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Abstract. Explaining malware binaries poses significant challenges, as
existing approaches often focus on surface-level features, dynamic behav-
iors, or assembly code analysis. While these models highlight features
contributing to classification, they remain inaccessible to non-experts.
In this work, we propose MalGPT, a multi-model and transformer-based
approach that generates human-readable explanations of malware bina-
ries in natural language. We manually analyzed malware binaries from
different malware families, including benign files, using various tools
to create a ground truth dataset with high-level explanations. As per
the literature, this is the first contribution of a malware dataset paired
with natural language explanations, along with a high-level explanatory
model developed for the cybersecurity community. Our approach includes
complex feature engineering, followed by a novel architecture, Cross-
Hierarchical Attention Network (CHAIN), which learns relationships not
only within individual features, but across different feature sets in a
multi-model architecture. We developed a Generative Pretrained Trans-
former (GPT)-style architecture optimized for multi-modal malware bi-
nary analysis, designed to seamlessly integrate heterogeneous features,
such as numeric data, printable strings, and graph-based representations
of assembly code. The architecture aligns syntactic structures with se-
mantic context, to transform encoded multi-modal inputs into coherent
and precise explanations. This innovative approach enhances compati-
bility with diverse data modalities, providing robust and interpretable
insights into malware behavior, while enabling detailed and contextually
accurate textual explanations. In future work, we aim to scale this ap-
proach with larger datasets, enhancing its capacity to explain emerging
malware variants and address different cybersecurity landscapes, such as
malicious apps or network viruses, ultimately contributing to risk miti-
gation.

Keywords: GPT Architecture - Explainable Al - Malware Analysis -
Large Language Model.
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1 Introduction

Deep learning (DL)-based malware detection has received considerable attention
in recent years, achieving state-of-the-art detection metrics [4]. However, DL
models often face the inherent challenge of being black-box systems, making their
decisions difficult to interpret. Reducing the opacity of malware classification
models is particularly complex, as traditional explainable Al (XAI) methods,
commonly developed for natural language processing and image datasets, fail
to capture the intricacies of malicious binaries. Such data require specialized
algorithms for effective interpretation.

Saqib et al. [15] identified the limitations of traditional XAI methods and cat-
egorized the research into different levels of explanation, concluding that most
efforts remain at the basic level, offering limited insight into the decision-making
process. While some studies attempted to explain malware behaviors using ex-
isting XAI methods [4], others proposed specialized solutions for malware bina-
ries [7][3][14]. For instance, -MAD |7] introduced an interpretable neural network
that reveals the importance of static features, but neglects dynamic aspects or
deep code connectivity. Similarly, CFGExplainer [3] highlighted potentially mali-
cious nodes in the control flow graph (CFG) of a malware executable, but lacked
robust explanation capabilities, as shown by Saqib et al. [15] in their GAGE
model. GAGE [14] proposed a novel representation of portable executable (PE)
files, incorporating semantic and structural information through the Canonical
Executable Graph (CEG). However, none of these models provide high-level ex-
planations accessible to users without a cybersecurity background. To address
these shortcomings, we propose a novel approach that leverages extensive fea-
ture extraction and the generative power of Generative Pretrained Transformer
(GPT), providing human-understandable explanations for malware binaries.

The proposed algorithm is powered by a multi-model architecture coupled
with GPT. The idea behind the multi-model design is to integrate all possible
contexts of a malicious file. Previous algorithms have primarily focused on ei-
ther static or dynamic features, which can miss subtle but crucial information
required for explainability. Malware authors often use obfuscation and packing
techniques to disguise their intent. Our model overcomes these limitations by
considering not only static and dynamic features, but also the semantic and
syntactical information extracted from the assembly code. Saqib et al. [14] high-
lighted that the CEG is more powerful than traditional CFGs. We extended
this concept by extracting CEGs from binaries and integrating them into our
model. Furthermore, we used a GPT architecture to generate human-readable
explanations for these binaries. The encoded vector passed to the GPT model
is generated by Cross-Hierarchical Attention Network (CHAIN), which captures
all possible contexts and relationships, both inner and intra-feature, for compre-
hensive explanation generation.

