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Abstract. Privacy law can now demand specific training samples, if
requested from concerned parties, to be deleted from a trained model.
Random forest, an effective and widely used machine learning algorithm,
has been the model of study for various machine unlearning techniques.
The current unlearning techniques of random forest involve additional
processing before model training, so that fast unlearning of some samples
can be achieved. However, no algorithm can achieve the unlearning
of a trained random forest. This paper proposes a novel algorithm for
unlearning a trained random forest. The algorithm employs the method of
images to generate image samples of the samples that need to be forgotten
and trains a small number of additional decision trees on these image
samples. The proposed method, called MUMI, enables efficient unlearning
of samples from a trained random forest. Our theorems and experiments
show that MUMI achieves fast unlearning in a trained random forest
with virtually no loss of model performance.
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1 Introduction

In recent years, the rapid development of artificial intelligence has brought many
conveniences to the lives of humans [40,9,33]. However, technology has always
been a double-edged sword. While artificial intelligence improves humans’ lives,
it also poses challenges to the privacy and security of people [8,26]. For this
reason, institutions such as GDPR (General Data Protection Regulation) have
enacted laws to protect users’ rights to delete their data [34,32,20,23]. After a
user’s request to delete their data, their data must not only be deleted from the
database but also from the machine learning models that have used these data
for training. The task of erasing the influence on a trained model, of the samples
that have previously been used to train it, is called machine unlearning [2,23].

To comply with legal requirements and address practical needs, many algo-
rithms have been proposed for unlearning different machine learning models, e.g.,
decision tree [41], logistic regression [21], Markov chain Monte Carlo [10], or other
specific models [1,24,28,13,15]. And some machine unlearning algorithms can
be used to unlearn different kinds of models [5,2,12,37,25,29,7,14,16,17,27,39,30].
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Random forest is widely used as a model with superior performance and high
interpretability [3]. However, since it selects discrete dimensions and thresholds
for the tree split each time, it is discontinuous and cannot use gradient infor-
mation for machine unlearning like logistic regression [21] and neural networks
[19]. Random forest ensembles multiple decision trees to improve prediction
accuracy and robustness. Each decision tree selects the optimal split attribute
and threshold based on the Gini index and entropy. In the process of unlearning,
the optimal attribute and threshold may change after deleting some points, and
calculating the new optimal attribute and threshold on the entire subtree is
complicated. This presents challenges for the unlearning of random forest.

Fig. 1. An illustration of machine unlearning for random forest.

An illustration of machine unlearning for random forest is shown in Fig. 1.
Random forest is obtained by ensemble learning of decision trees, each tree is
trained on the randomly selected subset of the entire data. When we delete some
data, some trees in the random forest need to be revised.

Existing unlearning methods for random forest attempt to pay more cost
before training so that unlearning can be achieved at a small cost when required.
The DaRE tree [4] constructs random forest by employing randomness at most
nodes near the root, where attributes and thresholds are sampled randomly. In
contrast, only a few layers close to the leaf nodes are optimized using greedy
methods, guided by criterion such as the Gini index or mutual information. This
hybrid approach ensures that the tree remains computationally efficient while
maintaining accuracy. When samples need to be removed or ‘forgotten’, only a few
layers (subtrees) near the leaf nodes require retraining. This selective retraining



Machine Unlearning for Random Forest via Method of Images 3

reduces the computational overhead and enables rapid unlearning within the
random forest, making DaRE a highly efficient solution for scenarios where data
removal is necessary. HedgeCut [36] learns an ensemble of randomized decision
trees with randomly chosen splits, it classifing nodes into robust and non-robust
nodes based on whether they are easily affected by data deletion. For robust
nodes, when data is deleted, only the node statistics need to be modified. For
non-robust nodes, variant seed trees are prepared in advance, and when data is
deleted, variants are used to replace them. Existing methods can only modify
the training process before training so as to quickly unlearn the points that need
to be deleted, however, no existing method can achieve fast unlearning of
the already trained random forest model currently.

In this paper, we introduce Machine Unlearning based on Method of Images
(MUMI), a novel approach that leverages the method of images [22] to enable
unlearning in a trained random forest. Specifically, we generate image samples
of the samples that need to be forgotten and construct additional decision trees
based on these image samples. By ensemble these additional trees with the already
trained random forest, MUMI effectively achieves the unlearning of the target
samples while maintaining the classification accuracy.

