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Abstract. The task of network dismantling aims to attack the least
number of critical nodes to decompose a network into many small sub-
networks. Recent approaches design task-oriented neural models to en-
code nodes’ structural features for predicting their importance. Instead of
crafting small models, an interesting question is about whether and how
large models like Transformers can be exploited for this classic yet NP-
hard task in the network science domain. This paper provides an affirma-
tive answer. The key lies in how to enable a Transformer to encode nodes’
representations based on comparisons over their importance to network
integrity. In this paper, we propose to encode node egonet characteristics
as well as internode spatial dependences from a global view. Furthermore,
for each node encoding, we propose to include peer attention to enable
networkwide importance comparison. A new fusion module with a sparse
adaptive mask is designed into the Transformer architecture for encoding
node comparative importance to network integrity. Experiments on real-
world networks and synthetic networks validate the effectiveness of our
design over the state-of-the-art schemes. The source code and datasets
are available at: https://github.com/valyentine/TSAM.

Keywords: Network Dismantling - Transformer with Sparse Attention
Mask - Network Science - Representation Learning and Ranking.

1 Introduction

Numerous real-world physical systems can be abstracted as complex networks,
where each network is represented by a graph G = (V, &), with the node set
V and edge set £ defining its topology. Percolation theory [28] demonstrates
that the failure of a small fraction of nodes can cause a large-scale network to
disintegrate into numerous disconnected small subnetworks, leading to network
instability or even collapse. A notable example is the Century Link outage in the
United States on August 30, 2020, triggered by the malfunction of its critical
backbone router AS3356 [19]. This incident highlights the significance of the
network dismantling (ND) problem.

1 The first two authors contribute equally to this work. P<I Bang Wang is the corre-
sponding author.
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Following the literature [5I34129], the ND problem can be formally defined
as to find the smallest subset of nodes, termed the target attack node set (TAS),
whose removal disintegrates a network into disconnected components such that
the size of the giant connected component (GCC) falls below a predefined thresh-
old 0. Formally, the ND problem seeks to find the optimal TAS V* C V:

V* = argmin {[Vi] : [6,1/16] < 6}, M
Vv, CV

where |V| is the cardinality of the TAS, |G;| denotes the number of nodes in the
GCC after removing V;, |G| is the original network size. The ND problem has
been proven as non-deterministic polynomial hard (NP-hard) [5].

For tackling the ND problem, early efforts have proposed many centrality-
based heuristic solutions, i.e., the degree centrality [I], collective influence [25],
PageRank [26] and etc., to rank a node importance for constructing the TAS.
However, they tend to be susceptible to interference from particular structures,
while neglecting to compare the global competence among nodes. In the last few
years, a few studies have employed graph neural networks (GNN) to learn nodes’
representations from their local structures and/or global topologies for their
comparison and ranking to the importance of network dismantling [37I382223].
Compared to the centrality-based methods, these ND-oriented neural network
approaches exhibit superior performance, yet they predominantly employ rela-
tively small models with few parameters.

Recently, some researches have employed Transformers to address graph-
related tasks, such as the node classification, link prediction and etc.[7I39J36].
The global attention mechanism of Transformer enables to encode nodes’ rep-
resentations with attentions to other nodes’, thus can help discovering global
relations in an encoding process for downstream tasks. However, due to the
O(n?) computation complexity of Transformer gradient backpropagation up-
dates, it is difficult to extend them to large graphs. Some researches propose
to apply a sparse attention mask in Transformers for reducing computation
complexity [4I27], that is, the attention only takes care of an extended local struc-
ture of a node with its few hops away neighbors. Nevertheless, such approaches
risk compromising latent dependencies in between far apart nodes.

To the best of our knowledge, we note that the application of large mod-
els such as Transformers to the ND problem remains unexplored. For the ND
problem, the removal of a node and its associated edges directly impact on its
local structure, however only local structure cannot necessarily reflect its global
competence to the network integrity. That is, even two nodes are with the same
local structure, they may play different role in dismantling a large network. For
example, two such nodes are close to each other, so only one of them is neces-
sary to be included in the target set. If two such nodes are far away, it is also
necessary to compare which one, if with other target nodes, can contribute more
to the network integrity.