To the best of our knowledge, this is the first work that provides such high-
level explanations for malware binaries, as the malware analysis community pre-
viously lacked a ground truth explanation dataset for malicious binaries [4]. Our
contributions can be summarized as follows:
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— MalGPT contributes a unique GPT-style architecture tailored for multi-
modal analysis of malware binaries. It integrates diverse feature types, in-
cluding static features, dynamic behaviors, printable strings, and graph-
based representations, into a unified generative framework. This architecture
utilizes attention mechanisms to process and align syntactic and semantic
relationships across these modalities, enabling both accurate detection and
detailed natural language explanations. By bridging multi-modal feature in-
tegration with interpretability, MalGPT advances the applicability of GPT
models in cybersecurity.

— We introduced CHAIN, an integral component of MalGPT, designed as an
advanced multi-model architecture. This architecture leverages hierarchical
attention mechanisms to effectively capture both intra-modality and inter-
modality dependencies among heterogeneous malware feature modalities. By
modeling intricate relationships across features such as static data, dynamic
behaviors, and CEGs, CHAIN significantly enhances both the discriminative
capability and interpretability of the model, outperforming existing state-of-
the-art approaches in malware analysis and explainability tasks.

— We curated a comprehensive dataset utilizing 23.296 GB of binaries, encom-
passing four malware families (DownloadAdmin, Firseria, Emotet, Gamarue)
and a benign category. This dataset includes ground truth explanations and
diverse features, such as static, dynamic, API call sequences, import/ex-
port structures, and CEGs. An attention-based encoder-decoder (AED) was
trained on 0.8 million assembly blocks and 28.7 GB of binaries, represent-
ing 2,411 CEGs with an average of 546 nodes and 3,567 edges, capturing
syntactic and semantic relationships. Integrated with VirusTotal-generated
reports, the dataset uniquely delivers natural language explanations for mal-
ware behaviors.

— Through comprehensive experiments, we evaluated MalGPT’s performance
for both detection accuracy and explainability. Quantitative metrics included
precision, recall, F1 score, accuracy, ROUGE-L, and BERTScore to assess
detection and explanation quality. For qualitative evaluation, we analyzed
hallucinations and errors in the generated explanations, focusing on con-
sistency, relevance, and the ability to align with ground truth annotations.
This dual evaluation approach ensured a holistic understanding of MalGPT’s
strengths and areas for improvement in malware detection and explainability.

2 Background

The use of explainable methods in malware analysis has gained significant at-
tention, as traditional “black-box” models offer limited interpretability. Com-
prehensive surveys, such as [15], highlight various interpretability frameworks,
analyzing their benefits and limitations. Saqib et al. [15] provide a categoriza-
tion of explainability approaches, which can be broadly divided into low-level
and high-level explainability techniques. These approaches, however, have yet to
fully leverage the potential of large language models (LLMs), which could sig-
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nificantly enhance interpretability for diverse stakeholders with minimal domain
knowledge.

2.1 Low-Level Explainability Approaches

Low-level approaches in explainability often rely on local interpretability tech-
niques, such as Local Interpretable Model-Agnostic Explanations (LIME) [13]
and Shapley Additive Explanations (SHAP) [9]. These methods approximate the
model locally around a specific instance, providing insights into feature impor-
tance and the reasoning behind the model’s decisions.

Studies leveraging LIME have demonstrated its utility in identifying static
malware features. For example, Khan et al. used LIME to explain Conv-LSTM-
based autoencoder predictions on network traffic features in industrial IoT envi-
ronments [4]. Similarly, Kinkead et al. [5] used LIME on Android APK opcode
sequences, transforming them into image-based representations for CNN clas-
sifiers, while Lu and Thing [8] used LIME alongside BERT-based models for
Android application feature extraction. Ambekar et al. [1] utilized a combina-
tion of TabNet and LSTM in their model, TabLSTMNet, to fuse LIME-based
explanations with DL predictions. Mitchell et al. [10] further extended LIME
and introduced hierarchical LIME (H-LIME) to generate sparser explanations
at the class and method levels.

SHAP-based studies also illustrate the interpretability of malware features.
For instance, Lu and Thing [8] applied SHAP alongside LIME to Android appli-
cations, while To et al. [17] used SHAP on PE file analysis, extracting features
via VirusTotal and classifying them using logistic regression, decision trees, and
k-nearest neighbors. Other studies, such as Smmarwar et al. [16] and Ambekar et
al. [1], used hybrid DL approaches such as CNN-BiGRU with SHAP to elucidate
malware predictions.

