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Abstract. Sparse learning with structural information is a fundamen-
tal framework for feature selection. Among the various structures, the
tree is a basic one that appears in feature vectors, and tree-structured
regularization has been utilized to incorporate trees into objective func-
tions. Although proximal gradient methods (PGMs) are usually used for
optimization, they incur high computation costs for deep tree structures
or large datasets. We propose a fast PGM for tree-structured regulariza-
tion. Our method safely skips parameter updates of PGMs for pruning
unnecessary leaf nodes in the tree. In addition, it prunes unnecessary
computations for internal nodes in a hierarchical manner. Our method
guarantees the same optimization results and convergence rate as the
original method. Furthermore, it can be applied to various PGMs for
tree-structured regularization. Experiments show that our method re-
duces the processing time by up to 56% from the original method without
degrading accuracy.

Keywords: Sparse learning · Feature selection · Pruning method.

1 Introduction

Feature selection using sparsity-inducing regularization, as in Lasso [27, 7], is
a fundamental technique of data analysis. In many applications, as shown in
Figure 1, a tree structure naturally appears in the feature vector wherein the
features and groups of features correspond to leaf nodes and internal nodes,
respectively [21, 14, 22]. Tree-structured regularization [21, 16] effectively handles
such structural information by solving a regularized optimization problem. It is
based on a linear regression model whose parameter vector has the same tree
structure as that of the feature vector. By inducing sparsity at each node of the
tree, it selects important features from all the features. Owing to its effectiveness,
tree-structured regularization has been used for many applications, including
multi-task learning where multiple tasks are related through a tree structure [19],
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Fig. 1. Example tree structure of features.

multi-scale mining of fMRI data where each parent node contains a series of child
nodes that enjoy spatial locality [14], and traffic-sign recognition where the sign
categories are tree-structured [22].

Although solving the optimization problem seems difficult because of its tree-
structured regularization, [21] and [16] derived a proximal operator in a closed
form and applied a proximal gradient method (PGM), called the iterative shrink-
age thresholding algorithm (ISTA), to the problem. Specifically, the PGM up-
dates the parameters and applies the proximal operator in each iteration of a
gradient method. The proximal operator applies a soft-thresholding function to
parameters corresponding to each node of the tree in bottom-up breadth-first
order. Intuitively, this function shrinks the parameters to zero if the ℓ2 norm
of the passed parameters is less than or equal to a threshold. As a result, the
entire parameter vector becomes sparse and its nonzero parameters correspond
to important features.

From the perspective of computation cost, the proximal operator for tree-
structured regularization requires high computation cost when the number of
features p or the depth of the tree d is large. Specifically, it is O(pd) time for
each iteration of the PGM [21]. This is because it repeatedly applies a soft-
thresholding function to each node in the tree. In addition to the proximal op-
erator, we have to take the gradient with respect to each of the parameters
before the proximal operator is applied. Since the gradient computation requires
O(p2) or O(np) time, where n is the number of data points, it also incurs high
computation costs on large datasets.

This paper proposes a fast proximal gradient descent for tree-structured reg-
ularization. The method is based on two ideas as follows:
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Pruning leaf nodes to reduce the cost of gradient computations. The
first idea is to prune unnecessary parameter updates, including gradient compu-
tations which require O(p2) or O(np) time. Specifically, we prune updates for
parameters that turn to be zeros during optimization. Since a leaf node in the
tree corresponds to a set of parameters as shown in Figure 1, this idea corre-
sponds to pruning unnecessary computations for leaf nodes. We utilize an upper
bound of the ℓ2 norm of the parameters passed to the soft-thresholding func-
tion for pruning. Specifically, if this upper bound is less than or equal to the
threshold, we prune the computation of the leaf node.
Pruning internal nodes to reduce the cost of the proximal operator.
The second idea is to prune unnecessary computations for internal nodes to
reduce the computation cost of the proximal operator which requires O(pd) time.
The key is that an upper bound of a parent node can be computed by summing
the upper bounds of its child nodes. It enables us to efficiently compute upper
bounds for the internal nodes and prune unnecessary computations in the same
way as the first idea. Because our upper bound requires O(1) time for one node,
our method requires only O(p) time for computing the upper bounds of the
entire tree.

