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Abstract. Multimodal Learning is one of the many fields in Machine
Learning where models leverage the combination of various modalities
to enhance learning outcomes. However, modalities may differ in data
representation and complexity, which can lead to learning imbalances
during the training process. The time it takes for a certain modality to
converge during training is a crucial metric to determine modality im-
balance. Given differences in convergence rates, different modalities may
harmfully interfere with each other’s learning process when simultane-
ously trained, as is commonly done in a multimodal scenario. To mitigate
this negative impact, we propose Alternating Multimodal Skip Training
(AMST) where the training frequency is adjusted for each specific modal-
ity. This novel method not only improves performance in conventional
multimodal models that learn with fused modalities but also enhances
alternating models that train each modality separately. Additionally, it
outperforms state-of-the-art models while reducing training times.
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1 Introduction

Multimodal Machine Learning aims to mimic how humans rely on different
senses to analyse, judge, and act in distinct situations. Inspired by this aspect of
human perception, multimodal models leverage diverse sensory inputs to improve
learning outcomes. However, with multimodal learning comes its challenges. A key
difficulty in recent multimodal approaches is the integration of information from
multiple modalities, without having them negatively interfere with each other,
in a way where rich modality-specific information is lost. Studies such as [14,15]
have previously confirmed that some modalities tend to be more "dominant"
than others, which causes the learning process to focus disproportionately on
them, thereby limiting the contribution of other, potentially richer, modalities.
Even though the "dominance" of one modality over another does not measure its
informativeness or discriminative power, it affects the overall model performance.

Generally, raw data produced from different sensors and the way it is repre-
sented may differ in complexity when processing it. Consequently, more complex
data may require longer training times than data with simpler representations.
For example, when representing a video in both audio and visual modalities, it is
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Fig. 1: Example of AMST’s pipeline for 2 modalities (Audio and Visual): The
Alternating Module (a) comprises both audio and visual encoders. The Shared
Head predicts for audio and visual modalities individually. The Joint Module
(b) consists of audio and visual encoders that produce a fused concatenated
representation. The Independent Head predicts with the joint representation. The
Full Architecture (c) averages the visual and audio outputs from the Alternating
Module and the joint output from the Joint Module for a prediction.

relatively straightforward to create a single representation for the entire audio of
the video. In contrast, generating a single representation for the visual modality
often requires concatenating frames from various time steps, resulting in a more
complex data representation overall. Recent methods do not address the issue of
modality imbalance related to convergence rates, which leads to inefficient train-
ing and negatively affects the overall model performance. Neglecting differences
in modality convergence rates allows certain modalities to overfit at different
stages, resulting in the under optimisation of those that learn more slowly. When
a modality overfits to the training data earlier than others, the multimodal model
tends to prioritise it, causing premature convergence.

We address the problem of modality dominance related to convergence rates,
by allowing the model to train more frequently on the data with the highest
complexity, i.e., the slowest learning modalities, while periodically training it on
the fastest learning ones. Inspired by human perception, the proposed method
emulates how people allocate more effort to a more challenging task while still
occasionally practising the simpler one. This uneven focus ultimately yields
comparable performance across all tasks despite their different complexities.

Our approach, as illustrated in Figure 1, is built upon two modules, Alter-
nating and Joint, both including skip training (see Figure 2). This approach led
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Fig. 2: AMST’s training framework with skip parameter set to 3 for the audio
modality and 1 for visual. (a) represents an epoch in which audio is not skipped
and both modalities are updated. (b) represents an epoch in which the audio
is skipped and only visual is updated. (c) represents how the training should
proceed: 2 consecutive skip epochs as in (b) for every non-skip epoch as in (a).

to the creation of the Alternating Multimodal Skip Training (AMST) method.
The contribution of this paper is summarised as follows:

– We introduce Alternating Multimodal Skip Training (AMST), a novel method
that (1) optimises the multimodal learning process without compromising
the modality-specific information, and (2) addresses modality imbalance due
to different convergence rates across modalities.

– We conduct experiments to show that AMST is able to (1) decrease the
dominance gap related to convergence rates between the different modalities
through skip training, (2) outperform the closest state-of-the-art methods, (3)
increase the performance compared to when any of its key components are
removed, and (4) greatly reduce overall computational expenses compared to
the fastest existing methods.

