt

nt
)
]T ∈ Rnt , where NE(xt

i) = log
∑L

l eδi,l . As dis-
cussed on Section 2.2, the negative energy scores is linearly correlated with the
likelihood of samples being known. Higher values of NE(xt

i) indicate a higher
likelihood, making these samples credible for the previous target model fk−1

on the previous stage, thus more likely being the data from known classes. Con-
versely, samples with low negative energy values are less credible for model fk−1,
thus more likely being the data from unknown classes.

Discovery of unknowns. The obtained FU and LU are combined into
a clustering feature matrix U = [FU,LU] ∈ Rnt×2. Using U, a clustering
algorithm, such as K-means [6] or Gaussian Mixture Model [25], is applied
to divide samples into two clusters Ca and Cb, which are assigned as either
the known cluster Ckn or unknown cluster Cun. The unknown cluster Cun is
identified as the one with the lower mean negative energy score, i.e., Cun =

argminC∈{Ca,Cb}

{
1
|C|

∑
xt
i∈C NE(xt

i)
}

, while the known cluster Ckn has higher

mean negative energy, i.e., Ckn = argmaxC∈{Ca,Cb}

{
1
|C|

∑
xt
i∈C NE(xt

i)
}

.
The pseudo labels for samples from unknown classes can be assigned with

ỹti = L + 1 as they are considered belonging to the class L + 1. For identified
samples from known classes, it can be further specified using the distance of each
known sample to the class prototypes µl, which are

ỹti =

{
L+ 1, if xt

i ∈ Cun (unknown),
argminl d(θk(x

t
i), µl), if xt

i ∈ Ckn (known).

This results in the unknown domain Dun,k for stage k defined as Dun,k =
{(xt

i, L+ 1) | xt
i ∈ Cun}, and the known domain Dkn,k as Dkn,k = {(xt

i, argminl
d(θk(x

t
i), µl)) | xt

i ∈ Ckn}. The designed clustering for known-unknown separa-
tion improves reliability by combining feature and logit space insights. When a
sample is identified as unknown in both spaces, it strengthens our confidence in
classifying it as unknown. If it aligns in only one space, the dual-space method
captures this inconsistency, reducing errors. Further analysis of the separation
mechanism is in Section 3.3. For analysis, we denote the known domain Dkn,k at
stage k as Dkn,k = {(xt

i, ỹ
t
i)}

mkn

i=1 = {(xt
i, argminl d(θk(x

t
i), µl))}

mkn

i=1 , unknown
domain Dun,k at stage k as Dun,k = {(xt

i, ỹ
t
i)}

nt−mkn

i=1 = {(xt
i, L+ 1)}nt−mkn

i=1 ,
where mkn is the number of known class samples selected from clustering.

2.4 Target domain adaptation

This section introduce the designed loss function to progressively update the
model fk for target domain adaptation.

Credible domain learning. To ensure effective learning on the credi-
ble domain Dc,k, a cross-entropy loss with label smoothing is employed [22]:
Lls
cre (fk) = −E(xt

i,ỹ
t
i)∈Dc,k

∑L
l=1 δ

t
l log fk (xt), where δtl = (1− α)qtl + α/L, with

qt as the one-hot encoding of the pseudo label ỹti and α = 0.1 as the smoothing
parameter. Here, fk (xt

i) is the softmax logit of model fk.



8 Q. Zhan et al.

Dual-space learning of unknowns. With the defined known domain Dkn,k

and unknown domain Dun,k at stage k, we define an dual-space uncertainty losses
in both feature and logit spaces to enhance the differentiation of the model be-
tween the samples from known and unknown classes. Specifically, the uncertainty
loss in feature space is defined as

LFU
unc (fk) = exp

[
E(xt

i,ỹ
t
i)∈Dkn,k

fui

]
− exp

[
E(xt

i,ỹ
t
i)∈Dun,k

fui

]
, (1)

where fui, calculated using Sec. (2.3), represents the discovered unknowns in
feature space of each target sample xt

i. This loss encourages smaller values of
fui for samples from known classes and larger values for samples from unknown
classes, thereby reinforcing separation in the feature space. Similarly, the uncer-
tainty loss in logit space is defined as

LLU
unc (fk) = exp

[
E(xt

i,ỹ
t
i)∈Dkn,k

−
∑L

i=1 pi,l log pi,l
logL

]

− exp

[
E(xt

i,ỹ
t
i)∈Dun,k

−β
∑L

i=1 pi,l log pi,l
logL

]
, (2)

where pi,l represents the softmax probability of class l for sample xt
i. The scaling

parameter β adjusts the emphasis on minimizing uncertainty for unknown sam-
ples. A larger β encourages faster learning for classifying uncertain samples. This
loss facilitates lower entropy for samples from known classes and higher entropy
for those from unknown classes, reinforcing separation in the logit space.