Since our method only changes the computation of the proximal operator,
it can be used with various PGMs, such as ISTA, fast ISTA (FISTA) [3], opti-
mized ISTA (OISTA) [18], and modified FISTA (FISTA-Mod) [20]. In addition,
it guarantees the same optimization results and convergence rate as the original
methods because we can safely prune unnecessary computations for zero param-
eters. Experiments show that our method reduces the processing time by up to
56% from the original PGM while achieving the same objective values.

2 Preliminary

2.1 Tree-structured Regularization

Let X ∈ Rn×p be a matrix of features, where n is the number of data points and
each data point is represented by a p-dimensional feature vector. y ∈ Rn is a set
of continuous responses. We consider the following optimization problem with
sparsity-inducing regularization:

min
β∈Rp

1
2 ||y − Xβ||22 + λϕ(β), (1)

where || · ||2 is the ℓ2 norm, β ∈ Rp is the parameter vector, λ > 0 is the
regularization constant, and ϕ(β) is the sparsity-inducing regularization term
for β. Here, we will let f(β) = 1

2 ||y − Xβ||22 for simplicity. Owing to ϕ(β), β will
be sparse after optimization and we can select important features for predicting
y from among all the features. To utilize the tree structure of the features, [21]
incorporate structural information into ϕ(β). The structure is defined using the
following index tree:
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Algorithm 1 FISTA
1: Input: A Lipschitz constant L of ∇f
2: Initialization: β0 ∈ Rp, β̂0 = β0, s0 = 1, t = 0, η = 1/L
3: repeat
4: βt+1 = proxϕ

λη(β̂t − η∇f(β̂t))

5: st+1 =
1+

√
1+4s2t
2

6: β̂t+1 = βt+1 + ( st−1
st+1

)(βt+1 − βt)
7: t = t+ 1
8: until convergence

Definition 1 (Index Tree [21]). For an index tree T of depth d, let Ti =
{Gi

1, G
i
2, ..., G

i
ni
} contain all the nodes corresponding to depth i, where n0 = 1,

G0
1 = {1, 2, ..., p} and ni ≥ 1, i = 1, 2, ..., d. Each node Gi

j corresponds to a subset
of {1, 2, ..., p}. The nodes satisfy the following conditions: 1) the nodes from the
same depth level have non-overlapping indices, i.e., Gi

j ∩ Gi
k = ∅, ∀i = 1, ..., d,

j ̸= k, 1 ≤ j, k ≤ ni; and 2) Gi
j ⊆ Gi−1

j0 , where Gi−1
j0 is the parent node of a

non-root node Gi
j.

Figure 1 shows an example of the index tree. Tree-structured regularization is
defined using the index tree as follows:

ϕ(β) =
∑d

i=0

∑ni

j=1 w
i
j ||β[Gi

j ]||2, (2)

where wi
j ≥ 0 (i = 0, 1, ..., d, j = 1, 2, ..., ni) is a pre-defined weight for node Gi

j ,
and β[Gi

j ] is a vector composed of the entries of β whose indices are in Gi
j . For

instance, if Gi
j = {1, 3, 5}, β[Gi

j ] consists of the first, third and fifth elements of
β. Intuitively, β[Gi

j ] tends to have zeros after optimization because ϕ(β) consists
of the l2 norms of the parameters, the same as group Lasso [30, 10].