We summarize our contributions as follows:

1. Introducing the method of images into the machine unlearning task for the
first time.

2. Proposing the first machine unlearning algorithm MUMI, based on the method
of images, to unlearn a trained random forest.

3. Demonstrating the efficiency and effectiveness of MUMI through experiments
on real-world datasets.

2 Related Work

Decision trees [38] are a class of tree-structured models that facilitate binary
predictions through a hierarchical decision-making process. Each leaf node repre-
sents a final prediction, while each internal node functions as a decision point,
associated with a specific attribute and a threshold value. Each decision node
partitions the data into branches based on a selected attribute and its threshold.
For a given test point x ∈ X, its prediction is determined by traversing the tree
from the root node, following the branches that comply with the attribute values,
until reaching a leaf node, where the prediction is derived from the leaf’s class
label. A decision tree is constructed recursively by selecting an attribute and
threshold at the root node that optimizes a chosen empirical split criterion. Two
commonly used criteria are the Gini index [11] and entropy [35].

Random forest extends decision trees by creating an ensemble of multiple trees
to improve prediction accuracy and robustness. The ensemble predicts the average
value of its constituent trees. To introduce diversity among the trees, two sources
of randomness are employed. First, each tree is trained on a bootstrap sample
of the original data, which allows some instances to be excluded or repeated.
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Second, at each decision node, only a random subset of attributes is considered
for splitting, rather than all attributes.

The DaRE [4] tree leverages randomness and caching mechanisms to enhance
the efficiency of data removal. In the upper levels of the DaRE tree, random
nodes are employed. These nodes uniformly select split attributes and thresholds
randomly. As a result, they rarely require updates, since their behavior is largely
independent of the underlying data distribution. At the lower levels, splits are
determined through a greedy optimization process, targeting criteria such as the
Gini index or mutual information. This approach ensures that splits are made in
a way that maximizes the purity or information gain of the resulting partitions.
To further optimize performance, the DaRE tree caches statistics at each node
and stores training data at each leaf. This design allows for selective updates:
when data is removed, only the necessary subtrees need to be adjusted, rather
than the entire tree. The DaRE tree can effectively trade-off between prediction
accuracy and update efficiency.

HedgeCut [36] trains an ensemble of randomized decision trees, where each
tree is built using random splits on randomly selected attributes. It continuously
manages this ensemble even when some training samples are removed. In some
trees, certain splits are non-robust, meaning that the decision to split could
change after data removal. To handle this, HedgeCut updates the statistics of leaf
labels and maintains alternative subtree structures. If the removal of data would
have caused the model to choose a different split, these alternative subtrees are
activated to ensure the model remains consistent.

In essence, both DaRE and HedgeCut require additional procedures prior to
training the random forest model. These additional steps alter the conventional
training process. It can be argued that they do not truly facilitate the unlearning
of a random forest in its original form. Instead, they introduce a modified version
of the random forest that is more amenable to the unlearning process. Given the
inherent structure and training process of a random forest, it appears that there
is no feasible method to induce machine unlearning in a trained random forest
without fundamentally altering its training process.

3 Method of Images for Unlearning Random Forest

3.1 Method of Images

The method of images is a powerful and elegant technique in classical physics,
particularly in the study of electrostatics and gravitational fields [22]. It is based
on the principle of superposition and the uniqueness theorem, which states that
if a solution to Laplace’s equation satisfies the boundary conditions, it is the only
possible solution.

In electrostatics, the method of image is often used to solve problems involving
conductors with complex geometries or boundaries. For example, when dealing
with a point charge q in (0, 0, a) near an infinite conducting plane as shown in
Fig. 2, instead of solving the complicated boundary value problem directly, we
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Fig. 2. An example of the method of images.

can introduce an image charge −q on the opposite side of the plane (0, 0,−a).
This image charge is chosen such that its magnitude and position ensure that
the potential on the conducting surface is zero, as required by the boundary
conditions. By doing so, the problem is simplified to finding the potential due to
the (opposite) charges of the two points, which can be easily calculated using
Coulomb’s law.