Motivated from the aforementioned considerations, we are interested to ex-
plore potentials on exploiting a large model like Transformer to address the
classic ND problem. The basic idea is to use a Transformer to encode nodes’
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representations for their ranking of importance to dismantle a network. For
attribute-less nodes, we propose to iteratively encode the local structure of a
node and its global relations to other nodes into its representation. For the dis-
mantling task, we propose to compare the importance to network integrity for
all nodes. A fusion model is designed to take care of both topological information
and task importance for representation learning.

This paper proposes a Transformer with Sparse Adaptive Mask (TSAM) for
network dismantling, where nodes’ representations are iteratively updated with
attention bias and mask for ranking their importance. In particular, the TSAM
takes learnable degree ranking encodings and last round nodes’ representations
as input, and the output is the nodes’ representations that are then converted
to ranking scores via a linear layer. Top-ranked nodes are selected as the target
attack ones. In the Transformer architecture, we propose to include a new fusion
module, which fuses topological biases with a sparse adaptive mask to update
the original Transformer attention matrix. The topological biases consists of lo-
cal structural bias via degree ranking encodings and global relational bias via
shortest-path encodings. The sparse adaptive mask consists of neighbor mask
and peer mask. The peer mask is constructed by comparing nodes of similar
representations, as they would score similar dismantling importance even if they
are far apart in the input network. Experiments are conducted on eleven typical
real-world networks and four synthetic network types. Results validate the su-
periority of our TSAM over the state-of-the-art schemes in terms of using fewer
attack nodes in most cases.

2 Related Work and Preliminary

2.1 Network Dismantling

Most existing network dismantling methods evaluate node importance based on
certain centrality measures and select the top-K most critical nodes as the TAS.
Commonly used approaches include degree centrality [I], betweenness central-
ity [12], closeness centrality [3], collective influence [25] and PageRank [26].

Recently, a few works have proposed neural network models to encode nodes’
structural features for scoring their importance to network integrity [11122I38].
For example, the FINDER|IT] employs a reinforcement learning framework that
incorporates a node reinsertion mechanism, i.e., strategically excluding some pre-
viously selected attack nodes from the target set and reinserting them back to
the input network. In contrast, our work addresses the one-path dismantling ap-
proach excluding node reinsertion, where the simultaneous removal of all nodes
in the TAS is executed in one iteration. The NIRM [37] encodes local structures
and global topological signals via a neural model trained over small synthetic
networks. The NEES[22] designs a graph neural network to extract the core
structure of the network and transforms it into a smaller-scale structure with
fewer nodes and edges. The DCRS|38] constructs a role graph based on the orig-
inal graph, then encodes and integrates the nodes’ propagation competitiveness
and role importance to evaluate the nodes.
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2.2 Transformer

We briefly introduce how one Transformer layer works, and multiple such layers
can be stacked for complex tasks. Let the input to a layer be H € R"*¢, where
n is the sequence length and d is the hidden dimension. Through learnable
projection matrices W,, W, W, € R4 the query Q, key K, and value V are
generated:

Q=HW, K=HW,, V=HW,.

The attention score matrix A € R™*" is computed via scaled dot-product of Q
and KT, which is then normalized by softmax. The layer output H’ is obtained
by the product of normalized A and V:

QK"

\/& 9
Note that the above single-head self-attention module can be generalized into a
multi-head attention via the concatenation operation.

In recent years, a number of Transformer-inspired models have been devel-
oped for some graph tasks, like the node classification, link prediction, molecu-
lar property prediction and etc.[739/36]. For example, the GraphTransformer|7]
uses positional encodings based on the Laplacian eigenvectors to learn nodes’
representations for the node classification task. Gophormer[39] combines hierar-
chical pre-trained language models with GNNs through a hybrid architecture,
enabling joint modeling of local neighborhood aggregation and global attention
for knowledge graph completion tasks. Graphormer|[36] integrates three struc-
tural encodings into Transformer layers to enhance structural awareness, achiev-
ing competitive performance in molecular property prediction. However, to the

best of our knowledge, there are currently no Transformer-based methods for
the ND problem.