2.2 Proximal Gradient Method

Problem (1) can be solved by using PGMs such as ISTA and FISTA [3, 21].
As a representative example, we describe FISTA, the pseudocode of which is
in Algorithm 1. FISTA consists of a parameter update (line 4) and a linear
combination of parameters (lines 5–6). Note that ISTA, FISTA, OISTA, and
FISTA-Mod share part of this parameter update (line 4). The parameter vector
β̂t is updated as β̂t−η∇f(β̂t), where the gradient ∇f(β̂t) is computed as follows:

∇f(β̂t) = X⊤Xβ̂t − X⊤y. (3)

Then, the updated parameter vector is passed to the proximal operator, proxϕλη(·),
which yields βt+1 (line 4). We will describe the specific procedure of the proximal
operator later. Lines 5–6 compute a linear combination of βt+1 and βt on the
basis of Nesterov’s acceleration method [24].
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Algorithm 2 proxϕλη(v)

1: Initialization: ud+1 = v
2: for i = d, ..., 0 do
3: for j = 1, ..., ni do
4: λi

j = λwi
jη

5: if ||ui+1[Gi
j ]||2 ≤ λi

j then
6: ui[Gi

j ] = 0
7: else
8: ui[Gi

j ] =
||ui+1[Gi

j ]||2−λi
j

||ui+1[Gi
j ]||2

ui+1[Gi
j ]

9: return u0

The proximal operator on line 4 is defined as

proxϕλη(v) = argmin
u∈Rp

λϕ(u) + 1
2η ||v − u||22, (4)

where v ∈ Rp. Although ϕ(·) has the tree structure shown in Equation (2),
[21] found an analytical solution for Equation (4) via the Moreau-Yosida reg-
ularization (Moreau envelope) [29, 25] of ϕ(·). The procedure is described in
Algorithm 2. First, ud+1, which is the target of the proximal operator, is initial-
ized (line 1). Next, ud+1 is updated by traversing the index tree T in bottom-up
breadth-first order (lines 2–8). Then, λi

j is computed as a threshold of the soft-
thresholding function (line 4). After that, ui[Gi

j ] is updated at each traversed
node Gi

j (lines 5–8). If ||ui+1[Gi
j ]||2 ≤ λi

j , ui[Gi
j ] is updated to a zero vector (lines

5–6). If not, ui[Gi
j ] is shrunk by multiplying (||ui+1[Gi

j ]||2−λi
j)/||ui+1[Gi

j ]||2 (lines
7–8). This procedure can be regarded as being the same as the soft-thresholding
function of group Lasso [30]. As a result, the parameter vector is expected to be
sparse during optimization.

Although we can compute the gradient and the proximal operator by Equa-
tions (3) and (4), the computation cost corresponding to line 4 of Algorithm 1
clearly dominates the other costs. Specifically, computing the proximal operator
requires O(pd) time for Algorithm 2 in every iteration of Algorithm 1 [21]. If the
tree is a perfect binary tree, it requires O(p log p) time because of d = O(log p).
In addition, line 4 of Algorithm 1 computes β̂t− η∇f(β̂t) including the gradient
computation before Algorithm 2 is called. The gradient computation requires
O(p2) or O(np) time in every iteration because of Equation (3). As a result,
executing line 4 of Algorithm 1 takes O(p2 + pd) or O(pn + pd) time. Namely,
the cost of Algorithm 1 is high when the depth of the tree or the dataset is large.

3 Proposed Approach

This section describes ideas of the proposed method. For the sake of simplicity,
the discussion of the algorithm and the time complexity will assume the tree
structure to be a perfect binary tree, although our method is applicable to any
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tree structure that satisfies Definition 1. The omitted proofs can be found in the
Appendix.

3.1 Overview of the Ideas

The bottleneck of the PGMs is line 4 of Algorithm 1. It can be decomposed into
two problems wherein 1) the existing method computes β̂t − η∇f(β̂t) at O(p2)
or O(np) time and 2) the proximal operator requires O(p log p) time. These
computation costs are incurred at every iteration until convergence. We tackle
these two problems with the two ideas.

The first idea is to prune unnecessary computations of β̂t − η∇f(β̂t) corre-
sponding to parameters that turn out to be zero. Specifically, our method checks
whether each parameter is zero or not before computing β̂t − η∇f(β̂t). If a pa-
rameter is determined to be zero, we prune the corresponding computation of
β̂t − η∇f(β̂t). To identify parameters that turn out to be zero, we introduce an
upper bound of ||ud+1[Gd

j ]||2 at line 5 of Algorithm 2. If this upper bound is less
than or equal to λi

j , the corresponding parameter is zero. The upper bound can
be efficiently computed because it only requires O(p) time for all the parame-
ters. This pruning corresponds to pruning computations for leaf nodes because
ud+1 = v = β̂t − η∇f(β̂t) holds, from line 1 in Algorithm 2. We describe the
details of this procedure in Section 3.2.