2.2 High-Level Explainability Approaches

In contrast to low-level techniques, high-level approaches focus on model-wide in-
terpretability and behavior explanation. For example, Herath et al. [3] proposed
CFGExplainer, a model using control flow graph (CFG) blocks and opcode-
based statistics to explain malware behavior comprehensively. Building upon
CFGExplainer, Saqib et al. [14] introduced the Genetic Algorithm-based Graph
Explainer (GAGE), which extends the control-flow analysis by identifying mali-
cious functions and their caller-callee relationships within a call execution graph
(CEG). GAGE demonstrates improved robustness and discriminative power,
particularly in explaining complex malware behaviors.

2.3 Exploring Large Language Models (LLMs)

LLMs, especially transformer-based architectures, have seen limited applica-
tion in malware explainability, though their potential is considerable. Encoder-
decoder structures, such as those in [11][19], have been applied primarily for
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detection rather than for explanation. BERT-based models have also been ex-
plored, though primarily for feature extraction rather than interpretability. For
instance, Ullah et al. [18] used BERT to generate features for an ensemble de-
tection model.

Demirkiran et al. [2] demonstrated that transformers are effective in classify-
ing highly imbalanced malware families, leveraging the attention mechanisms of
transformers to model complex sequence relationships within malware API call
data. However, despite these advancements, the application of LLMs for gener-
ating interpretable, high-level explanations in malware analysis remains largely
unexplored, presenting a promising direction for future research.

3 Proposed Method

In this section, we introduce MalGPT, a novel architecture combining CHAIN
and GPT for malware analysis and explanation generation (Figure 1). MalGPT
leverages comprehensive features engineering mechanism, followed by CHAIN to
effectively process and integrate heterogeneous data types, such as PE header
features, API call sequences, and graph-based CEG representations, ensuring
both intra- and inter-modality relationships are captured. The fused representa-
tions are then passed to a GPT module, which generates comprehensive, human-
readable explanations, enhancing transparency and interpretability in malware
detection.

3.1 Features Engineering Mechanism

To enable comprehensive analysis of binary files, we extracted four distinct fea-
ture types, each capturing a unique aspect of the binaries.

PE Header Features: This category includes PE header features such as
ExportsNbDLL, SectionsMeanEntropy, and ResourcesMeanSize. Categorical
data within this group were encoded using a label encoder to ensure compati-
bility with the model.

Import/Export Features: We categorized import/export functionalities into
four subcategories: open, create, delete, close, resume, kill, call, and other.
These were encoded using the SBERT model [12], which generates embeddings
for similar lists with high semantic similarity. After obtaining individual embed-
dings, we performed aggregation (average) to produce a uniform-sized vector
representation for individual subgroups.

Printable Strings: This feature type contains extensive lists ranging from 500
to 2,000 entries per binary. Categories include DIR, email, sentences, keywords,
files, IP addresses, and URLs. Using the same SBERT-based encoding [12]
strategy as for import/export features, we created subcategory-specific embed-
dings and aggregated them into a fixed-length vector.

CEG Construction: This feature involves extracting assembly code from bi-
nary files and transforming it into a graph representation. Each node in the
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Fig. 1. MalGPT architecture

CEG encapsulates a set of instructions, which were encoded into numerical vec-
tors using the Palm Tree® model. These instruction-level vectors were aggregated
at the node level using an AED architecture, effectively capturing both local and
sequential information. The AED model, which integrates the strengths of au-
toencoders and sequence-to-sequence architectures, was trained on a dataset of
0.8 million assembly code blocks, each capped at 512 instructions. Using these
embeddings, CEGs were constructed based on the definitions outlined by Saqib
et al. [14]. Subsequently, we trained a graph encoder to generate dense vector rep-
resentations for the entire graph. This encoder was trained on a dataset of 28.7
GB, comprising 2,411 CEGs from benign and malicious binaries. On average,
each CEG contained 546 nodes and 3,567 edges, capturing intricate structural
and behavioral information from the binaries.