A= H’' = softmax (A) V.

3 Transformer with Sparse Adaptive Mask

3.1 The TSAM Framework

Consider an input network G = (V, £) with N nodes and M edges. A Transformer
can be used to iteratively encode nodes’ representations H € RY*%  where dj,
is the representation dimension. After training, the output of the Transformer
H can be converted into dismantling scores via a linear layer for their ranking
to construct the target set. During the Transformer encoding process, the at-
tention mechanism necessitates computing pairwise attention scores in between
all nodes. This imposes significant challenges for both parameter updates during
backpropagation and memory consumption in large-scale networks, leading to
O(n?) computational complexity. Moreover, the fully-connected attention mech-
anism may degrade nodes’ representational capacity by unnecessarily aggregat-
ing information from those nodes with few contribution to network dismantling.
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Fig. 1: The framework of Transformer with sparse adaptive mask (TSAM). The
input is a connected network, and the output is nodes’ dismantling scores which
are used to compose the target attack node set (TAS). The TSAM includes a
new fusion module in the Transformer architecture, which fuses the Transformer
attention matrix with two biases a sparse adaptive mask.

Fig. [T presents the framework of our proposed Transformer with Sparse Adap-
tive Mask (TSAM) for network dismantling. In TSAM, the nodes’ representa-
tions H are first randomly initialized, which will be aggregated with a learnable
degree ranking matrix R as the Transformer input. The TSAM includes a new
fusion module into a Transformer architecture. The fusion module first fuses the
Transformer attention matrix A with a local attention bias B and a global bias
C to obtain a biased attention matrix. It next selects for each node its peers
with similar representations to construct a peer mask MP in each iteration. The
sparse adaptive mask M is the bitwise OR of the neighbor mask M" and the
peer mask MP, which is used to sparsify the biased attention matrix. During
each training epoch, the updated nodes’ representations H pass a linear layer to
obtain dismantling scores for loss computation and dismantling evaluation.

3.2 Degree Ranking Encoding

Node degree centrality serves as an important indicator for local structures: The
higher degree, the higher perturbation of structure stability caused by a single
node removal, and such structural perturbation might propagate via neighbors
to cause cascaded disconnections. We note that in many networks, node degree
distribution is often not continuous, that is, some degrees are not associated with
any node. For example, the network in Fig. [I] is without nodes of degree 3.
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Encoding the value of degree centrality could lead to computational ineffi-
ciency. Moreover, topological heterogeneity across networks results in functional
divergence among nodes with identical degrees. Thus, we propose to encode ordi-
nal degree rankings instead of the degree values. For an input network G = (V, £),
let d; denote the degree of a node v; € V, and D = {d;} denote the set of nodes’
degrees, which is sorted in an increasing order. For example, in Fig. [I| we have
D = {1,2,4,5} as the sorted degree set of the input network, where |D| = 4.
We encode node degree ranking by a learnable matrix R € RIP/*4n  Notice that
the i-th row R,; indicates the encoding of the i-th element in D. For a node v;
with degree d;, let index(D, d;) be an indexing function to return the index of
d; in the set D, denoted by r; = index(D, d;). The degree ranking encoding of
v; is denoted by R, which is aggregated with the node representation updated
in the last epoch as the input to the Transformer. We note that the iterative
encoding process is expected to enable the Transformer for learning nodes’ rep-
resentations with the understanding about the network topological information
as well as the node competence to the dismantling task. The encoding of a node
v; is randomly initialized using the Xavier [I3] method.

3.3 Topological Information as Attention Bias

The attention matrix A € RV*Y is used to allocate an attention of A;; by a
node v; for a node v;. For network dismantling, we propose two attention biases,
a local bias B and a global bias C to update A into a biased attention matrix.