The second idea is to prune internal nodes in the tree on the basis of upper
bounds. Although this idea appears to be similar to the first one, the computation
of the upper bounds is different. Specifically, the upper bounds of internal nodes
are computed by summing the upper bounds of their child nodes, as we will
describe in Section 3.3. This method allows us to efficiently compute upper
bounds for all the internal nodes in bottom-up breadth-first order at O(p) time.
As a result, although original methods require O(p log p) time to compute the
proximal operator, we can efficiently prune unnecessary computations of the
proximal operator by using the upper bounds.

3.2 Pruning Leaf Nodes

As described in Section 3.1, pruning unnecessary computations of β̂t − η∇f(β̂t)

corresponds to pruning leaf nodes because ud+1 = v = β̂t − η∇f(β̂t) holds from
line 1 in Algorithm 2. Specifically, ud+1

t , which is ud+1 at the t-th iteration of
Algorithm 1, is computed from Equation (3) as follows:

ud+1
t = β̂t − η(X⊤Xβ̂t − X⊤y) = Mβ̂t + ηX⊤y, (5)

where

M = I − ηX⊤X. (6)

Then, to prune unnecessary computations for leaf nodes, we introduce ud+1
t [Gd

j ]
as follows:
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Definition 2. Let t′ be 0 ≤ t′ < t in Algorithm 1; ud+1
t [Gd

j ] is computed as

ud+1
t [Gd

j ] = ||ud+1
t′ [Gd

j ]||2 + ||M[Gd
j ]||F ||∆β̂t||2, (7)

where ||M[Gd
j ]||F represents the Frobenius norm of the submatrix of M containing

only Gd
j rows and ∆β̂t = β̂t − β̂t′ .

||M[Gd
j ]||F is computed only once before the optimization because it does not

depend on any parameters. ||ud+1
t′ [Gd

j ]||2 is computed at regular iteration inter-
vals in the PGM, as described in Section 3.4. The following lemma shows that
ud+1
t [Gd

j ] is an upper bound of ||ud+1
t [Gd

j ]||2:

Lemma 1 (Upper Bound for Leaf Nodes). We have ud+1
t [Gd

j ] ≥ ||ud+1
t [Gd

j ]||2
when ud+1

t [Gd
j ] is computed by using Equation (7).

The following lemma shows that the upper bound enables us to prune unneces-
sary leaf nodes:

Lemma 2. If ud+1
t [Gd

j ] ≤ λd
j holds, we have ud

t [G
d
j ] = 0.

From Equation (7), the total computation cost of the upper bounds for all the
leaf nodes is as follows:

Lemma 3. The total computation cost of Equation (7) for the leaf nodes j ∈
{1, ..., nd} is O(p) time given precomputed ud+1

t′ [Gd
j ] and ||M[Gd

j ]||F for j ∈
{1, ..., nd}.

According to Lemmas 2 and 3, we can identify the indices Gd
j of the unnecessary

leaf nodes in O(p) time by using the upper bound ud+1
t [Gd

j ] instead of ||ud+1
t [Gd

j ]||2
at line 5 in Algorithm 2. Since the total computation cost of ||ud+1

t [Gd
j ]||2 for

all the leaf nodes is O(p2) or O(np) time as a result of computing ud+1
t =

β̂t − η∇f(β̂t), our upper bounds efficiently identify unnecessary leaf nodes.
We should note that ud+1

t [Gd
j ] is an approximation of ||ud+1

t [Gd
j ]||2. We have

the following error bound for this approximation:

Lemma 4. Let ϵ be 2||M[Gd
j ]||F ||∆β̂t||2. Then, it satisfies |ud+1

t [Gd
j ]−||ud+1

t [Gd
j ]||2|

≤ ϵ.