3.2 Machine Unlearning based on Method of Images (MUMI)

The beauty of the method of images lies in its ability to transform a seemingly
intractable problem into a much simpler one. After training a machine learning
model A(D) using data D, a data subset Df is required to be deleted from A(D),
and the machine unlearning uses algorithm U to obtain a model U(A(D),D,Df ),
which is equivalent to the model A(D \ Df ) trained from D \ Df . However,
due to the complexity of the model (such as random forest), it is difficult to
obtain U(A(D),D,Df ) without retraining, because the influence of deleting Df

from D on the model is difficult to measure. Inspired by the method of images,
deleting sample Df = {Xf , Yf} from the model A(D), for the purpose of machine
unlearning, is equivalent to adding image sample set DI

f = {Xf ,−Yf} to model
A(D) to obtain a new model Λ(A(D),Df ), in order to offset the information
contained in Df .

An illustration of employing the method of images is shown in Fig. 3. We
typically use the orange curve to represent the influence of data D on model
A(D). When we are required to delete a data point Df = {x, y} (where x is the
training sample and y is the corresponding label) from model A(D), directly
computing the new influence curve becomes challenging. To address this issue, we
can employ a method analogous to the ‘Method of Images’ in physics. Specifically,
we introduce an ‘image’ data point (x,−y) into the dataset. By considering
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Fig. 3. An illustration of the method of images in machine unlearning. The influence
of data D on model A(D) is shown on the left. The influence of data D \ {x, y} is
approximated by the method of images is shown on the right.

the influence curve of the augmented dataset D ∪ {x,−y}, we can approximate
the influence curve of the reduced dataset D \ {x, y}. This approach effectively
leverages the symmetry of the influence function, allowing us to bypass the
complexity of directly recomputing the influence curve after deletion.

Algorithm 1 MUMI: Λ(A(D),Df )

Input: Model A(D), Data to delete Df = {Xf , Yf}
Output: Model Λ(A(D),Df )
1: Generate image data: DI

f = {Xf ,−Yf}.
2: Train image decision trees A(DI

f ) on the image data set DI
f .

3: Ensemble the original model A(D) and the image model A(DI
f ) to obtain the

unlearned model: Λ(A(D),Df )← Ensemble(A(D), A(DI
f )).

4: return Λ(A(D),Df )

For the unlearning of random forest, we propose a Machine Unlearning
algorithm based on the Method of Images (MUMI) as shown in Algorithm 1.
Given the model A(D) and the data Df that need to be deleted, MUMI first
generates the image data DI

f = {Xf ,−Yf}, and then train the decision trees
A(DI

f ) on the image data set DI
f . Finally, MUMI ensembles the original model

(original decision trees) A(D) and the image model (image decision trees) A(DI
f )

to obtain Λ(A(D),Df ). By employing the method of images, MUMI achieves
data unlearning with significantly reduced computational cost. Specifically, it
only requires training on the much smaller image dataset DI

f ≪ Dr(Dr = D\Df ).
This approach eliminates the need to retrain on the remaining dataset Dr, thereby
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substantially decreasing the computational resources and time required for the
machine unlearning.

In the example illustrated in Fig. 2, the boundary condition is defined by the
electric potential of the conductor being zero. Satisfying this boundary condition
is a crucial requirement for the method of images to be valid. Similarly, in the
context of MUMI, we utilize the performance of the unlearned model on datasets
Xr and Xf as the boundary condition. Intuitively, we aim to make the unlearned
model to perform well on Xr while deliberately underperforming on Xf . This
strategy is based on the assumption that a retrained model (a model that has
completely forgotten Xf ) would naturally exhibit strong performance on Xr,
as it retains the relevant information from Xr, and weaker performance on Xf ,
since it no longer has access to the information from Xf [7].

Theorem 1. Let Er and ET+k denote the generalization errors of the model
obtained through retraining and MUMI, respectively. Then:

|ET+k − Er| ≪ Er.

Theorem 1 shows that the generalization error of the model unlearned by
MUMI is close to the generalization error of the retrained model. This guarantees
that the model has good performance after unlearning.

Theorem 2. Let f (T+k)
RF (x) and yf denote the predicted label and the true label

of x, respectively. The expectation error of the model unlearned by MUMI on Df

is:
E{x,yf}∈Df

|f (T+k)
RF (x)− yf | =

2k

T + k
,

where k is the number of image decision trees, T is the number of initial decision
trees.