3.2 CHAIN Network

Binary files are composed of diverse feature types, such as numerical values (e.g.,
floats or integers), labeled features, sequences (e.g., API call lists), and assembly
code extracted into CEGs [14]. The CEG representation uniquely integrates

3 https://github.com /palmtreemodel
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both syntactical and semantic information into node embeddings, while edge
features encapsulate the structural attributes of PE files. To effectively learn from
this heterogeneous dataset and capture both intra-modality and inter-modality
dependencies, we introduce the CHAIN.
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Fig. 3. Encoding mechanism for assembly code extracted from binaries.

Intra-Modality Attention For each feature modality, specialized neural ar-
chitectures are used to capture intra-relations among similar data features.

Given a modality input X, intra-modality attention computes the weighted
representation H as:

H = Attention(Q, K, V) = softma (QKT) A% (1)
= ntion(Q, K, = max )
Vg

where Q, K,V are the query, key, and value matrices, respectively, and dj, is the
dimensionality of the keys.

Inter-Level Dependency Learning After obtaining feature representations
from each modality, an inter-modality attention mechanism is applied to capture
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relationships across different data types:

M
Z = ZaiHZ-, (2)
=1

where H; represents the feature vector from the i-th modality, M is the number
of modalities, and «; are the learned attention weights.

This cross-modality attention captures dependencies such as the significance
of printable string patterns when specific PE header attributes are present. The
final fused representation Z can be obtained through bilinear pooling:

Ziysea = ¢(H1, Hy, ...\ Hyy), (3)

where ¢ denotes the bilinear transformation.

3.3 GPT Architecture Integration

The fused representation Zg,seq is input into a GPT for explanation generation.
The transformer uses attention mechanisms to model dependencies and generate
textual explanations:

Output, = softmax (Linear(Decoder(Zsysed))) (4)

where Decoder represents the transformer decoder block. The generated atten-
tion weights from intra- and inter-modality layers enable interpretable explana-
tions, highlighting which features or interactions influenced the final prediction.
Collectively, the CHAIN encoder and the GPT-based decoder constitute the
MalGPT framework. MalGPT takes a binary executable as input, processes it
through CHAIN to generate numerical embeddings, and then utilizes the GPT
decoder to translate these embeddings into natural language explanations.

4 Preprocessing and Evaluation

4.1 Dataset Details

The final dataset comprises approximately 23.296 GB of data distributed across
1,702 files, categorized into five distinct groups: four malware families (Gamarue,
DownloadAdmin, Emotet, Firseria) and a set of benign samples. Feature extrac-
tion was augmented through analyst reports retrieved from VirusTotal?, which
served as the foundation for generating human-readable explanations using the
ChatGPT API°.

To overcome the lack of labeled natural language explanations for malware
behavior, we used ChatGPT to generate analyst-style descriptions based on

4 https://www.virustotal.com/
® OpenAl, ChatGPT API, accessed November 05, 2024, https://platform.openai.
com/
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VirusTotal reports retrieved via MD5 hashes of known malware and benign bi-
naries. These reports included behavioral features such as API calls and registry
edits, and were verified to ensure accuracy and minimize hallucinations. Prompt
templates were crafted to guide ChatGPT’s output in producing consistent and
interpretable explanations. For details, refer to the GitHub repository®. This con-
stitutes the first dataset pairing malware binaries with human-readable explana-
tions, used solely to pretrain the MalGPT language module. The CHAiN-based
classification relied exclusively on real features and labels, with all synthetic
outputs reviewed to avoid bias and preserve model integrity.

The dataset was split into 80% training and 20% testing data. The training
data was further divided into an 80-20 split for training and validation purposes,
ensuring robust evaluation and minimal overfitting during model development.

4.2 Parameter Tuning

The MalGPT model was trained using a manually tuned encoder-decoder ar-
chitecture optimized for malware explanation generation. Feature values were
normalized using StandardScaler, missing data were mean-imputed, and ex-
planation texts were tokenized and padded to a maximum length of 200. The
encoding approach follows Section 3.1. Table 1 summarizes the core hyperpa-
rameters.

Table 1. Key Hyperparameters for MalGPT. LR: Learning Rate, CE: Crossentropy.

Parameter ‘ Value

Vocab Size 10,000
Max Seq. Length |200
Transformer Layers|32
Attention Heads |32
Embedding Size 1024

Dropout Rate 0.1

Batch Size 64

Optimizer Adam (adaptive LR)
Loss Sparse Categorical CE
Epochs 50

Manual tuning was chosen over automated methods due to the architec-
ture’s complexity and computational constraints, balancing generalization and
efficiency.