This section introduced the upper bound for leaf nodes that are the cases of
i = d in Algorithm 2. In the gradient computation, we can use the above upper
bound for the leaf nodes. However, the bound cannot be used for the internal
nodes. In the next section therefore, we derive another upper bound for internal
nodes that are the cases of i ̸= d.

3.3 Pruning Internal Nodes

First, let us introduce ui+1
t [Gi

j ], where i ̸= d:
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Algorithm 3 Fast Proximal Operator for Tree
1: for i = d, ..., 0 do
2: for j = 1, ..., ni do
3: λi

j = λwi
jη

4: if i = d then
5: compute ui+1

t [Gi
j ] by Eqn. (7)

6: else
7: compute ui+1

t [Gi
j ] by Eqn. (8)

8: if ui+1
t [Gi

j ] ≤ λi
j then

9: ui[Gi
j ] = 0

10: else
11: if i = d then
12: compute ui+1

t [Gi
j ] by Eqn. (5)

13: ui[Gi
j ] = max

(
0,

||ui+1[Gi
j ]||2−λi

j

||ui+1[Gi
j ]||2

)
ui+1[Gi

j ]

14: return u0

Definition 3. Suppose that ud+1
t [Gd

j ] is computed by Equation (7) for an index
tree T . Then, ui+1

t [Gi
j ], where i = d − 1, ..., 0, is computed in the bottom-up

breadth-first order as follows:

ui+1
t [Gi

j ] =
∑

k∈Di
j
max(0, ui+2

t [Gi+1
k ]− λi+1

k ), (8)

where Di
j is a set of indices k such that Gi+1

k ⊆ Gi
j.

Equation (8) indicates that ui+1
t [Gi

j ] of node Gi
j is computed by using the upper

bounds of its child nodes Gi+1
k ⊆ Gi

j . u
i+1
t [Gi

j ] has the following property:

Lemma 5 (Upper Bound for Internal Nodes). For i = d−1, ..., 0, we have
ui+1
t [Gi

j ] ≥ ||ui+1
t [Gi

j ]||2 when ui+1
t [Gi

j ] is computed using Equation (8).

By using the upper bound, we can identify unnecessary internal nodes as follows:

Lemma 6. If ui+1
t [Gi

j ] ≤ λi
j holds for i ∈ {d− 1, ..., 0}, we have ui

t[G
i
j ] = 0.

The cost of computing the upper bounds of all the internal nodes is as follows:

Lemma 7. The computation cost of Equation (8) for all the internal nodes is
O(p) time.

3.4 Algorithm

Algorithm 3 presents the pseudocode of our method for computing the gradient
and the proximal operator based on the discussion in Sections 3.2 and 3.3. It
computes upper bounds (lines 4–7) and decides whether to prune the nodes
(lines 8–13). The computation is performed in bottom-up breadth-first order
(lines 1–2). In particular, it computes the upper bound by using Equation (7)
(lines 4–5) when the node is a leaf node and Equation (8) (lines 6–7) when the
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Algorithm 4 Pruned FISTA with Algorithm 3
1: Input: A Lipschitz constant L of ∇f , r > 1
2: Initialization: β0 = β̂0, s0 = 1, t = 0, η = 1/L
3: for j = 1, ..., nd do
4: compute ||M[Gd

j ]||F
5: repeat
6: β̂t′ = β̂t

7: for j = 1, ..., nd do
8: compute ||ud+1

t′ [Gd
j ]||2 by Eqn. (5)

9: for m = 1, ..., r do
10: compute βt+1 by Algorithm 3

11: st+1 =
1+

√
1+4s2t
2

12: β̂t+1 = βt+1 + ( st−1
st+1

)(βt+1 − βt)
13: t = t+ 1

14: until convergence

node is an internal node. If the upper bound is less than or equal to the threshold
λi
j = λwi

jη, the node is pruned (lines 8–9). If not, the exact value is computed
(lines 10–13). In this case, if the node is a leaf node, the value is computed with
Equation (5) only for the dimension corresponding to Gi

j . (lines 11–12).
Algorithm 4 is the pseudocode of FISTA with Algorithm 3. First, it pre-

computes ||M[Gd
j ]||F , which is used for computing the upper bounds (lines 3–4).