Domain alignment for knowns. As analyzed in Section 2.2, the distribu-
tion within credible domain Dc,k is close to the known-class distribution. There-
fore, aligning Dc,k with the known domain Dkn,k facilitates the adaptation of
samples from known classes. To achieve this alignment, we use the Hilbert-
Schmidt Independence Criterion (HSIC), a kernel-based method that measures
statistical dependence between distributions without requiring density estima-
tion [4]. By capturing dependencies between credible and known domains, HSIC
supports effective domain adaptation for samples from known classes.

To calculate the HSIC value, each class prototype µ̃l within the credible
domain Dc,k is refined as µ̃l =

∑mL
i=1 pi,l θk(x

t
i)∑mL

i=1 pi,l
, 1 ≤ l ≤ L,xt

i ∈ Dc,k, where
pi,l represents the probability for sample xt

i belonging to class l. Using these
refined class prototypes, each target sample xt

i in the known domain is assigned
a prototype µ̃li based on the nearest distance: li = argminl d(θk(x

t
i), µ̃l). Let

N = {θk(xt
i)}

mkn

i=1 represent the target representations in the known domain,
and M = {µ̃li}

mkn

i=1 represent the corresponding prototypes from the credible
domain. Using N and M, we compute the HSIC value to measure dependence
between the two distributions and define the HSIC loss for domain alignment
as: LHSIC = HSIC(N,M). Due to space constraints, the detailed calculation of
HSIC(N,M) is provided in the Supplementary Material.
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2.5 Overall objective

Combining the designed losses, the overall objective function is formulated as

Lobj = Lls
cre + LHSIC + λ1LFU

unc + λ2LLU
unc, (3)

where λ1 and λ2 are regularization parameters.The pseudo code of PDD is pre-
sented in the Supplementary Material.

3 Experiments

3.1 Setup

Datasets. PDD is evaluated on three image classification benchmarks: Office-
31, Office-Home, and Digits. (1) Office-31 [26] includes three object domains:
AMAZON (A), DSLR (D), and WEBCAM (W), each with 31 classes. The first
10 classes (alphabetically) are used as known classes, and the others as unknown,
forming 6 OSDA tasks: A → D, · · · , W→D. (2) Office-Home [29] includes four
domains: Artistic (Ar), Clipart (Cl), Product (Pr), and Real-World (R), each
with 65 classes. Classes 1–25 are labeled as known and 26–65 as unknown, cre-
ating 12 OSDA tasks: Ar→Cl, · · · , R→Pr. (3) Digits [8] include three datasets:
MNIST (M), SVHN (S), and USPS (U). Classes 0–4 are labeled as known, and
classes 5–9 as unknown, forming 3 OSDA tasks: S→M, · · · , U→M.
Baseline. This study compares the performance of our PDD with the standard
OSDA methods such as OSBP [28], STA [18], ROS [2], OSLPP [32], DANN [5],
ANNA [15], BCL [7], and source-free OSDA methods such as SHOT [17], AaD
[34], USD [9], UPUK [30], and LEAD [24].
Evaluation Metrics. Three widely-used metrics are adopted for evaluation
[28], [18]: (1) OS*: normalized accuracy for the known classes only; (2) UNK:
accuracy of the unknown class; and (3) HOS: harmonic mean accuracy of OS*
and UNK. Detailed calculations of these metrics and implementation details are
provided in the Supplementary Material.