The remainder of this paper is structured as follows: Section 2 introduces the
related work. Our method AMST is presented in Section 3. The experiments are
detailed in Section 4 and the results are discussed in Section 5. We conclude our
work in Section 6. We provide the code at https://github.com/CXianRen/AMST.

2 Related Work

Modality convergence rate has previously been studied in works such as [14,15,7].
In [14], the authors demonstrated that different modalities overfit and generalise

https://github.com/CXianRen/AMST
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at different rates, which makes conventional joint training of multimodal data
not optimal, compared to the best unimodal counterpart. The finding that joint
training of multimodal data is not optimal was also demonstrated in [12].

Several methods have been proposed to mitigate the impact of different
convergence rates on the learning process. [11] proposed "on-the-fly gradient
modulation", where the authors dynamically adjusted the gradient contributions
of each modality during training. Inspired by [11], [6] developed an adaptive gra-
dient modulation. Similarly, [7] took a comparable approach, while [3] introduced
Prototypical Modal Rebalance (PMR). Here, prototypes were created. These
represent centroids in the feature space for each class and serve as targets for each
modality to cluster around, encouraging the alignment of slow-learning modali-
ties. In [14], the authors proposed the gradient blending method to compute “an
optimal blending of modalities based on their overfitting behaviours”. Further,
in [15], a metric called conditional learning speed was proposed to measure the
learning speed of an individual modality relative to the other modalities. [12]
suggested balancing the learning rates across modalities such that the modality
nearing convergence would be given a lower learning rate so other modalities
could catch up. The idea of adapting the learning rate was also proposed by [17].

In addition to balancing the learning rate, [12] also suggested separating
the unimodal network from the multimodal network to allow modality-specific
optimisation. Modality-specific optimisation is also promoted in a recent method
called MLA [18] with its alternating approach. The aim of MLA is to provide each
modality with an independent learning process in which they can fully leverage
their information, without being disturbed by any other modality. Furthermore,
cross-modal information is captured through a shared head between all modalities.

Our work builds on the alternating approach in MLA [18]. Despite MLA’s
efforts to minimise modality imbalance, we hypothesise that, similar to conven-
tional multimodal joint training approaches, the model may remain biased toward
the faster-learning modality, potentially compromising overall performance.

3 Alternating Multimodal Skip Training (AMST)

This section presents our proposed method. We describe both implemented
modules, Alternating and Joint, explaining how they complement each other
and how skip training is established in each of them, as displayed in Figure 2.

The Alternating Module, Figure 1 (a), aims to reframe the conventional
multimodal joint training practice, where modalities are first fused and trained
together. With the introduction of the alternating framework in [18], we allow
each modality to train independently and learn a complete representation from
its data by having modality-specific losses. Despite the training being done
independently, we rely on a single head that is shared among all modalities.
This shared head, which is simply a classification layer, aims to capture the
cross-modal information while minimising the learning disturbance caused by the
modalities’ interaction.
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The pipeline in the Alternating Module flows as shown in Figure 1 (a). A
dedicated encoder is designed for each modality to generate its distinct latent
representation. These representations are then processed by the shared head where
different predictions are obtained per modality. For each modality, the model’s
parameters are optimised according to its modality-specific loss. Even though the
training of a modality does not influence the encoders of other modalities, the
shared head is always optimised, allowing minimal inter-modal communication.

Contrary to the Alternating Module, the Joint Module, Figure 1 (b), imple-
ments the conventional joint training practice, where full communication between
the modalities is allowed, fusing them at a much earlier stage. However, scenarios
that adopt this approach are more susceptible to modality imbalance related
to convergence rates. This occurs because a single loss function is optimised,
which inherently favours the faster learning modalities. As these modalities overfit
and achieve near-perfect training performance, the overall model also attains
near-perfect performance on the training data. Consequently, the premature
convergence of the loss to near-zero values diminishes the effectiveness of gradient
updates, hindering the learning of slower-learning modalities.

As displayed in Figure 1 (b), the Joint Module has its own encoders, which
follow the same encoder structure as the Alternating Module. Each modality-
specific encoder generates latent embeddings, which are subsequently fused into
a single representation via concatenation. This fused representation is then
processed by a classification layer, referred to as the independent head, as it
operates separately from the Alternating Module’s classification head.