4.3 Training Process of MalGPT

The MalGPT model is trained in an end-to-end manner using binary executa-
bles and their corresponding ground truth explanations. Each binary is pro-

5 https://github.com/McGill-DMaS/MalGPT
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cessed through a multi-modal encoding pipeline that extracts heterogeneous fea-
ture types—such as static headers, import/export functions, printable strings,
and CEGs. These features are encoded using intra-modality attention, fused via
inter-modality attention, and transformed into a unified numerical embedding.
This embedding is then passed to a GPT-style decoder, which learns to gen-
erate human-readable explanations. The model is optimized by minimizing the
difference between the generated and actual explanations.

Algorithm 1 Compact Training Procedure of MalGPT
Require: Binary set B = {b;} and explanations Y = {y;}
1 for all b, € B do
2 Extract features: f; = {f5te%e, fimp, ftr, o9}
Encode: ef* < Model, (f{") for m € {static, imp, str, ceg}
Intra-attend: hj" < IntraAttn(e;")
Refine: r{* <~ MLP(h]")
Fuse: z; < InterAttn({r{"})
Decode: §J; < GPTDecoder(z;)
Loss: L; < L(§i,y:)
9 end for
10 Update model to minimize ), £;

0 O Ok W

4.4 Performance Evaluation

The proposed model’s performance was assessed in two aspects: its discrimina-
tive power and the merits of its explanations. For discriminative power, standard
metrics such as precision, recall, F1 score, and accuracy were employed to mea-
sure the model’s ability to correctly classify malicious and benign binaries.

Table 2. Comparison of Precision (P), Recall (R), F1 Score, False-Positive Rate (FPR),
False-Negative Rate (FNR), and Accuracy for each baseline. A: Only static features,
B: Without import export,, and C: Without CEG.

Features P R F1 Score Acc FPR FNR ROUGE-L BERTScore

A 0.920 0.812  0.764  0.9002 0.0266 0.2028  0.0544 0.7701
B 0.9320.804 0.772 0.9208 0.0198 0.1982  0.0549 0.7741
C 0.984 0.970 0.984 0.9794 0.0058 0.0120  0.0527 0.7752
CHAIN 0.9880.984 0.988 0.9882 0.0048 0.0026  0.0820 0.8140

To evaluate explanation correctness quantitatively, we employed ROUGE-L”
and BERTScore [20]. ROUGE-L was selected for its ability to capture long-
sequence dependencies and align key segments between generated and reference

" https://huggingface.co/spaces/evaluate-metric/rouge
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explanations. In contrast, BERTScore uses contextual embeddings to measure
semantic consistency, providing a robust evaluation of nuanced relationships and
achieving strong correlation with human judgment, even in paraphrased scenar-
ios [20]. These complementary metrics ensured a comprehensive assessment of
both technical precision and semantic alignment in the model’s explanations.

For a qualitative assessment, metrics such as False Positive Rate (FPR) and
False Negative Rate (FNR) were employed alongside manual inspection of hal-
lucinated content in the generated explanations. This approach allowed for a
detailed evaluation of areas where the model misinterprets or invents informa-
tion, ensuring a comprehensive analysis of the model’s explanation reliability
and its interpretative consistency.

5 Results and Discussions

5.1 Ablation Study

To assess the contribution of each feature set, we conducted an ablation study by
evaluating detection and explanation performance with different combinations
of features. Initially, we performed experiments using only static or numerical
features, followed by a combination of static features and CEG information (ex-
cluding import /export features), and static features with import/export features
(excluding CEG). The findings revealed that the combination of static features
and import/export features achieved satisfactory detection rates. However, ex-
planation metrics remained relatively consistent across ablation settings until all
feature types were combined (Table 2).

The integration of all feature sets—static, import/export, and CEG—yielded
superior detection performance, marked by significantly reduced error rates (FPR
and FNR). Additionally, the explanation metrics (e.g., ROUGE-L and BERTScore)
improved notably, indicating that CHAIN successfully leverages both syntacti-
cal and semantic information to generate meaningful explanations for malware
binaries. This comprehensive approach highlights CHAiN’s robustness in both
detection and explainability tasks.

5.2 Discriminative Power

We evaluated the discriminative power of the proposed CHAIN model across
various malware families, including benign samples, and compared it against
benchmark algorithms GAGE and CFGExplainer, which are state-of-the-art in
malware detection. The results are summarized in Table 3.