Theorem 2 shows that MUMI can effectively forget Df . In particular, when
k = T , the expected error on Df is 1. However, in practice, it is not necessary
to set k too large, because the expected error on Df is not necessarily better
when it is smaller [14]. As long as it closely approximates the performance of the
retrained model, it is deemed sufficient.

The proofs of Theorem 1 and Theorem 2 are provided in the supplementary
materials.

4 Experimental Evaluation

Experimental Aims: We experimentally evaluate whether MUMI has the
following three capabilities:

1. Model effectiveness: whether the model maintains good classification accuracy
after unlearning.
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2. Unlearning efficacy: whether the data is unlearned from the model.
3. Unlearning efficiency: whether the data can be unlearned efficiently.

Datasets: We conduct our experiments on 13 publicly available datasets
used in the previous paper [4] that represent problems well-suited for tree-based
models. We use the code provided in DaRE [4] to split the data into training and
test sets (Xt). For each dataset, we generate one-hot encodings for any categorical
variable and leave all numeric and binary variables as is.

Table 1. Summary of the datasets used in the paper.

datasets n %pos. # cat. # num. # attr-hot Met.

Surgical 14,635 25.2 17 7 90 Acc.
Vaccine 21,365 46.6 36 0 185 Acc.
Adult 48,842 23.9 8 5 107 Acc.
Bank Mktg. 41,188 11.3 10 10 63 AUC
Flight Delays 100,000 19 6 2 648 AUC
Diabetes 101,766 46.1 36 7 258 Acc.
No-Show 110,527 20.2 2 15 98 AUC
Olympics 206,165 14.6 8 3 1004 AUC
Census 299,285 6.2 30 6 408 AUC
Credit Card 284,807 0.2 0 29 29 AP
CTR 1,000,000 2.9 0 13 13 Acc.
Synthetic 1,000,000 50 0 40 40 Acc.
Higgs 11,000,000 53 0 28 28 Acc.
∗ n: the number of points, %pos.: positive label percentage.
⋆ # cat.: the number of categorical attributes, # num.: the number of numeric

attributes, # attr-hot: the number of one-hot attributes.
† Met.: predictive performance metric.

Evaluation Metrics: To account for the varying degrees of label imbalance
in the datasets, we evaluate the predictive performance of models using different
metrics based on the proportion of positive labels. Specifically, we use:

1. Average Precision (AP) [42] for datasets with a positive label percentage of
less than 1%.

2. Area Under the ROC Curve (AUC) [18] for datasets with a positive label
percentage between 1% and 20%.

3. Accuracy (Acc.) for datasets with a positive label percentage exceeding 20%.

This approach allows us to select the most appropriate metric for each dataset,
ensuring a fair and meaningful assessment of model performance across different
levels of class imbalance.

A summary of the datasets is shown in Table 1, and the details about the
datasets are available in supplementary materials.
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Comparison algorithms: we compare MUMI 1 with the Retrain (retrain a
model on Dr), DaRE 2 and HedgeCut 3.

More details about experimental settings, such as the random forest model
used and the parameter settings, are given in the supplementary materials.

4.1 Model Effectiveness and Unlearning Efficacy

For each dataset, we report the scores of the unlearned model on the Xt (model
effectiveness) and Xf (unlearning efficacy). We evaluate the performance of
MUMI when unlearning 10, 100, 1,000, and 0.1%×n samples, with the results
presented in Tables 2, 3, 4, and 5, respectively.

Table 2. The results of unlearning 10 samples.

Dataset Xt (↑) Xf (↓)

Retrain DaRE HedgeCut MUMI Retrain DaRE HedgeCut MUMI

Surgical 0.932 0.917 0.724 0.939 0.800 0.700 0.600 0.700
Vaccine 0.921 0.902 0.783 0.922 0.800 0.900 0.800 0.800
Adult 0.885 0.858 0.835 0.885 0.900 0.900 0.900 0.900
Bank Mktg. 0.990 0.990 0.786 0.991 1.000 1.000 0.000 1.000
Flight Delays 0.800 0.836 0.722 0.796 0.875 0.375 0.438 0.875
Diabetes 0.713 0.667 0.605 0.714 0.800 0.800 0.700 0.800
No-Show 0.828 0.865 0.503 0.826 0.556 0.444 0.444 0.556
Olympics 0.811 0.856 0.525 0.805 1.000 1.000 0.438 1.000
Census 0.962 0.945 0.500 0.962 1.000 1.000 0.000 1.000
Credit Card 0.993 0.958 N/A 0.993 1.000 1.000 N/A 1.000
CTR 0.873 0.696 N/A 0.875 0.556 0.778 N/A 0.444
Synthetic 0.941 0.842 0.845 0.942 1.000 0.800 0.600 1.000
Higgs 0.744 0.678 N/A 0.743 0.700 0.700 N/A 0.743