3.1 The Motivation for Skip Training

We observed that each modality learns at different rates, converging at distinct
time steps. Figure 3’s (a) and (c) show the training accuracies of audio and
visual modalities and the overall prediction on the CREMA-D dataset [2], for the
Alternating and Joint Modules, respectively. In both plots, the audio and overall
accuracy curves are closely aligned with each other, suggesting a bias towards
the audio modality in both modules.

In the Alternating Module, Figure 3 (a), by epoch 25, the audio modality
achieves near-perfect accuracy, whereas the visual modality remains at 40%. How-
ever, the overall prediction, derived from averaging the logits of both modalities’
outputs from the shared head, closely follows the audio accuracy curve, suggesting
a bias toward the audio modality in this module. Nevertheless, the visual modality
continues to learn, albeit at a slower pace. Since rapid convergence of the audio
modality does not hinder the learning of the visual modality in this module, we
further examine the impact of not balancing modality convergence rates in an
alternating setup. Figure 4 presents the average entropy values of each modality’s
predictions for each class in the CREMA-D dataset in different experiments.
Lower entropy values indicate greater confidence in the corresponding modality’s
predictions. Figure 4 (a) shows the entropy values of both modalities in all
classes in the default scenario (i.e., when no measures are applied to mitigate
imbalances caused by differing convergence rates). One can see that the observed
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Fig. 3: Accuracies, for both Alternating and Joint modules, on CREMA-D dataset
for audio and visual modalities as well as the overall case considering both
modalities: (a) Alternating Module without skip training. (b) Alternating Module
including skip training. (c) Joint Module without skip training. (d) Joint Module
including skip training. The skip parameter for audio is 5 and for visual is 1.

entropy values for the audio modality are considerably lower than the visual ones,
demonstrating the model’s overconfidence in the audio modality. This further
reinforces the notion that a bias is introduced in favour of the audio modality.

A potential way to mitigate overtraining of faster-learning modalities is
the use of the early stopping technique (for neural networks) for a modality’s
training. However, as demonstrated in Figure 4 (b), where the training of the
audio modality is halted around epoch 30 (5–10 epochs after approaching 100%
accuracy), the gap in average entropy values observed in Figure 4 (a) remains.
This indicates that entirely discontinuing a modality’s training shortly after
convergence does not eliminate the bias formed in its favour. Furthermore, these
findings suggest that the early stages of training play a critical role in establishing
this bias towards the faster-learning modalities. Thus, early stopping alone is
insufficient to address the imbalance due to differing convergence rates.

For the Joint Module, Plot (c) in Figure 3 shows a pattern similar to the
Alternating Module, where the overall joint accuracy closely follows the audio
accuracy. By epoch 30, the overall accuracy reaches a near-perfect 100%, once
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Fig. 4: Average entropy values for each class in the CREMA-D Dataset for 3
different methods in the Alternating Module. (a) - default method without
skipping; (b) - early stopping. (c) - AMST’s skip training. Each plot corresponds
to the results of the best-performing model over 100 epochs of training.

again indicating a bias toward the audio modality due to its faster convergence.
Yet, unlike in the Alternating Module, the visual accuracy stagnates as soon as
the overall accuracy attains this near-perfect value. This occurs because, with
a joint loss, as the loss approaches zero, gradient updates become progressively
smaller, eventually reaching a point of insignificance. As a result, the visual
modality fails to learn due to the absence of meaningful gradient updates.

Failing to address the bias in both scenarios can reduce overall model perfor-
mance. To mitigate this, skip training is proposed as a solution to counteract the
bias introduced by faster-learning modalities and their rapid convergence.

3.2 Skip Training in the Alternating Module

In this module, despite only the final layer being shared across modalities, given
the learning curves observed in Figure 3 (a) and the substantial gap in average
entropy values across modalities shown in Figure 4 (a), we hypothesised that a
bias could develop in favour of the fastest-learning modalities. Were this to be
the case, it would hinder the performance of the slow-learning ones, limiting their
contribution and causing the model to overfit to the faster-learning counterparts.