Encoding local attention bias When removing a node and its associated
edges, its neighbors are the immediate sufferers, as they might be disconnected
to the original network. Even worse, such disconnection might be propagated
to incur cascaded disconnections of more other nodes. We propose to encode a
learnable vector b € R™IPI for each element in D. That is, b, is a learnable
scalar indicating the i-th element in D. Based on b, we construct the local bias
matrix B € RV* a5 follows: The i-th row of B indicates the attention of node
v; to other nodes. For v; with degree d;, we also use r; = index(D, d;) to return
the index of d; in D. Then we set all elements in the i-th row of B; as b,,. We
note that although the degree ranking R and local bias B are with the same
encoding rationale, they are encoded and used as two different matrices.

Encoding global attention bias The removal of a single node not only im-
pacts on the connection of its neighbors to the input network, it could also
impact on the connections of other far away nodes. However, capturing such
long range influences may not be easy in the graph structure. We propose to
use the shortest-path distance to measure the relation in between two nodes,
as the shortest-path is the most efficient way for information dissemination in a
network, which, we argue, could also be efficient to disconnect nodes from the
network and critical for network integrity. We hence propose to encode shortest-
paths in a network to represent the global relation of two nodes.
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Let c; ; denote the shortest-path between two nodes v; and v;. For example,
in Fig. m we have ¢ 5 = 1, c2 8 = 3. For the input network G, let C denote the set
of all possible shortest-paths among two nodes, which is sorted in an increasing
order. We propose to encode a learnable vector ¢ € R'*IC| for each element in
C. That is, c; is a learnable scalar indicating the i-th element in C. Based on c,
we construct the global bias matrix C € RV*¥ as follows: For a node v;, we use
an index function r; ; = index(C, v;,v;) to return the index of ¢; ; in C. Then we
set the element C;; = Cri e Note that we set C;; = 0.

Attention with biases After obtaining B and C, we input them into the
fusion model to update the Transformer attention matrix A by

Abiased =A+B+ Ca

to obtain a biased attention matrix Ap;qsed-

3.4 Fusion with Sparse Adaptive Mask

The biased attention matrix Ap;qeseq €nables the Transformer to have a network-
wide view on comparing and updating nodes’ representations, that is, the at-
tention of one node is computed based on the representations of itself and all
other nodes. However, this network-wide computation is with exhibitive costs,
sometimes causing the so-called over-globalization problem. That is, the atten-
tion of a node is unnecessarily allocated and normalized to those nodes without
enough importance to network integrity. To address this issue, we propose to
construct a sparse mask for each node only caring for its neighbors and peers.
The peers of a node are regarded with similar importance to network integrity
and so with similar encodings, even they are topologically far apart in the in-
put network. Furthermore, as nodes’ encodings are iteratively updated in each
training epoch, the peers of a node can also change in different epochs. As such,
we construct a sparse adaptive mask for the fusion module.

Neighbor Mask. A node should pay more attention to its neighbors, as they
represent its local structure and would be directly impacted due to its removal.
We use the adjacency matrix of the input network as the neighbor mask, denoted
by M" € {0,1}V*N, M}, = 1 indicates the existence of an edge between the
node v; and vj; Otherwise, M7, = 0. We note that the neighbor mask is not
changed during the training epochs.

Peer Mask. The peer mask is used for a node to pay more attention to those
nodes with similar importance to network integrity, even they could be topo-
logically far away. By using a peer mask, the global competence to network
integrity for two distant nodes can be compared. In order to enhance generaliza-
tion capability, we propose to utilize the nodes’ representations learned by the
Transformer for competence evaluation.
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fusion process.