Average Score 0.876 0.847 0.683 0.876 0.845 0.800 0.492 0.832
Average |s− sR| - 0.044 0.195 0.002 - 0.088 0.381 0.018
∗ N/A means an error occurred during the run or the result could not be output
within 12 hours.

⋆ s is the scores of algorithms, and the sR is the scores of Retrain.

In each of 10, 100, 1,000, or 0.1% ×n samples for unlearning, MUMI consis-
tently outperforms other algorithms on Xt and achieves the highest score (see the
second row from the bottom ‘Average Score’ in the table). In contrast, both DaRE
and HedgeCut exhibits lower scores compared to retraining. This is attributed
to the fact that HedgeCut employs extremely randomized trees, whereas DaRE
only optimizes split attributes and thresholds in the layers close to the leaf nodes.
1 MUMI: https://anonymous.4open.science/r/MUMI-8A0A
2 DaRE: https://github.com/jjbrophy47/dare_rf
3 HedgeCut: https://github.com/schelterlabs/hedgecut

https://anonymous.4open.science/r/MUMI-8A0A
https://github.com/jjbrophy47/dare_rf
https://github.com/schelterlabs/hedgecut
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Table 3. The results of unlearning 100 samples.

Dataset Xt (↑) Xf (↓)

Retrain DaRE HedgeCut MUMI Retrain DaRE HedgeCut MUMI

Surgical 0.933 0.917 0.726 0.960 0.830 0.770 0.740 0.830
Vaccine 0.923 0.902 0.785 0.935 0.800 0.800 0.780 0.780
Adult 0.885 0.857 0.833 0.886 0.840 0.830 0.800 0.830
Bank Mktg. 0.991 0.990 0.787 0.992 0.960 0.944 0.489 0.917
Flight Delays 0.799 0.836 0.722 0.796 0.737 0.742 0.497 0.682
Diabetes 0.712 0.667 0.610 0.714 0.730 0.640 0.630 0.730
No-Show 0.830 0.864 0.503 0.829 0.626 0.631 0.494 0.592
Olympics 0.811 0.856 0.527 0.803 0.796 0.813 0.489 0.728
Census 0.963 0.945 0.500 0.962 0.966 0.933 0.495 0.963
Credit Card 0.994 0.959 N/A 0.992 1.000 1.000 N/A 1.000
CTR 0.873 0.696 N/A 0.876 0.525 0.596 N/A 0.253
Synthetic 0.941 0.842 0.841 0.942 0.950 0.800 0.820 0.950
Higgs 0.744 0.678 N/A 0.743 0.790 0.720 N/A 0.760

Average Score 0.877 0.847 0.683 0.879 0.812 0.786 0.623 0.770
Average |s− sR| - 0.044 0.195 0.004 - 0.038 0.200 0.038

Table 4. The results of unlearning 1000 samples.

Dataset Xt (↑) Xf (↓)

Retrain DaRE HedgeCut MUMI Retrain DaRE HedgeCut MUMI

Surgical 0.934 0.924 0.722 0.982 0.834 0.806 0.761 0.742
Vaccine 0.924 0.904 0.785 0.956 0.765 0.762 0.761 0.721
Adult 0.884 0.857 0.833 0.893 0.866 0.850 0.833 0.851
Bank Mktg. 0.991 0.991 0.784 0.994 0.929 0.921 0.613 0.911
Flight Delays 0.796 0.837 0.724 0.797 0.694 0.702 0.528 0.683
Diabetes 0.712 0.668 0.609 0.718 0.641 0.629 0.597 0.617
No-Show 0.827 0.864 0.515 0.836 0.690 0.691 0.499 0.642
Olympics 0.807 0.856 0.527 0.804 0.784 0.799 0.512 0.753
Census 0.963 0.945 0.500 0.963 0.965 0.955 0.499 0.966
Credit Card 0.996 0.956 N/A 0.993 1.000 1.000 N/A 1.000
CTR 0.874 0.696 N/A 0.877 0.681 0.655 N/A 0.621
Synthetic 0.941 0.842 0.834 0.944 0.931 0.840 0.837 0.927
Higgs 0.744 0.678 N/A 0.745 0.755 0.709 N/A 0.662