3.2 Main Results

Tables 1, 2, and 3 present HOS score comparisons on Office-31, Office-Home, and
Digits datasets. ✓ denotes source-free OSDA methods, while ✗ denotes standard
OSDA methods. The best performance among source-free methods is in bold
blue. While standard OSDA methods often outperform source-free methods due
to direct access to source data, PDD achieves HOS scores competitive with top-
performing standard OSDA methods on tasks such as A → D in Office-31, Ar →
Pr in Office-Home, and U → M in Digits. Among source-free OSDA methods,
PDD consistently outperforms all other methods across every task in Office-
Home and most tasks in Office-31 and Digits. Notably, on tasks like A → D
in Office-31 and R → Ar in Office-Home, PDD shows marked improvements,
validating the effectiveness of PDD in source-free OSDA.
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Table 1: HOS (%) on 6 tasks from Office-31. Additional results for OS* and
UNK metrics are available in Supplementary Material.

Method SF? A-D A-W D-A D-W W-A W-D AVG

OSBP [28] ✗ 82.4 82.7 75.1 97.2 73.7 91.1 83.7
STA [18] ✗ 75 75.9 73.2 69.8 66.1 75.2 72.6
ROS [2] ✗ 82.4 82.1 77.9 96 77.2 99.7 85.9
DANCE [27] ✗ 66.9 70.7 80 84.8 65.8 70.2 73.1
cUADAL [11] ✗ 90.1 87.9 98.2 99.4 80.5 75.1 88.5
OSLPP [32] ✗ 91.5 89 79.3 92.3 78.7 93.6 87.4
ANNA [15] ✗ 83.8 85.5 82.5 99.5 81.6 98.4 88.6
BCL [7] ✗ 92.4 88.3 84.8 99.5 86.9 99.7 92.1

SHOT [17] ✓ 62 58.7 53.3 86.1 59.6 82.1 67
AaD [34] ✓ 78.3 74.3 74.2 87 73 95.7 80.4
USD [9] ✓ 81.2 77.9 73.9 97.3 74 95.2 83.3
UPUK [30] ✓ 76.7 80.0 75.5 83.2 78.2 84.3 79.7
LEAD [24] ✓ 84.9 85.1 90.2 94.8 90.3 96.5 90.3

PDD ✓ 93.4 86.5 84 97.8 81.5 99.6 90.5

Table 2: HOS (%) on 12 tasks from Office-Home. Additional results for OS* and
UNK metrics are available in Supplementary Material.
Method SF?Ar-ClAr-PrAr-RCl-ArCl-PrCl-R Pr-ArPr-ClPr-RR-ArR-ClR-PrAVG

OSBP[28] ✗ 55.1 65.2 72.9 64.3 64.7 70.6 63.2 53.2 73.9 66.7 54.5 72.3 64.7
STA[18] ✗ 56.3 63.7 62.1 57.9 62.5 66.3 61.9 53.2 69.5 67.1 54.5 64.5 61.1
DAOD[3] ✗ 60.5 56.6 69.5 60.4 60.4 65.8 59.1 49.4 62.5 52.5 45.5 49.1 57.6
DANCE[27] ✗ 53.1 49.8 39.4 40.9 45.9 30.2 54.2 55.7 41.2 27.5 48.3 44 44.2
ROS[2] ✗ 60.1 69.3 76.5 58.9 65.2 68.6 60.6 56.3 74.4 68.8 60.4 75.7 66.2
cUADAL[11]✗ 63.6 71.6 77.5 65 68.3 72.6 62.9 54.6 76.8 72.6 59.9 76.7 68.5
OSLPP[32] ✗ 61 72.8 74.3 60.9 66.9 70.4 63.6 59.3 74 67.2 59 74.4 67
ANNA[15] ✗ 69 73.7 76.8 64.7 68.6 73 66.5 63.1 76.6 71.3 65.778.7 70.7
BCL[7] ✗ 64.3 75.4 79.0 63.1 70.0 73.4 66.2 62.5 77.3 69.7 64.7 82.1 70.8

SHOT[17] ✓ 39.5 39.8 47 54.6 40.2 39.1 57.7 40.8 46.2 59.9 40.1 42.3 45.6
AaD[34] ✓ 57.6 66.9 69.9 60.5 61.4 67.8 60.1 55.9 70.6 64.6 57.5 70.1 63.6
USD[9] ✓ 61.1 70 76.3 60.1 65.2 68.9 62.6 56.3 72.2 67.8 59.1 71.1 65.9
UPUK[30] ✓ 55.8 76.7 78.4 66.4 73.1 77.6 67.6 55.1 78.6 67.8 59.4 74.4 69.2
LEAD[24] ✓ 60.7 70.8 76.5 61.0 68.6 70.8 65.5 59.8 74.2 64.8 57.7 75.8 67.2

PDD ✓ 67.3 79.5 82.1 67.3 76.5 77.8 71.5 59.9 81.0 75.6 64.280.4 73.6

3.3 Further Analyses

(1) Mechanism of PDD for Known-Unknown Separation. PDD clusters
known and unknown samples by discovering unknowns in both feature (FU)
space and logit (LU) space, as illustrated in Fig. 3 for the W → D task on Office-
31. Initially (Fig. 3a), there is obvious overlap between known and unknown
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Table 3: HOS (%) on tasks from Digits. Additional results for OS* and UNK
metrics are available in Supplementary Material.