The findings underscore CHAiN’s ability to integrate syntactical and seman-
tic information effectively, enhancing both detection and explanation capabili-
ties, particularly for challenging malware families such as Gamarue. The pro-
posed model achieves the highest accuracy (98%), followed by GAGE (94.13%)
and CFGExplainer (90.03%). These results demonstrate its robustness and su-
periority over traditional models.
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Table 3. Performance metrics comparison

Model Precision Recall F1 Score FPR FNR Accuracy
CHAIN 0.9880 0.9860 0.9860 0.0048 0.0026  0.9800
GAGE 0.9300 0.9140 0.9200 0.0156 0.0902 0.9413

CFGExplainer 0.8720 0.8180 0.8320 0.0378 0.1830 0.9003

5.3 Novelty and Plausibility

The proposed MalGPT framework demonstrates significant novelty in generating
plausible malware explanations, as evidenced by the table. The comparison be-
tween actual and MalGPT-generated explanations highlights both the strengths
and areas for improvement in the system. MalGPT exhibits an advanced ability
to replicate key malicious attributes, integrating domain-specific knowledge from

malware families, such as Firseria.

Explanation 1
MD5: COA5DESA89C236DD6071A6014065CAES8 Malware Family:
Firseria File Name: origin_15301_ _ Indication: [ji§ll: Malicious in-
tent or behavior. Magenta: Behavioral descriptions relevant to malware
families.
Actual: The file is identified as part of the FalSONWareHamily) a notori-
ous malware category impacting systems with
Antivirus engines, including Microsoft,

Bitdefender, and BKAV, confirm its presence, highlighting its ability to
persist through browser modifications, bundled associations, and deliv-
ery mechanisms. Notable tactics include the exploitation of [SEIiiiba

avoiding detection via sandbox analysis,
and manipulating user libraries and APIs. The [HElf§ demonstrates
domain persistence, alterations to whitelisted platforms, and leveraging

vulnerabilities for propagation. [Aidiomedarexeninks] 64-bit patched al-
terations, and [HESHdWarelntegragions] underscore its risks. It actively
evades countermeasures by disabling zero-day detection systems, network
functionality, and adopting dGWIwarestechmiquesy Frequent administra-
tive updates, . ..and regular updates to maintain system integrity against
this persistent threat.

MalGPT: The file [SRATOMEAANERE is infected with a high-risk 64-bit
adware named HESAGWaFS! This [EINEEE which has some 49 distinct
signs highlighting its presence, has visibly altered the system’s policies
for harmful'purpeses] This [ATdFGHedaIvaTantlpropagates itself and
notably supports domain persistence despite attempts to remove it or
contain it. There are indications suggesting that this file is also associ-
ated with the invasive malware, SGHEB&! As part of its comprehensive
preventive measures, it regularly checks its presence and updates itself,
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further underscoring its persistence in infected systems. Certain interest-
ing anomalies such as invalid doWiwarepolicies and the presence of API
confirmations, have emerged from recent discussions in various security
platforms. Moreover, the malware is known to infect systems through
misleading advertisements, displaying as essential updates. Identified as
a part of the KEyPHIKHaMIlFIthe malware has shown a significant num-
ber of warning flags such as modifying critical system files and displaying
unauthorized popup ads. Bias analysis from the 62 whitelisting results,
major delivery programs, and several other indications highlight i
evasion strategies. One such strategy includes
disabling zero-day detection systems. These actions are likely triggered
by the [EilSCHESEHEI v ich further stresses the need for categorizing
and scanning files, programs, and links continuously. A comprehensive
...and injection prevention are vital for maintaining system integrity.

The Firseria malware family is a type of ransomware known for its ability
to manipulate system registries and evade detection [6]. It often employs sophis-
ticated techniques, such as API abuse, sandbox evasion, and persistent file mod-
ifications. MalGPT extends its explanatory depth by replacing browser-related
references (as noted in the actual explanation) with more specific behaviors, such
as domain persistence’ and API-focused activities. Notably, MalGPT high-
lights the involvement of the Kryptik family and Andromeda.exe, effectively
capturing key attributes of Firseria’s infection strategies, including evasion
techniques and API manipulation (see Explanation 1). This highlights Firse-
ria’s use of sophisticated frameworks for evasion and malicious propagation.
Such detailed interrelations demonstrate MalGPT’s robust understanding of the
binary’s syntactical and semantic features.