Average Score 0.876 0.847 0.683 0.885 0.810 0.794 0.644 0.777
Average |s− sR| - 0.045 0.195 0.009 - 0.019 0.166 0.032
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Table 5. The results of unlearning 0.1%×n samples.

Dataset Xt (↑) Xf (↓)

Retrain DaRE HedgeCut MUMI Retrain DaRE HedgeCut MUMI

Surgical 0.931 0.917 0.722 0.951 0.818 0.727 0.667 0.818
Vaccine 0.922 0.902 0.787 0.929 0.714 0.714 0.810 0.714
Adult 0.885 0.857 0.833 0.888 0.844 0.844 0.788 0.844
Bank Mktg. 0.991 0.990 0.776 0.990 0.955 0.893 0.448 0.964
Flight Delays 0.796 0.836 0.724 0.796 0.711 0.704 0.469 0.637
Diabetes 0.713 0.667 0.610 0.711 0.741 0.642 0.605 0.716
No-Show 0.828 0.864 0.504 0.825 0.636 0.652 0.493 0.583
Olympics 0.803 0.856 0.527 0.804 0.818 0.871 0.493 0.777
Census 0.963 0.945 0.500 0.962 0.966 0.947 0.497 0.964
Credit Card 0.995 0.960 N/A 0.993 1.000 1.000 N/A 1.000
CTR 0.873 0.696 N/A 0.879 0.712 0.682 N/A 0.659
Synthetic 0.941 0.842 0.840 0.944 0.933 0.838 0.833 0.929
Higgs 0.744 0.678 N/A 0.746 0.736 0.677 N/A 0.662

Average Score 0.876 0.847 0.682 0.878 0.814 0.784 0.610 0.790
Average |s− sR| - 0.045 0.195 0.003 - 0.038 0.222 0.024

This represents the trade-off they have made in order to expedite the machine
unlearning process. Only MUMI performs machine unlearning on a standard
random forest. Moreover, the average absolute difference score of MUMI on Xt

is the closest to Retrain (see the last row ‘Average |s− sR|’ in the table).
With the exception of unlearning 1,000 points, the performance of MUMI on

Xf is the closest to that of Retrain. Meanwhile, when unlearning 10, 100, 1,000,
and 0.1% ×n samples, the average scores of MUMI on Xf is lower than those of
the Retrain model, indicating that MUMI truly achieves the unlearning of Df .

While DaRE outperforms MUMI on a few specific datasets, such as when
unlearning 10 samples from the No-Show dataset, this discrepancy is due to the
inherent poor performance of their model (as mentioned earlier, they do not
employ the standard random forest model, and inject more randomness into the
model). And it is crucial to reiterate that neither DaRE nor HedgeCut can truly
achieve data unlearning from a trained random forest model. Only the proposed
MUMI is capable of effectively removing data from a trained random forest,
thereby fulfilling the requirements of machine unlearning.

4.2 Unlearning Efficiency

Let T (·) be the time complexity of random forest, the time complexity of DaRE
and HedgeCut are T (|Dr|), while the time complexity of MUMI is T (|Df |). To
evaluate the unlearning efficiency of MUMI, we report the time required for
different models to unlearn 10, 100, 1000, and 0.1% ×n samples in Tables 6 and
7.
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Table 6. Time (seconds) of unlearning 10 and 100 samples.