SF? OSVM DANN ATI-λ OSBP STA KASE BADA PDD

[10] ✗ [5] ✗ [23] ✗ [28] ✗ [18] ✗ [16] ✗ [36] ✗ ✓

S-M 18 65.5 69.6 58.4 63.7 65.3 83.5 64.9
U-M 48.5 89.8 84 95.8 95.1 93.9 86.3 95.8
M-U 83 86.8 80.4 91.7 91.6 91.7 90.8 92.8
AVG 61.4 80.8 78.4 82 83.6 83.7 86.9 94.3

samples, hindering separation accuracy. As training progresses, PDD increases
LU and reduces FU for known samples while doing the opposite for unknowns.
By Epoch 6 (Fig. 3b), this strategy reduces overlap, clustering known samples
(high LU, low FU) and unknown samples (low LU, high FU) more effectively. By
Epoch 15 (Fig. 3c), clusters for known and unknown samples are well-established,
achieving clear separation in both spaces. This progressive dual-space adaptation
enables reliable identification of known and unknown samples.

Fig. 3: Progressive clustering of known and unknown samples in dual spaces
(feature and logit) across training epochs.

(2) Ablation on Dual-Space Discovering and Progressive Updates.
We evaluate PDD against three variants on HOS scores in the Office-31 dataset,
as shown in Fig. 4. (1) PDD w/o P. This variant skips progressive construc-
tion of credible domain Dc,k, known domain Dkn,k, and unknown domain Dun,k

at each epoch. PDD significantly outperforms PDD w/o P, indicating the im-
portance of updating these domains progressively for domain alignment and
known/unknown separation. (2) PDD w/o OSD and PDD w/o FSD: PDD
w/o OSD excludes logit space discovering when constructing known/unknown
domains and the logit space uncertainty loss LLU

unc, while PDD w/o FSD removes
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feature space discovering and feature space uncertainty loss LFU
unc. PDD demon-

strates superior performance over both variants, confirming the effectiveness of
dual-space discovering and adaptation for accurately identifying unknowns.

Fig. 4: HOS comparison of PDD and its three variants on Office-31.

(3) Ablation Analysis on Loss Component Contributions. We eval-
uate PDD with different combinations of loss components. Table 4 presents the
HOS scores on the Office-31 dataset for various configurations. The results in the
last row show that PDD incorporating all four loss components yields the highest
overall HOS scores across most tasks. This highlights the complementary roles of
each component: Lls

cre improves credible data learning, LHSIC enhances domain
alignment, and LLU

unc and LFU
unc facilitate effective known-unknown separation.

Table 4: HOS (%) from ablation analysis of individual loss components on various
tasks in the Office-31 dataset.

A→D A→W D→A D→W W→A W→D

PDD w/o Lls
cre 89.9 84.8 84.3 95.7 80.9 95.2

PDD w/o LHSIC 92.6 84.8 84.1 96.1 80.6 96.6
PDD w/o LFU

unc 91 85.6 83.5 93.7 81.4 95
PDD w/o LLU

unc 91.6 74.5 74.5 72.4 74.2 95.6
PDD 93.4 86.5 84 97.8 81.5 99.6

(4) HOS during Training. As shown in Fig. 5, we present HOS curves of
AaD, SHOT, and PDD on Office-31 tasks D → A, D → W, as well as Office-
Home tasks Ar → Cl and Ar → Pr. HOS scores for AaD and SHOT either remain
stable or decline during training. This is because SHOT, designed for closed-set
settings, lacks mechanisms to explicitly separate unknown samples from known
ones in OSDA. In contrast, our method consistently achieves the highest HOS
scores and steadily improves over epochs, validating its training stability.