The plausibility of MalGPT explanations is highlighted by its ability to match
the key evidence in actual explanations. For example, in the Firseria fam-
ily, MalGPT connects critical tactics such as ’persistence through browser
manipulations’ and ’delivery mechanisms’, which align closely with the
ground truth descriptions. Similarly, in the benign sample, MalGPT accurately
emphasizes secure characteristics, such as >reliable systems’ and ’safe brows-
ing policies’, further bolstering its credibility.

6 Limitations

6.1 Hallucination and Error Analysis

We assess MalGPT’s capabilities using both quantitative and qualitative analy-
ses. The error metrics in Table 3 quantitatively highlight MalGPT’s performance.

Explanation 2
MD5: 976BD72651F83785CA69FB74C3C5BBAE Malware Family:
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Downloadadmin File Name: origin_31932_ _ Indication: [l Ma-
licious intent or behavior. (Gféén: Benign characteristics. Magenta: Be-
havioral descriptions relevant to malware families. Yellow: Ambiguous or
conflicting content blending malicious and benign contexts. [@§f@l: Hallu-
cinated or unrelated content.

Actual: The file exhibits behavior characteristic of [JBENOEGY
S, known for its intrusive and deceptive activities. It employs
obfuscation tactics to evade detection while distributing malicious pay-
loads through misleading campaigns. Notable actions include intrusion
attempts, unauthorized certificate usage, and deploying Potentially Un-
wanted Applications (PUAs) such as [Bif§é#il. The malware reinforces
its presence via remote [downloader capabilities, often altering system
configurations to maintain persistence. Organizations must implement
preventive defenses, such as Bitdefender or Kaspersky, to counteract
its spread. Regular verification, awareness programs, and robust classifi-
cation mechanisms remain crucial for mitigating this threat.

MalGPT: The explanation discusses several key aspects of a [l
I o Pemignifilé characterized by its notable status and the
comprehensive cyber campaigns it has been linked to. It’s stated that
this entity employs GBfiSEaAGION and alterations as part of its deploy-
ment strategy. Also, it regularly reinforces its defenses and maintains a
prominent presence by distributing itself through various channels. More-
over, it leverages [NUEiFSeHEN and |JDSNEEEE scctions, along with
a "Win32 downloader," to spread its influence. This can lead to an intru-
sion into Windows applications, including those associated with major
organizations. Conventional defense mechanisms seem ineffective against
it. It’s known for being capable of evading detection by the likes of

Bitdefender and Kaspersky! Though posing as a [goodware’, it has
been classified as a PUA (’Potentially Unwanted Application’) due to
its intrusive behavior. Regularly educating users ... this entity seems to
belong under the ’intrusive’ classification but remains notable within the
cybersecurity landscape for its persistent behavior.

Explanation 3

MD5: 68AE5602E48B5457F22340D09F34BE23 Malware Family: Be-
nign File Name: 0ad73180...52d629b3 Indication: Same as previous.
Actual: The file in question has been assessed by antivirus engines and
classified as benign due to its lack of malicious indicators. It is identified
as a PE32 executable for Windows systems, with no evidence of malicious
activities, C2 communications, encryption, or known IoCs (Indicators
of Compromise). Verified by engines e.g., Kaspersky and Symantec, the
file does not demonstrate suspicious behaviors such as trojan-like persis-
tence, data exfiltration, or anomalous DLL injections. However, alternate
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analyses indicate some potential for ExXploitaticniinyFareit=like mech

@misis] including manipulation of DLLs, intrusive system libraries, or
suspicious communication chains. Despite this, no confirmed malicious
actions or tactics have been linked to the file, and its legitimacy remains
supported by majority consensus. It is noted in whitelisting databases,
lacks significant threats or anomalies, and remains flagged as benign in
the absence of further evidence.
MalGPT: This explanation pertains to the intricate workings of mal-
ware and benign files. It presents an analysis of the disruptive AVG
expired botnet, and the intrusiveness it displays. The explanation demon-
strates the lack of notorious analysis in dealing with the cybersecurity
threats posed by malware. The cornerstone is ensuring an effective re-
sponse to the anomalous activities conducted by malware through a
prominent mechanism, such as NVIDIA. In this discussion, sensitive com-
mon lists of suspicious cyber communications play a crucial role, FWithia
... The report incorporates various statis-
tics and references to ’dll’, or Dynamic Link Library sections, which are
active in combating malware threats. With an increasing misuse of the
DLLs, there is a need to enhance blocking mechanisms to prevent their
manipulation. The document goes on to emphasize the significance of
identifying, categorizing, and addressing threats, particularly those char-
acterized by the [AHdFONEdd address. The explanation also ...and the