Therefore, Skip Training is introduced in the Alternating Module. As shown
in Figure 2 (b), the approach prioritises the learning process for slow-learning
modalities, by skipping the optimisation of the faster-learning ones. This means
that, during training, we determine with the help of an integer hyperparameter
per modality, whether or not each modality should be optimised in the current
epoch. Despite needing fine-tuning, a reasonable initial estimate for this integer
hyperparameter can be obtained by analysing the rate of change in accuracy
across all modalities during the initial epochs. Specifically, the skip parameter
for each modality should be assigned in proportion to its accuracy rate of change
relative to the slowest learning modality. For example, if a modality demonstrates
an accuracy rate of change three times greater than that of the slowest learning
modality in the early stages, its initial skip parameter should be set to three.



8 H. A. Silva et al.

Algorithm 1 Alternating Skip Method
1: Input: Skip hyperparameters s1, . . . , sm, Total epochs E, Modalities M
2: // Training Stage
3: for e = 1 to E do ▷ Iterate over epochs
4: for each modality m in M do ▷ Iterate over modalities
5: if e mod sm = 0 then ▷ Check skip schedule
6: out := predModality(encode(m)) ▷ Generate prediction for modality m
7: Backprop(Loss(out)) ▷ Backpropagate
8: end if
9: end for

10: end for
11: return trained_model

12: // Inference Stage
13: Init predictions P ← [] ▷ List to store modality predictions
14: for each modality m in M do ▷ Iterate over modalities for inference
15: out := predModality(encode(m)) ▷ Generate prediction for modality m
16: Append out to P ▷ Store prediction
17: end for
18: return Softmax(Average(P )) ▷ Compute final prediction by averaging

Given a modality M with respective integer skip parameter sm, and current
training epoch e, the decision to train M follows Equation (1). Algorithm 1
presents the pseudo-code for the alternating skip method mechanism. For infer-
ence, the default no-skip approach is used.

Train(M) =

True, if e mod sm = 0,

False, otherwise.
(1)

This approach not only mitigates the overfitting of faster-learning modalities
but also allows sufficient time for the model to learn from slower-learning ones.
Furthermore, it alleviates some of the influence that the dominant modalities
have on the updates of the shared head’s parameters. During inference, the
Alternating Module produces logit outputs for each modality which are then
averaged to generate the final prediction.

To demonstrate the importance of having skip training in the alternating
module, we compare Plots (b) and (a) of Figure 3, which illustrate the learning
curves for the audio, visual, and overall module accuracies for the Alternating
Module in the CREMA-D dataset, with and without skip training, respectively.
As shown in Figure 3 (b), the audio and the overall accuracy curves exhibit a
more iterative path compared to Figure 3 (a), while both plots’ visual modality
curves follow a similar trend. By epoch 70 in Figure 3 (b), all modalities and
the overall accuracies begin to converge. This indicates a more balanced learning
scenario, where modalities begin to converge at similar time steps, enabling the
models to better utilise the multimodal setting. Furthermore, in Figure 4, we
observe a significant reduction in the gap between the average entropy values of
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the audio and visual modalities in (c) compared to (a) and (b). This indicates
that the model has become nearly equally confident in both modalities. These
results strongly support our initial hypothesis that there was a bias towards the
faster-learning modality and demonstrate that skip training effectively mitigates
this bias.

3.3 Skip Training in the Joint Module

To address the issue of modality imbalance related to convergence rate in joint
architectures, skip training is applied similarly to how it is used in the Alternating
Module. Figure 2, (b) illustrates the joint skip method. The same hyperparameters
that define how many epochs each modality’s optimisation is skipped during
the alternating phase are reused to govern the joint skip method. Moreover, the
initial skip parameter estimates from the Alternating Module apply similarly
here. Like the Alternating Module, given a modality M with an associated integer
skip parameter sm and the current training epoch e, M is trained according to
Equation (1).

A standard joint training approach concatenates modalities’ embeddings in
a fixed order. As defined in Equation (1), in skip training, a modality’s latent
representation is only used for prediction if its skip parameter divides the current
training epoch. As a result, only the weights of the independent head and the
encoders corresponding to these modalities are updated. At each epoch, a sub-
head is derived from the independent head, retaining the weights of the modalities
that are not skipped. The non-skipped modalities are then concatenated and fed
into this sub-head to compute the final joint loss for that training epoch. This
approach ensures that only the encoders of the non-skipped modalities, along
with the corresponding weights of the independent head, are updated.