The main loop of the algorithm is lines 5–14. To compute the upper bounds
for the leaf nodes (Equation (7)), the algorithm computes β̂t′ and ||ud+1

t′ [Gd
j ]||2

(lines 6–8). It computes these values at regular iteration intervals r > 1 (line
9). Note that, r = 2 in this study. The performance variation with r is shown
in Section 5.1. Lines 10–13 are the same procedure as in the original FISTA
(Algorithm 1) except for the computation of the proximal operator. Specifically,
the proximal operator is computed using Algorithm 3.

Although Algorithm 4 is based on FISTA, our method can be also used with
other PGMs such as ISTA, OISTA [18], and FISTA-Mod [20] as shown in the
Appendix. This is because our approach only changes the computation of the
proximal operator in these methods.

3.5 Theoretical Analysis

Algorithm 4 has the following property:

Theorem 1 (Optimization Result). Suppose that Algorithm 4 has the same
hyperparameters and initial parameter vector as those of Algorithm 1. Then,
Algorithm 4 converges to the same objective value and solution as Algorithm 1.

This theorem suggests that our method returns the same results as the original
method. This property also holds for ISTA, OISTA, and FISTA-Mod when they
use our method. From Theorem 1 and its proof, our method has the following
property regarding the convergence rate:
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Corollary 1. Algorithm 4 achieves the same convergence rate as Algorithm 1.

Since the computation results of Algorithm 4 for the gradient and the proximal
operator are the same as those of Algorithm 1 in every iteration, the proof is the
same as in [3] and the above corollary clearly holds. Since Algorithm 4 is based
on FISTA (Algorithm 1), it runs in O(1/t2).

The computation cost of Algorithm 4 is as follows:

Theorem 2 (Computation Cost). Let nu be the total number of dimensions
of vectors corresponding to un-pruned internal nodes and let nl be that for un-
pruned leaf nodes. If T is the total number of loops of lines 9–13, the computation
cost of Algorithm 4 is O(p2(n+ T

r ) + p(n+ T + nl) + nu) time.

This theorem suggests that if nu and nl are small, the processing time will be
reduced by using Algorithm 4. Since the cost of the original FISTA with the
tree-structured regularization (Algorithm 1) is O(p2(n+ T ) + p(n+ Td)) time,
our method also reduces the coefficient of p2 in its cost.

The error bound of the upper bound for Algorithm 4 has the following prop-
erty:

Theorem 3 (Convergence of Error Bound). We have ϵ = 0 when β̂t in
Algorithm 4 converges.

The above theorem suggests that ud+1
t [Gd

j ] matches ||ud+1
t [Gd

j ]||2 if β̂t converges.
Namely, the upper bounds can accurately identify unnecessary leaf nodes when
β̂t converges.

4 Related Work

Several algorithms have been proposed to solve optimization problems with
tree-structured regularizers [16]. [31, 32] used a boosting-like technique based
on BLasso [33]. Since it utilizes a path-following strategy, it can obtain regu-
larization paths although it has difficulty computing them in parallel for each
regularization constant. [19] used a reweighted least-squares scheme based on a
variational formulation [1]. However, it cannot yield sparse parameters [16].

PGMs for tree-structured regularizers overcome the above drawbacks [15,
21]. Together with the PGM, an acceleration technique with momentum can be
utilized to reduce the processing time. A popular one is FISTA [3], which lever-
ages Nesterov’s acceleration method [24]. It decreases the function value at the
rate O(1/t2). FISTA is the most widely used accelerated PGM, and numerous
improvements to it have been proposed. A typical example is Monotone FISTA
(MFISTA), which does not increase the function value during optimization by
introducing an extra computation of the objective function in each iteration [2,
34]. Another example is OISTA, which improves on the convergence of FISTA on
the basis of a performance estimation problem (PEP) [5, 18, 26, 8]. FISTA-Mod
incorporates hyperparameters to control st+1, which leads to enhanced conver-
gence speed and improved stability [20]. [4] proposed smoothing proximal gradi-
ent (SPG) to deal with structured sparsity-inducing regularization. Although it
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can be also used with FISTA, the dimension of the gradient vector increases if
there are a lot of overlapping groups such as the tree structure of Definition 1.
Specifically, the space complexity is O(pd) space while the approach in this paper
requires O(p) space [15, 21].