Dataset 10 (↓) 100 (↓)

Retrain DaRE HedgeCut MUMI Retrain DaRE HedgeCut MUMI

Surgical 0.727 0.041 0.062 0.439 0.716 0.270 0.531 0.371
Vaccine 0.839 0.050 0.040 0.177 0.831 0.357 0.391 0.361
Adult 0.943 0.033 0.041 0.108 0.874 0.209 3.134 0.221
Bank Mktg. 0.879 0.026 0.037 0.157 0.871 0.210 0.383 0.253
Flight Delays 6.763 0.127 0.046 0.090 6.448 0.925 0.419 0.119
Diabetes 2.990 0.071 0.039 0.114 2.761 0.532 0.389 0.150
No-Show 1.692 0.075 0.367 0.097 1.696 0.437 0.427 0.133
Olympics 16.682 0.354 0.044 0.092 15.643 2.055 0.380 0.105
Census 11.378 0.330 0.389 0.093 11.478 1.045 0.402 0.100
Credit Card 9.451 16.753 N/A 0.103 9.772 23.817 N/A 0.096
CTR 17.409 2.009 N/A 0.101 16.024 4.478 N/A 0.113
Synthetic 33.961 0.488 0.068 0.099 36.580 5.563 0.561 0.108
Higgs 390.824 0.728 N/A 0.126356.949 5.777 N/A 0.138

Average Time 38.041 1.622 0.113 0.138 35.434 3.514 0.702 0.174

Table 7. Time (seconds) of unlearning 1000 and 0.1%×n samples.

Dataset 1000 (↓) 0.1%×n (↓)

Retrain DaRE HedgeCut MUMI Retrain DaRE HedgeCut MUMI

Surgical 0.724 2.131 11.940 0.498 0.731 0.043 0.079 0.265
Vaccine 0.820 3.112 3.991 0.430 0.830 0.090 0.078 0.313
Adult 0.869 1.932 9.095 0.305 0.905 0.071 1.363 0.208
Bank Mktg. 0.836 1.309 4.017 0.316 0.888 0.107 0.128 0.169
Flight Delays 6.937 9.932 4.177 0.137 6.027 0.796 0.314 0.112
Diabetes 2.790 10.360 3.673 0.207 2.961 0.499 0.298 0.139
No-Show 1.751 3.453 3.983 0.177 1.715 0.395 0.357 0.137
Olympics 17.156 18.013 3.763 0.096 17.745 3.079 0.609 0.080
Census 11.518 7.481 3.972 0.139 10.849 2.098 0.798 0.102
Credit Card 8.435 41.665 N/A 0.114 9.989 28.081 N/A 0.107
CTR 16.389 42.319 N/A 0.133 17.427 31.975 N/A 0.123
Synthetic 35.863 24.942 7.021 0.208 34.019 21.902 5.246 0.212
Higgs 383.332 52.090 N/A 0.203385.495 272.148 N/A 0.286

Average Time 37.494 16.826 5.563 0.228 37.660 27.791 0.927 0.173

The unlearning efficiency is mainly affected by two aspects: the size of Dr

(|Dr|) and the size of Df (|Df |).
Impact of |Df |: (i) HedgeCut is the most efficient unlearning algorithm

in most datasets when there are only 10 samples that need to be forgotten
in the training data. Because only a few subtrees have changed and need to
be reconstructed, the subtrees that HedgeCut has prepared in advance can be
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directly used for replacement. However, as the number of samples that need to
be forgotten increases, many subtrees in the random forest have changed and
need to be reconstructed. The subtrees prepared in advance in HedgeCut are
insufficient to cope with such extensive changes, resulting in a significant increase
in unlearning time. (ii) When the number of samples that need to be unlearned
is small, such as 10, 100 samples, and 0.1%×n samples for the four smallest
datasets, the unlearning time of MUMI is higher than that of DaRE. However,
when the number of unlearned samples is large, such as 1000 samples or 0.1%×n
samples for the largest nine datasets, the unlearning time of MUMI is much lower
than that of DaRE. Because DaRE employs the random split at the initial stages
of tree construction. It only selects the optimal nodes for splitting in the final few
layers of the decision tree. Consequently, when the number of samples that need
to be forgotten is small, the overall structure of the decision tree constructed
by DaRE remains unchanged. However, as the number of samples requiring
forgetting increases, the structure of the decision trees will change, necessitating
the retraining of DaRE, the complexity of retraining DaRE escalates significantly.