Figure 3 (d) illustrates the learning curves for the audio, visual, and overall
module accuracies for the Joint Module in the CREMA-D dataset, incorporating
skip training. With skip training, the audio modality and the overall accuracies
undergo a more gradual learning process, allowing the visual modality to learn,
since the overall joint loss does not reach zero in the early training stages. As
in the Alternating Module, all modalities and the overall accuracies begin to
converge around epoch 70.

During inference, the joint representation is formed by concatenating the
latent embeddings of all modalities and feeding them into the independent head
to generate the final prediction. Algorithm 2 presents the pseudo-code for the
joint skip method.

3.4 Complementary Module Interaction

The Alternating and Joint Modules follow two different approaches. The for-
mer minimises inter-modal communication, while the latter maximises it. Both
approaches have their advantages and drawbacks depending on the specific ap-
plication. Notably, they operate independently, and skip training is not reliant
on their co-existence, as each module is trained separately. By integrating skip
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Algorithm 2 Joint Skip Method
1: Input: Skip hyperparameters s1, . . . , sm, Total epochs E, Modalities M
2: // Training Stage
3: for e = 1 to E do ▷ Iterate over epochs
4: Init R← [] ▷ Store embeddings of active modalities
5: Init active_modalities ← [] ▷ Track which modalities are active
6: for each modality m in M do ▷ Determine active modalities
7: if e mod sm = 0 then ▷ Check skip condition
8: Append encodeModality(m) to R
9: Append m to active_modalities

10: end if
11: end for
12: Init reduced_head ← Weights(independent_head, active_modalities)
13: joint_representation := Concatenate(R) ▷ Form reduced joint representation
14: out := reduced_head(joint_representation) ▷ Generate prediction
15: Backprop(Loss(out)) ▷ Backpropagate
16: end for
17: return: trained_model

18: // Inference Stage
19: joint_representation := Concatenate({encodeModality(m) for m ∈M})
20: return: independent_head(joint_representation) ▷ Generate final prediction

training with the full communication benefits of the joint approach and the
independent training structure of the alternating method, the resulting fusion can
generate more confident and aligned predictions. With skip training’s reduced
computational costs, employing both modules concurrently may become a feasible
option depending on the task. When both modules are used simultaneously, the
final prediction corresponds to a mean of the logit outputs of each modality from
the Alternating Module and the logit output from the Joint Module.

4 Experiments

4.1 Data

To assess the performance of the proposed method, we utilised two audio-visual
datasets: CREMA-D [2], AVE [13]; one visual-text dataset: MVSA [10]; and
two audio-visual-text datasets: IEMOCAP [1] and UR-FUNNY [4].

CREMA-D [2] consists of 7,442 original clips displaying one of six different
emotions (Anger, Disgust, Fear, Happy, Neutral, and Sad). The AVE dataset [13]
comprises 4143 10-second video clips of common actions and events. The dataset
contains 28 different classes. MVSA-Single [10] is a multimodal sentiment analysis
dataset that comprises 5129 image-text pairs collected from Twitter, labelled in
3 classes (positive, neutral and negative). The IEMOCAP dataset [1] comprises
approximately 12 hours of audiovisual data, including video, speech, facial motion
capture, and text transcriptions, labelled in angry, excited, frustrated, neutral
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and sad. Finally, UR-FUNNY [4] consists of 16514 video segments with 8257
labelled as humorous and 8257 as non-humorous.