5 Experiment

We evaluated the processing times and the objective values of our method.
FISTA [3], OISTA [18], and FISTA-Mod [20] were chosen as baselines for com-
parison. Note that ISTA was removed from the comparison because it had not
finished executing within a month. Since our approach is applicable to FISTA,
OISTA, and FISTA-Mod, we also evaluated their combinations, i.e., pruned
FISTA (pFISTA), pruned OISTA (pOISTA), and pruned FISTA-Mod (pFISTA-
Mod). We tried λwi

j = {λmax/10, λmax/10
2, λmax/10

3} after consulting previous
papers [6, 12]. λmax is the smallest regularization constant for which all the pa-
rameters are zero at the optimal solutions [28]. We stopped each algorithm when
the relative tolerance of the parameter vector dropped below 10−5 [9, 11, 13]. For
additional hyperpameters of FISTA-Mod, we used the same values as those in
the experiment of the original paper [20]. We used the climate dataset from
NCEP/NCAR Reanalysis 1 [17, 23]. It contains the means of climate data mea-
surements spread across the globe in a grid of 2.5◦ × 2.5◦ resolution for each
month from 1948/1/1 to 2022/6/1. Each grid point has a group of seven vari-
ables: air temperature, precipitable water, relative humidity, pressure, sea level
pressure, horizontal wind speed, and vertical wind speed. The size of the data
matrix was 894×57344. This dataset has spatial locality in the features of adja-
cent grid points and a hierarchical structure of areas due to the spatial data. To
exploit this property, we constructed a perfect binary tree with adjacent coor-
dinates in grids. Since we could handle the seven variables as a group, each leaf
node corresponded to a group and the depth of the tree was 13. As targeted re-
sponses, we used air temperatures in neighborhoods of Beijing, Canberra, Dakar,
Paris, Tokyo, and Washington. Therefore, our experiments consisted of six re-
gression tasks. All the experiments were conducted with one CPU core and 264
GB of main memory on a 2.20 GHz Intel Xeon server running Linux.

5.1 Processing Time

Figures 2 (a)–(c) show the wall clock times of the six regression tasks for each
hyperparameter. Our methods, pFISTA, pOISTA, and pFISTA-Mod, were faster
than FISTA, OISTA, and FISTA-Mod, respectively. The efficiency of our meth-
ods increased as we set larger hyperparameters. Specifically, since the hyperpa-
rameter setting in Figure 2 (a) strengthens the regularization, many parameters
turned out to be zero. In this case, our method pruned unnecessary computations
relatively easily; it reduced the processing time by up to 56% form the existing
methods. For all cases, our methods uniformly accelerated FISTA, OISTA, and
FISTA-Mod, demonstrating the generality of method.
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Fig. 2. (a)–(c): Processing times for each hyperparameter λ. (d)–(e): Numbers of com-
putations at nodes per depth and iteration. (f): Processing times for each hyperparam-
eter r.

Number of Computations at Nodes per Depth. The main idea of our
method is to prune unnecessary computations at nodes in the tree. Therefore,
we compared the numbers of computations at nodes of the original method with
those of our method. Figure 2 (d) shows the number of computations per depth
and their total. As a representative example, we compared FISTA and pFISTA
(ours) for predicting the air temperature in Tokyo when λwi

j = λmax/10. Note
that the trend was almost the same for other cities and methods. Our method
reduced the number of the total computations to 58.35% compared with the
original method. Specifically, regarding the first idea of pruning leaf nodes, the
number was reduced to 66.37% as shown at depth 13 in the figure. Regarding
the second idea of pruning internal nodes, the number was reduced to 50.32%
from the sum of computations for depths 1 to 12. The result reveals that our
ideas effectively pruned unnecessary computations.
Number of Computations at Nodes per Iteration. We also investigated
the number of computations at nodes for each iteration under the experimental
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Table 1. Comparison of objective values for FISTA and pFISTA (ours).