Let H € RV*4n denote the output of a Transformer layer, which will next
pass a linear layer for scoring each node, as shown in Fig. [ The i-th row of
H is the representation of node v; learned by the Transformer. We compute the
similarity between two nodes’ representations, and construct a similarity matrix

S S RNXN as fOHOWS:
||II||I‘0W ||II||!‘OW ’

where ||H||;ow denotes the L2 normalization applied to each row of the matrix
H. For a node v; with degree d;, we only choose the top-K; similar nodes, where
K; is computed by

K; = min (max (d;, a1) , a2) (2)

where a; and as are hyperparameters to denote the minimum and maximum
sampling quantities respectively. We set the values of the top-K; elements in the
i-th row of S to 1 and the rest to 0, to obtain the peer mask MP.

It is worth noting that, in contrast to the neighbor mask M", the peer mask
MP? is not fixed but subject to change in each training epoch. This ensures that
the peer selection does not favor a specific type of nodes, but instead adaptively
chooses more appropriate nodes as the Transformer gradually understands each
node importance to network integrity.

Fusion with Sparse Adaptive Mask. The sparse adaptive mask M is the
result of bitwise OR operation on the neighbor mask M"™ and peer mask MP?:

M =M" v MP (3)
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Table 1: Statistics of the real-world networks.

Network Nodes Edges Density (k) ClustCoeff. Diameter Category
Chicagol|8] 12,979 20,627 0.0002 3.18  0.0455 106  Transport
Euroroads(Er)[32] 1,039 1,305 0.0024 2.51 0.0339 62  Transport
AirTraffic(AT)2I] 1,226 2,408 0.0032 3.93  0.0639 17 Airport
Gnutella|24] 8,717 31,525 0.0008 7.23  0.0081 10 Internet
FilmTrust(FT)[L6] 874 1,309 0.0034 2.99 0.1916 13 Social

LastFM|30] 7,624 27,806 0.0010 7.29 0.1786 15 Social

RoviraVirgili(RV)[15] 1,133 5,451 0.0085 9.62 0.1663 8 Email

PPI|6] 2,224 6,609 0.0027 594 0.1381 11 Protein
Figeys[10] 2,239 6,432 0.0026 5.75 0.0076 10 Protein
Vidal|31] 3,133 6,726 0.0014 4.29 0.0354 13 Protein
Genefusion(Gf)[I7] 291 279 0.0066 1.92 0.0017 9 Biology

where V denotes the bitwise OR operation. The fusion process applies the M to
the biased attention matrix Ayiqseq to obtain the final attention matrix A finq::

.o Abiased(i7j) if Mi,‘ = 1’
Aginar(i, j) = {_oo M, = 0 W
ij = U

Note that the (¢, j)-element of the final attention matrix represents the attention
score of v; to v;. In our experiments, we take negative infinity as a very small
value (—10°), so that after the softmax function, the attention score at this posi-
tion will become 0. Fig. |3 shows the full process of fusion module. By leveraging
the two masks, we can achieve a balance between local and global information
while significantly reducing computation costs.

3.5 Scoring and Loss Function

Scoring. After obtaining the nodes’ representations H, we evaluate a disman-
tling score s; for each node v; by a linear layer:

S; = WgH;r (5)

where W is the learnable matrix of the linear layer. The dismantling score s;
can be understood as the importance of v; to network integrity. We finally select
the top-K nodes with highest dismantling scores to form the TAS V.

Loss Function. To remove the least number of nodes while ensuring the re-
maining components in the network are small enough, we adopt the loss function

defined in [38]:
1
L="> ||)1+sj+§ Sis (6)

v €V v; EN (v; v €V
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Table 2: Comparison of normalized TAS sizes(%) on real-world networks with
0.01 dismantling threshold. The best is marked in bold green, the second best
is marked in bold, while the third best is marked with underline.