!dowadmin’ mechanisms. Mention of URLs indicates the network aspect
of these threats. I conclision. Fe FOview preseits thie Sobering Stafistics

place] However, it also maintains trust in sophisticated mechanisms and
clean programs, such as the ’sobrab’ and ’hfsadware’, in maintaining cy-
bersecurity around the globe.

By analyzing both the Actual FExplanation and MalGPT Ezxplanation, it is
evident that while the model captures key malicious behaviors effectively, it also
introduces hallucinated information and occasionally misclassifies intent (Expla-
nation 2, and 3). Using the highlighted text in the examples, we can systemati-
cally evaluate these issues:

Distinguishing contextual relevance: MalGP'T demonstrates the ability to iden-
tify malicious activities such as obfuscation and downloading behavior for Down-
loadAdmin. However, it introduces hallucinated elements, such as references to
"Firseria sections", which are not explicitly relevant in the actual explana-
tion (Explanation 2). This misattribution might stem from the presence of the
term "Firseria" in the actual explanation, where it was used in a different con-
text. This highlights a limitation in distinguishing contextual relevance during
explanation generation.

Distinguishing intention relevance: In the benign example, hallucinated con-
tent introduces contradictions. For instance, phrases, "workings of malware
and benign files" create confusion by blending opposing concepts (Explana-
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tion 3). While MalGPT correctly highlights benign characteristics, such as "with
a particular focus on benign files," it simultaneously incorporates unre-
lated malicious terms, such as "botnet," "Andromeda," and "dowadmin mecha-
nisms." This inconsistency likely arises from contextual overlaps in the training
data. The intermixing of benign and malicious indicators underscores the need
for enhanced precision when distinguishing intent categories to ensure coherent
explanations.

6.2 Data Dependency

A key limitation of the MalGPT framework lies in its dependency on the quality
and diversity of the input data. Although the dataset includes malware binaries
and corresponding explanations generated with the assistance of the ChatGPT
API, the reliability of these explanations is contingent upon the accuracy of the
underlying analyst reports sourced from VirusTotal. While efforts were made to
minimize hallucinations by extracting verified malware descriptions using MD5
hashes, the dataset remains limited in size and scope, potentially affecting gen-
eralization to unseen or novel malware families.

Additionally, some of the explanation patterns exhibit redundancy, which
may introduce noise into the training process. Future work should focus on cu-
rating a larger, more diverse dataset by incorporating alternative sources—such
as Amazon Truk or hybrid threat intelligence platforms—and ensuring balanced
coverage of malware behaviors. Enhancing dataset robustness will further im-
prove the model’s ability to handle previously unseen features and reduce the
risk of explanation artifacts.

7 Conclusion

Explaining malicious binaries remains a challenging domain due to the complex-
ity and diversity of malware behaviors. The proposed model, MalGPT, represents
a significant step forward as the first approach to generate detailed explanations
for malware binaries from scratch, focusing on both their behaviors and inten-
tions. MalGPT outperforms state-of-the-art methods, achieving high accuracy
in malware detection with exceptionally low error rates. Beyond detection, it
excels in generating high-quality explanations, quantitatively and qualitatively
validated, while also contributing a novel dataset tailored for this task.

Although hallucinations remains a concern, leading to occasional inaccura-
cies in explanations, this limitation can be mitigated in future iterations. En-
hancements such as improved contextual embeddings and fine-tuning on more
extensive labeled datasets will help refine the model’s interpretability and reli-
ability. The results demonstrate MalGPT’s potential to transform the field of
explainable Al for cybersecurity, bridging gaps in malware analysis and enabling
more informed decision-making.
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Supplementary Information The dataset, source code and appendix containing
detailed implementation information are available in the Data Mining and Security
(DMa$S) Lab GitHub repository®.
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