City λ FISTA pFISTA(ours)

λmax/10
1 1311× 10−1 1311× 10−1

Canberra λmax/10
2 9824× 10−3 9824× 10−3

λmax/10
3 1494× 10−3 1494× 10−3

λmax/10
1 9934× 10−2 9934× 10−2

Paris λmax/10
2 5389× 10−3 5389× 10−3

λmax/10
3 9595× 10−4 9595× 10−4

λmax/10
1 1301× 10−1 1301× 10−1

Washington λmax/10
2 6620× 10−3 6620× 10−3

λmax/10
3 1355× 10−3 1355× 10−3

settings described above. Specifically, we counted the numbers at the 1st, 500-
th, 1000-th, 1500-th, 2000-th, 2500-th iteration. The algorithms were stopped
at the 2984-th iteration. Figure 2 (e) shows the results, which suggest that our
method pruned half of the computations even at the beginning of optimization.
Our method further reduced the number of computations as it converged. This
is because ||∆β̂t||2 in Equation (7) turned out to be small as the optimization
progressed and the error bound of Lemma 4 became small. In addition, the
upper bounds accurately identify unnecessary leaf nodes in the tree when the
parameter vector converges as shown in Theorem 3. As a result, our approach
could more accurately identify and prune unnecessary computations later in the
optimization.

Impact of Hyperparameter r. Our method has a hyperparameter r > 1 that
is the interval in which to obtain β̂t′ and ||ud+1

t′ [Gd
j ]||2 in Equation (7) (line 9 in

Algorithm 4). We investigated the effect on processing time by changing r be-
tween 2 to 10 under the same experimental settings described above. Figure 2 (f)
shows the results. Our method reduced the processing time at small values of r,
but the processing time increased as the value increased. This increase is because
||∆β̂t||2 in Equation (7) becomes large when the value of r is large. In this case,
the error bound of Lemma 4 turned out to be large and it became difficult to
prune unnecessary computations by using the upper bounds. Given these results,
we recommend setting a small value for r in practice, e.g., r = 2.

Limitation. The reduction ratios of pFISTA-Mod (ours) relative to FISTA-
Mod for the dense parameter vectors are moderate as shown in Figures 2 (c).
This is because our method is based on the pruning method and cannot prune
the computations due to the dense parameter vector. However, since a goal of
sparse learning is to obtain a sparse parameter vector, it would be reasonable to
assume the sparse settings as shown in Figure 2 (a) in practical use scenarios.
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5.2 Value of Objective Function

Table 1 shows the final objective values of Canberra, Paris and Washington for
FISTA and pFISTA. The full results are shown in the Appendix. Our methods
achieved the same values of the objectives as those of the original methods. The
indices of the selected features also matched those of the original methods though
the results are omitted. This result supports Theorem 1: our method returned
the same optimization results as the original method because it safely pruned
unnecessary computations.

6 Conclusion

We proposed fast proximal gradient methods (PGMs) for tree-structured regular-
ization. The bottlenecks of the original method are parameter updates including
gradient computation and computation of the proximal operator with a hierar-
chical structure. We tackled the first bottleneck by pruning computations for leaf
nodes of the tree: our method safely skips updates by identifying the parameters
that must be zero on the basis of an upper bound. The second bottleneck was
conquered by pruning computations for internal nodes: they are hierarchically
pruned by summing the upper bounds of the child nodes. Our method provably
guarantees the same optimization results and convergence rate as those of the
original methods. In addition, since our method only changes the computation of
the proximal operator, it can be used with various PGMs. Experiments showed
that our method reduced the processing time by up to 56% from the original
methods without any loss of accuracy.
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