Datasets DC BC CI PR NV GAT GCN NIRM NEES DCRS‘ TSAM

Chi.  50.8 55.58 60.42 51.56 70.74 77.73 76.65 46.58 42.15 35.3 |33.03 ,443%
Er  41.29 48.99 82.19 33.69 46.2 87.78 89.51 38.11 28.1 23.39|22.42 4 199
AT 32.79 50.98 68.03 28.14 73.82 76.59 98.04 25.61 26.43 23.57|21.70 7 4%
Gnu. 36.64 38.35 40.35 35.07 95.23 63.78 98.82 35.03 43.32 32.45| 32.83_1 179
FT  22.77 33.75 42.68 22.20 64.87 81.69 98.74 44.39 25.97 19.11|14.53 94 %
Las. 31.69 40.11 48.6 27.96 79.55 61.23 98.95 70.96 31.47 26.02 | 25.47 .5 179
RV 48.46 54.55 59.31 44.40 94.88 86.41 98.94 45.01 52.34 43.07 |41.31 .4 10%
PPI  27.34 35.7 34.67 24.19 41.32 61.38 98.88 25.49 24.82 21.67|21.04 .3 53%
Fig. 18.89 18.89 25.9 16.03 86.02 54.27 30.64 39.53 10.05 8.93 | 8.84 .1 go%
Vid.  20.84 23.46 31.6 20.14 89.59 54.23 98.82 31.38 17.3 16.02|14.20_ 1] 359
Gf  19.24 21.65 82.82 13.4 78.69 76.63 98.28 13.75 19.59 11.34|11.34 ¢ 00%

Table 3: Average TAS and standard deviation results from twenty instances
generated by four synthetic models.

Datasets DC BC CI PR NEES DCRS TSAM

PLC 35.16%2:42 40.99+2.65 54.70%5.92 33.69+2.27 42.01+3.21 32.19+1.71|31.78+1.49
BA  45.30%1.76 47.60%2-32 64.17%3.58 43.23+1.88 53.4042.78 41.47+1.60|40.56+1.79
ER  65.95£2.99 65.66%1.90 72.74%3.84 59.00%1.54 63.66%:4.35 54.61+2.20/50.51+1.66
WS 77.13%2.53 76.92+2.36 82.04+3.18 73.01+3.66 76.65+3.30 63.98+1.30/63.80+1.34

where N (v;) stands for the neighbor set of node v;. The first term represents
the expected number of unaffected nodes after the removal of a node. 7 _:Sj is
inversely proportional to the importance of v; for network integrity. The number
of unaffected nodes is estimated by evaluating the collective effect within the
egonet after the removal of v;. To minimize the number of targeted attack nodes,

the sum of decomposition scores is used as a regularization term.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate the effectiveness of our TSAM on both real-world net-
works and synthetic networks.

Real-world Networks. We selected 11 real-world networks of diverse network
scales and different topological structures spanning multiple domains, including
society, internet, biology, collaboration and etc. Table[I]summarizes the statistics
of these networks.

Synthetic Networks. We employ four standard generative models to get syn-
thetic network data: the WS (Watts-Strogatz) [35], BA (Barabéasi-Albert) [2],
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Fig. 4: Results of three real-world networks. Top: Network topology and degree
distribution visualizations. Bottom: Dismantling performance of different models
across varying dismantling thresholds on each network.

PLC (Powerlaw-Cluster) [18], and ER (Erdds-Rényi) [9]. We use each model to
generate 20 synthetic instances and average the results.

Competitors. We compare the TSAM with the two types of competitors:
(1) four centrality-based schemes: DC (Degree Centrality) [I], BC (Betweeness
Centrality) [12], CI (Collective Centrality) [25], and PR (PageRank) [26]; (2)
six neural model-based schemes: the NV (Node2Vec) [14], GCN [20], GAT [33],
NIRM [37], NEES [22], and DCRS [38].

Implementation Details. In our experiments, we use one Transformer layer
and one attention head. All experiments are implemented in the Linux operating
system using an NVIDIA GeForce RTX 4090 with 24 GB memory, based on the
Pytorch version 2.4.0, cuda 11.8, and Python 3.9.
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4.2 Experimental Results

Real-world Networks. Table [2| presents the normalized TAS over network
size for the real-world networks, when setting the dismantling threshold to 0.01.
The smaller the normalized TAS, the more effective the network dismantling
is, as it requires fewer target nodes to be removed. From the table, we can
observe that our TSAM achieves the best performance in terms of the smallest
normalized TAS in 10 out of 11 real-world networks, showing its superiority over
the competitors. On the Gnu. real-world network, our model plays the second
best, with a slightly more nodes than the best one.