Impact of |Dr|: Another obvious phenomenon presented by Table 6 and
Table 7 is that the unlearning time of DaRE increases with the increase of |Dr|,
while MUMI does not. MUMI has almost the same unlearning time on these
data. This is mainly due to the following two reasons:

1. Firstly, DaRE necessitates the retraining of the entire retained dataset Dr.
In contrast, MUMI does not utilize Dr at all during the unlearning process.
Instead, it relies solely on Df to construct image samples, with |Df | ≪ |Dr|.
As a result, the unlearning efficiency of MUMI is significantly higher than
that of DaRE, particularly when the size of the dataset |D| is large, where
the difference becomes even more pronounced.

2. Secondly, both DaRE and HedgeCut require processing each tree within their
models. If the initial random forest consists of T trees, DaRE must retrain
all T decision trees on the dataset Dr. In contrast, MUMI only needs to train
k trees (k < T ) on the image samples derived from Df . Consequently, the
unlearning time of MUMI is significantly lower than that of DaRE, making
it a more efficient approach in terms of computational overhead.

In summary, our proposed algorithm MUMI demonstrates superiority over
existing algorithms in the following three key aspects:

* The most significant advantage is that MUMI can effectively unlearn the
trained random forest model, whereas existing algorithms are unable to
achieve this level of unlearning. This capability is crucial for scenarios where
data removal is required in a trained random forest model.

* MUMI outperforms existing algorithms in terms of model effectiveness, un-
learning efficacy, and unlearning efficiency. It achieves faster unlearning while
maintaining model accuracy, making it more efficient overall. This balance
between unlearning efficiency, model effectiveness, and unlearning efficacy is
a notable improvement over current methods.
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* The unlearning process of MUMI is not influenced by the remaining data Dr

but is solely focused on the data to be unlearned Df . This approach is both
intuitive and practical for unlearning, as it ensures that only the necessary
information is removed without unnecessary interference with the remaining
data. This aligns with the fundamental principle of forgetting: to remove
what needs to be forgotten without affecting what remains.

5 Discussion

The pros and cons of including retrain in the unlearning algorithm: Both DaRE
and HedgeCut incorporate retraining into their unlearning algorithms. For in-
stance, DaRE retrains the layers close to the leaves of the decision trees. This
approach ensures that the data to be forgotten is completely removed from the
model. However, it also alters the training process of original random forest,
which can lead to a reduction in model performance. Moreover, by employing
retraining, the focus shifts away from the subset Df that needs to be forgotten,
and instead, the entire retain dataset Dr is retrained. This significantly increases
the unlearning cost, especially when Dr is large.

Boundary conditions of the image method: Many methods use random
labeling methods [7,6,31], but they do not consider boundary conditions and are
therefore different from the mirror method. The application of the method of
images necessitates the fulfillment of specific boundary conditions. In the context
of machine unlearning, the stringent boundary condition is that the performance
of the unlearned model should be the same as that of the retrained model.
However, in practice, obtaining a retrained model is often infeasible due to the
prohibitively high cost of retraining (which is precisely why machine unlearning
algorithms are needed). In this paper, we propose using performance that closely
approximates the behavior of a retrained model, performing well on Xr while
performing poorly on Xf , as a proxy for the boundary condition. Identifying
other superior boundary conditions to replace the need for retraining remains an
open question.

The impact of different voting methods: In the experiment, we used hard
voting for each tree, but since the impact of each unlearned sample on image
decision trees is different when we forget different numbers of samples, the
weighted voting may have better unlearning performance.

6 Limitation and Future Work

MUMI unlearns data, leading to an increase in the number of decision trees.
Although only a small number of decision trees are added each time, the cumula-
tive effect becomes significant when the number of unlearning events is large. In
contrast, DaRE does not experience this issue. One potential approach is to use
these cumulative unlearned samples to train image decision trees instead of the
previous multiple image decision trees after forgetting lots of samples. Designing
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an unlearning algorithm that can achieve data unlearning in an already trained
random forest without adding additional decision trees is our future work.

7 Conclusion

In this paper, we introduce the method of images into the machine unlearning
task and propose the first machine unlearning algorithm based on this method,
called MUMI. MUMI is capable of achieving unlearning in a trained random
forest, a capability that existing algorithms lack. We provide theoretical proof
that our proposed algorithm can ensure both the good performance of the model
after unlearning, i.e., the removal of the specified data. Our experimental results
demonstrate that MUMI outperforms existing algorithms in terms of model
effectiveness, unlearning efficacy, and unlearning efficiency.
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