4.2 Experimental Setup

For AVE, the data was split into train, test, and validation sets following [13].
For the rest of the datasets, we randomly allocate 80% of the data for training,
10% for the validation, and 10% for the testing as no previous split is given.
The MVSA-single dataset was processed as in [16]. ResNet18 [5] was used as the
backbone encoder for both audio and visual modalities. For the text modality,
RoBERTa [8] was used as the encoder with five unfrozen encoder layers. For the
visual modality, for all datasets we extracted one frame per second from each
video and selected three images as done in [18]. For MVSA, the single provided
image per sample was used as the visual modality. For audio, we converted
the raw audio samples into fbank (filterbank) [9] features. Regarding text, we
tokenised the raw sample text with the RoBERTa tokeniser. To ensure complete
fairness among all models, they were all trained for 100 epochs using a mini-batch
size of 64, SGD optimiser and the exact same backbones. Given the nature of the
MSLR method [17], different learning rates for each modality were used: 0.001
for audio, 0.01 for visual, and 8e-5 for text. For the rest of the methods, including
AMST and its sub-modules, a learning rate of 0.001 was used for all modalities.
Moreover, all SOTA methods were evaluated using the exact parameters specified
in their original works, and their official code was used whenever available. All
modalities’ skip parameters require fine-tuning and their optimal values may
differ depending on each modality’s informativeness and task at hand. The visual
skip parameter was set to 1 in all datasets (i.e., we do not skip its training).
Concerning audio, its skip parameter was set to 5 for CREMA-D, 2 for AVE, 4 for
IEMOCAP and 6 for UR-FUNNY. For text, we set the text skip parameter to 10
for MVSA, IEMOCAP and UR-FUNNY. Moreover, all modality skip parameters
were the same for both the alternating and joint skip methods. Regarding the
final prediction, we followed a standard even split approach for all methods that
adopted late fusion prediction (MLA and AMST).

Experiments were conducted to compare the performance of AMST, state-of-
the-art methods, and their unimodal counterparts. We further make comparisons
of the performances of AMST, by excluding its key components, i.e., (1) Baseline
Joint Module, (2) Skip Training in Joint Module (AMST-Joint), (3) Baseline
Alternating Module, (4) Skip Training in Alternating Module (AMST-Alt), (5)
Alternating and Joint Modules Without Skip Training and (6) Skip Training in
the Complete Architecture (AMST-Full). All experiments were performed on an
A100 GPU and the average training time per epoch is shown in Table 3. Finally,
in Table 1 and Table 3, we include a baseline Naïve method, which uses a joint
sum fusion approach without any optimisation, where modality embeddings are
summed before being used in the classification head. This baseline serves as a
reference point for performance comparisons across all datasets.
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Table 1: Comparison of accuracies of unimodal models, state-of-the-art methods,
and AMST architectures on the used test sets. Results are reported as the average
over 3 random seeds, with standard error. The best results for each dataset are
displayed in bold, and the second-best are underlined.

Method CREMA-D AVE MVSA IEMOCAP URFUNNY

Audio 59.1 ±0.49 55.3 ± 0.56 - 49.2 ± 1.41 59.7 ± 0.64
Visual 60.5 ±0.75 28.5 ± 0.64 57.7 ± 1.21 46.5 ± 0.53 49.2 ± 0.78
Text - - 70.8 ± 0.10 62.3 ± 0.30 68.9 ± 0.05

Naïve 62.9 ± 1.24 55.9 ± 0.46 71.1 ± 0.10 67.3 ± 1.20 70.0 ± 0.26
OGM-GE 65.5± 1.46 56.1 ± 1.24 72.7 ± 0.55 67.5 ± 0.44 70.3 ± 0.38
PMR 67.5 ± 1.65 58.8 ± 1.55 73.6 ± 0.20 - -
MSLR 71.6 ± 0.82 61.1 ± 0.70 71.0 ± 0.10 61.1 ± 0.70 69.0 ± 0.58
MLA 74.8 ± 0.30 61.9 ± 0.44 71.8 ± 0.10 63.9 ± 0.62 65.6 ± 0.24

AMST-Alt 79.0 ± 0.55 62.1 ± 0.76 72.5 ± 0.31 67.5 ± 0.20 70.8 ± 0.34
AMST-Joint 78.2 ± 0.03 63.2 ± 0.46 72.5 ± 0.79 67.6 ± 0.99 72.1 ± 0.46
AMST-Full 80.5 ± 0.77 65.8 ± 0.38 72.6 ± 0.43 68.4 ± 0.54 71.6 ± 0.13

5 Results and Discussion

5.1 Comparison with State-of-the-Art Methods

Table 1 shows the performance of AMST against state-of-the-art methods and
unimodal models. We separate the AMST architecture into three components:
AMST-Alt, Figure 1 (a), corresponds to the Alternating Module; AMST-
Joint, Figure 1 (b), corresponds to the Joint Module; AMST-Full, Figure 1
(c), consists of using both modules in a complementary fashion. For clearer
comparisons, it is important to note that only MLA and AMST-Alt utilise an
alternating architecture with separately optimised modality-specific losses. In
contrast, AMST-Joint, MSLR, PMR, OGM-GE, and the Naïve methods follow a
joint training approach, relying on a single multimodal loss. Moreover, PMR does
not provide an implementation for more than two modalities, which explains why
its results are missing for IEMOCAP and UR-FUNNY.