Taking the real-world networks of the AirTraffic, Figeys and Vidal as ex-
amples, we visualize the network nodes and degree distribution in Fig. [ to
demonstrate the differences in their structures and characteristics. Facing these
structurally heterogeneous real-world networks, achieving superior performance
on all of them with a single model is highly challenging. The results demonstrate
its generalization capability and resilience to topological differences. Fig. [ also
plots the dismantling performance in terms of the normalized TAS under differ-
ent dismantling threshold 6 for the eleven real-world networks. It can be observed
that our TSAM also outperforms the competitors in most cases.

Synthetic networks. We select and compare six competitive methods with our
TSAM on synthetic networks, as presented in Table|3| Fig|5| (A) plots the mean
normalized TAS size and the standard deviation for the seven schemes, where
each result is averaged over 20 generated network instances. Instances generated
from the same synthetic model share similar network characteristics, while dif-
ferences can exist across instances even using a same synthetic model with the
same parameters. For example, the WS model generates networks with high clus-
tering coeflicients and small-world properties, whereas the PLC model produces
networks exhibiting both scale-free degree distributions and hierarchical cluster-
ing structures. Results show that our TSAM achieves the best performance in
synthetic networks.

Fig. |5 (B) plots the normalized TAS size under different § in ER networks
as well, where our TSAM performs the best in terms of the smallest average
results. Fig. [5 (C,D,E,F) plot the normalized TAS for each experimented in-
stances, where our TSAM achieves the smallest value in most instances and
with a smaller variance. Note that although our TSAM outperforms the others
in terms of averaged normalized TAS size, it may not be the best one in ev-
ery network instance. We further investigate the dismantling performance of our
TSAM on the ER networks generated with different parameters. Fig. [5| (G) and
(H) respectively plot the results for fixing the network average degree (k) = 6
and increasing the network size N, and for fixed N = 1000 and varying (k) from
4 t0 9. Our TSAM demonstrates robust performance in both scenarios, achieving
competitive results comparable to state-of-the-art schemes.



14 Y.Liu et al.

4.3 Ablation Experiment

To verify the effectiveness of individual modules in TSAM, we conduct ablation
experiments on the six key components, including the three structural encodings
(w/o DRE: degree ranking encoding; w/o LB: local bias; w/o GB: global bias),
two sparse masks (w/o NM: neighbor mask; w/o PM: peer mask), and the w/o
IE: iterative encoding update mechanism. Table[d] presents the results of ablation
experiments. It can be observed that removing any component degrades the
model performance across all evaluated networks. This performance degradation
validates the essential role of each module in the network dismantling task.

Table 4: Ablation study results on the real-world networks with 8 = 0.01.
Methods ‘ Chi. Er AT Gnu. FT Las. RV PPI Fig. Vid. Gf

w/o DRE|49.65 56.02 69.17 79.86 46.68 60.99 77.05 57.06 52.30 40.82 49.83
w/o LB [33.31 22.51 22.43 33.04 14.53 25.47 42.81 21.17 9.20 16.69 11.34
w/o GB [35.52 23.10 22.84 36.07 19.45 33.85 41.40 22.71 13.04 17.30 11.68
w/o NM |43.58 35.51 37.93 57.80 28.15 67.92 77.67 41.95 53.37 43.47 19.59
w/o PM |33.28 26.37 23.90 32.93 18.88 31.22 41.57 23.56 14.92 17.34 11.34
w/o IE |34.86 29.45 22.43 35.31 16.13 29.11 43.51 24.37 9.78 15.19 11.34

TSAM ‘33.03 22.42 21.7 32.83 14.53 25.47 41.31 21.04 8.84 14.2 11.34

For the nodes’ representations, the effect of eliminating the DRE (degree
ranking encoding) part is generally lower than eliminating only the IE part.
This may be due to the fact that by removing the DRE component, only global
information is used for representations without taking into account local infor-
mation, while local structural information usually plays a significant role in the
ND problem. For similar reasons, the impact of eliminating the NM (neighbor
mask) part has a greater effect than removing other bias or mask part in the
fusion module. Although the local structure information is important, we note
that the best performance is achieved when including global topology informa-
tion (the global bias) and comparing node importance (the peer mask) in the
TSAM scheme.