(5) Impact of Parameters σe, m0, and η. Fig. 6 analyzes the impact
of σe, m0, and η on HOS scores, which control the sample numbers in credible
domain. For m0 (first subplot), a lower value like 5 results in fewer samples se-
lected, restricting learning due to limited data. Conversely, a higher m0 (e.g.,
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Fig. 5: HOS variation curve for methods AaD, SHOT, and PDD during training
on Office-31 and Office-Home tasks.

20) allows more samples but introduces noise from non-credible data, reducing
HOS stability. Moderate values like 10 or 15 achieve a balance, selecting enough
samples and yielding high, stable HOS scores. This trade-off also applies to η and
σe: larger values enhance learning by increasing sample count but reduce credi-
bility, while smaller values improve credibility but limit learning data. Therefore,
optimal and stable performance is achieved with moderate parameter settings:
m0 between 10 and 15, σe between 0.4 and 0.8, and η between 0.1 and 0.5.
These ranges provide a balanced trade-off, maximizing learning potential while
preserving sample credibility.

Fig. 6: Effect of σe, m0, and η on HOS in Office-31 dataset.

(6) Sensitivity to Loss Coefficients β, λ1, and λ2. We evaluate the
sensitivity of PDD to variations in loss coefficients β, λ1, and λ2, which influ-
ence uncertainty losses across feature and logit spaces. Fig. 7 shows that HOS
remains stable across varying λ1 and λ2 values (first and second plot), indicat-
ing robustness to these parameters. Although minor variations may occur on
specific tasks, the overall impact across multiple tasks remains minimal. For β
(third plot), a higher value (e.g., 3) overemphasizes uncertainty, reducing HOS
and affecting performance, while β = 0 neglects logit space uncertainty, leading
to suboptimal performance. Moderate values (1 or 2) provide better balance,
effectively managing uncertainty without overfitting.

(7) Impact of Openness. To verify the robustness of PDD across varying
openness levels, we conducted experiments on Office-31 dataset with openness
O set to {0.25, 0.5, 0.75, 0.93}, where O = 1− |Cs|

|Ct| , following [18]. Higher O val-
ues indicate greater challenges due to more unknown classes in target domain.
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Fig. 7: HOS variation on Tasks W → A and A → W in the Office-31 dataset as
the λ1, λ2 and β varying.

Fig. 8 presents HOS performance for PDD, AaD, and SHOT on tasks A→W
and W→D. While AaD and SHOT degrade as openness increases, likely due to
reliance on source-like samples, PDD remains stable or improves, consistently
outperforming both methods across all openness levels. This stability is due to
its dual-space discovering of unknowns, improving known-unknown separation.
Besides, as openness increases and known classes decrease, the classification of
known data is simplified, further supports the domain alignment. All these high-
lights its effectiveness across varying openness levels in OSDA.

Fig. 8: HOS performance comparison of PDD, AaD, and SHOT on Office-31
dataset across different openness levels.

(8) Feature Visualization. We visualize the last-layer features of ResNet-
50, AaD, SHOT, and PDD on W → D task using t-SNE embeddings, as shown
in Fig. 9. For ResNet-50, AaD, and SHOT methods, we observe overlapping
features between known and unknown classes, along with the misalignment be-
tween source and target features within the same known classes. In contrast,
PDD achieves an obvious separation between known and unknown classes. Be-
sides, within each known class, PDD closely aligns source and target samples,
demonstrating effective domain alignment. These results indicate that PDD suc-
cessfully identifies unknown samples and achieves consistent alignment of source
and target features for known classes, validating its effectiveness.
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Fig. 9: Visualization of the features extracted by ResNet-50, AaD, SHOT, and
PDD on Office-31 task W → D using t-SNE embeddings, respectively. ◦ and
+ represent the source and target data. Different classes are distinguished by
unique colors, with unknown samples marked in light blue.

4 Conclusion

This study introduces PDD, a source-free OSDA method that leverages dual-
space, i.e., both feature and logit spaces information to improve alignment and
known-unknown separation. By progressively constructing a credible domain
through dual-space selection and establishing known and unknown domains
via dual-space discovering, PDD achieves effective alignment for known classes
across domains and known-unknown separation. Extensive experiments validate
the effectiveness of our dual-space consideration and progressive updates, with
PDD achieving state-of-the-art performance across three OSDA benchmarks.
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