As evident from the results, all methods outperform their unimodal counter-
parts, except for MSLR in IEMOCAP and UR-FUNNY, and MLA in UR-FUNNY.
AMST’s alternating and joint architectures consistently surpass their respective al-
ternatives under the same conditions across all datasets, except for MVSA-Single.
In CREMA-D, AVE, and IEMOCAP, the full AMST architecture achieves the
best performance, with both the alternating (AMST-Alt) and joint (AMST-Joint)
variants performing similarly while still outperforming other methods. For the
UR-FUNNY dataset, AMST-Joint emerges as the best-performing architecture,
with AMST-Alt and AMST-Full following closely behind.

The primary reason AMST architectures do not outperform other methods
on the MVSA-Single dataset is that the visual modality is less informative
than the textual one. A possible explanation for this discrepancy in modality
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Table 2: Average accuracies over 3 random seeds with standard error for AMST,
with and without its main components, across datasets. CREMA-D and AVE
use audio-visual modalities, MVSA uses visual-text, while IEMOCAP and UR-
FUNNY incorporate all three. In the "Alt." (alternating), "Joint," and "Skip"
columns, a tick indicates inclusion of the respective method. For each dataset,
the best result is in bold and the second-best is underlined.
Exp Alt. Joint Skip CREMA-D AVE MVSA IEMOCAP UR-FUNNY

1 - ✓ - 64.0 ± 1.45 59.6 ± 1.76 71.7 ± 0.90 65.3 ± 0.35 68.3 ± 0.25
2 - ✓ ✓ 78.2 ± 0.03 63.2 ± 0.46 72.5 ± 0.79 67.6 ± 0.99 72.1 ± 0.46
3 ✓ - - 74.8 ± 0.35 61.9 ± 1.13 71.0 ± 0.93 65.5 ± 1.69 66.1 ± 0.53
4 ✓ - ✓ 79.0 ± 0.55 62.1 ± 0.76 72.5 ± 0.31 67.5 ± 0.20 70.8 ± 0.34
5 ✓ ✓ - 75.9 ± 1.39 64.3 ± 0.58 72.6 ± 0.07 67.7 ± 1.27 68.4 ± 0.21
6 ✓ ✓ ✓ 80.5 ± 0.77 65.8 ± 0.38 72.6 ± 0.43 68.4 ± 0.54 71.6 ± 0.13

informativeness, compared to other datasets, is that in MVSA, the visual modality
consists of a single image per sample, rather than multiple frames of a video.
Additionally, training the visual modality is a significantly prolonged process,
requiring substantial time to reach convergence. Consequently, models that favour
a bias toward the faster learning modality may achieve superior results as the
inherent imbalance, in this case, tends to be advantageous. Although AMST is not
the best-performing model for MVSA, all methods exhibit similar performance
on this dataset, approaching the baseline unimodal text accuracy.

In contrast, AMST-Alt demonstrates a clear advantage over the standard
MLA alternating architecture. In a three-modality scenario, as seen in IEMOCAP
and UR-FUNNY, the MLA method underperforms compared to other approaches,
highlighting its limitations in handling more complex multimodal interactions.
With the introduction of skip training and the mitigation of bias toward faster-
learning modalities, AMST-Alt demonstrates that the alternating architecture
can achieve performance comparable to joint models on these datasets.

In conclusion, AMST-Alt outperforms MLA in every scenario, highlighting
the effectiveness of skip training in alternating and joint training approaches.

5.2 Ablation Study

Table 2 shows results from including and excluding key components of the full
AMST architecture. These experiments used audio, visual, and text modalities.