4.4 Efficiency Analysis

To validate the efficiency of our mask mechanism, we compare it with full global
attention on several real-world networks and record the average runtime per
epoch over 50 training epochs. Table [5] presents the detailed results. The results
demonstrate that our mask mechanism achieves significant runtime reductions
and operational efficiency improvements.

Table 5: Average runtime consumption per epoch (seconds).
Methods ‘ Er AT FT RV PPI Fig. Vid. Gf

Full Att. [93.06 137.14 32.78 107.51 433.52 424.68 663.71 4.83
Masked Att.|0.82 1.24 0.61 195 3.81 3.16 5.13 0.14
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4.5 Hyperparameters Analysis

Hyperparameter configurations. Our model incorporates two critical hyper-
parameters, a; and «q, representing the minimum and maximum sample sizes
respectively. These hyperparameters influence network dismantling performance
to some extent, with their optimal values depending on network scale, average
degree, and other topological characteristics. For reference, our hyperparameter
configurations are provided in Table [6}

Table 6: Configurations of oy and as in both real-world and sythetic networks.
Datasets‘Chi. Er AT Gnu. FT Las. RV PPI Fig. Vid. Gf PLC BA ER WS

a1 121 2 1 3 3 5 1 1 1 5 5 3 1
Q2 10 10 10 20 5 15 10 20 10 10 3 10 10 10 1

Sensitivity analysis. To validate the sensitivity of our TSAM to hyperparam-
eters, we configure o and gy as four distinct pairs: (1, o), (5, 5), (10, 10),
and (20, 20). These configurations represent sampling sizes equivalent to node
degree, and fixed sizes of 5, 10, and 20 respectively. The comparative results on
several real-world networks are presented in Table [7}

Table 7: Dismantling performance with different hyperparameters(d = 0.01).
Configurations| Er AT FT RV PPI Fig. Vid. Gf

(1, o) 23.29 23.33 15.45 44.31 22.48 12.59 14.65 11.68
(5, 5) 22.23 23.74 14.3 42.54 22.30 9.11 16.69 11.34
(10, 10) 25.51 23.49 14.87 41.39 20.82 9.74 17.3 11.68
(20, 20) 34.26 22.51 14.87 43.95 22.03 12.95 18.7 11.68

TSAM ‘22.42 21.7 14.53 41.31 21.04 8.84 14.2 11.34

The analysis reveals that the model performance exhibits measurable vari-
ations under different hyperparameter configurations. Nevertheless, our TSAM
maintains robust dismantling efficacy across multiple networks, demonstrating
competitive results relative to benchmark requirements.

5 Conclusion

This paper studies the potentials of using large models for the classic network
dismantling problem. We have proposed the TSAM, a Transformer-based frame-
work with a sparse adaptive mask, and experimented its superiority over the
state-of-the-art competitors in real-world networks and synthetic networks. The
performance superiority can be attributed to the large model encoding capa-
bilities, but more important is from our design: The degree ranking encoding
is to capture local structural biases, the shortest-path encoding is to encode
global relations in terms of long-range dependencies, and a sparse mask combin-
ing static neighbor mask and adaptive peer mask. The adaptive mask helps to
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identify nodes of comparable importance to network integrity, enabling global
comparisons while reducing computational overhead.

Despite the new state-of-the-art results, we acknowledge some limitations of
our model. The TSAM does not fully exploit higher-order structural patterns
(e.g., multi-hop egonet dynamics). While the peer mask reduces computation,
scalability to billion-scale networks requires further optimization. Future work
will explore hierarchical attention mechanisms for higher-order structures and
large-scale networks.
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