Rows 1 & 2 of Table 2 present the results of the joint method without and
with skip training, respectively. Across all datasets, we observe a significant
improvement in performance with the incorporation of skip training. Notably, in
the CREMA-D dataset, the model’s accuracy increases by 14.2 percentage points.
This substantial improvement highlights the effectiveness of balancing modalities
based on convergence rates in joint architectures, particularly in scenarios where
modalities provide comparable levels of informativeness. Prior to introducing
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Table 3: Comparisons on average training time per epoch (in seconds, on GPU,
averaged over 100 epochs) between state-of-the-art methods and AMST archi-
tectures. The percentage of performance improvements or degradations between
AMST architectures and the Naïve baseline are reported with (+x%) or (-x%)
respectively in the last three rows.

Method CREMA-D AVE MVSA IEMO-CAP UR-FUNNY

Naïve 20.3 14.2 27.3 36.9 53.0
MSLR 20.3 14.2 27.3 37.7 53.3
OGM 20.9 15.0 28.0 37.8 54.5
PMR 41.0 65.0 34.2 - -
MLA 20.8 16.5 27.4 37.6 52.8

AMST-Alt 15.4(+24%) 12.4(+13%) 16.9(+38%) 26.1(+29%) 34.1(+36%)
AMST-Joint 14.7(+28%) 12.2(+14%) 17.0(+38%) 25.4(+31%) 33.9(+36%)
AMST-Full 25.1(-24%) 17.1(-20%) 32.0(-17%) 45.7(-24%) 63.6(-20%)

skip training, the underutilised visual modality was unable to fully contribute its
informative potential to the final prediction.

A notable improvement is also observed in the alternating architecture (rows
3 & 4 of Table 2, without and with skip training, respectively). The alternating
approach facilitates the learning of all modalities by optimising separate modality-
specific losses. However, by further mitigating the imbalance caused by varying
convergence rates, skip training proves advantageous over scenarios without it.

With the inclusion of skip training, the Alternating and Joint architectures
achieve similar performance (rows 2 & 4), closing the gap where joint architectures
previously underperformed, especially in the CREMA-D dataset (rows 1 & 3).
This further highlights the benefits of skip training.

Finally, rows 5 & 6 of Table 2 present the results of integrating Alternating
and Joint Modules, without and with skip training, respectively. Row 5 highlights
the advantages of combining these architectures, consistently outperforming the
standalone Alternating and Joint cases (rows 1 & 3). Furthermore, as expected,
the inclusion of skip training in both modules enhances performance, yielding
the best overall results across all datasets, except for the UR-FUNNY dataset.

5.3 Computational Expenses

Table 3 presents the training times for every experiment. We can observe that,
compared to the baseline (the Naïve method), most approaches introduce minimal
overhead, except for the PMR method, which nearly doubles the training time
due to the additional cost of computing prototypes. Notably, our proposed
methods, both AMST-Alt and AMST-Joint, significantly reduce the average
training time with improvements ranging from around 13% to 38% (AMST-Alt
and AMST-Joint rows of Table 3) compared to the fastest method (Naïve), while
achieving superior results. Moreover, our Full architecture (AMST-Full), despite
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incorporating 4 encoders (2x as many as other methods), only increases the
training time by approximately 17-25% (AMST-Full row of Table 3) compared
to the fastest method (Naïve), demonstrating skip training’s efficiency.

6 Conclusion

In this work, we proposed a novel method called AMST to address one aspect of
modality imbalance, indicated by different convergence rates across modalities.
AMST optimises the multimodal learning process without compromising modality-
specific information by having (1) independent training for each of the modalities
in the Alternating Module, (2) conventional joint training in the Joint Module,
and (3) skip training in both Alternating and Joint Modules.

Our experiments demonstrated that skip training in AMST decreases the
dominance gap between modalities in terms of convergence rate, reduces the
overall training cost, and provides the complementary benefits of alternating and
conventional multimodal joint training practices. Furthermore, we demonstrate
AMST’s efficacy in scenarios with up to three modalities.

As a consequence of the implementation of skip training in the learning
process, an additional hyperparameter, the skip parameter, is created per modality.
Currently, fine-tuning each skip parameter is necessary. A future direction is
to quantify the convergence rate disparities between modalities and automate
the skipping process during training by dynamically adjusting each modality’s
skip parameter. Finally, it is important to note that improper skip parameter
settings may result in suboptimal outcomes, as excessive skipping can lead to
under-optimisation of the modalities.
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