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Abstract. While Spatial-Temporal Graph Neural Networks (STGNNs)
excel at urban flow prediction, they struggle with distribution shifts
caused by dynamic spatial-temporal environments. To improve gener-
alizability to out-of-distribution (OOD) data, a typical solution is to
disentangle invariant patterns that carry stable causal effects from vari-
ant ones that are environment-dependent. Existing OOD-robust meth-
ods attempt to model these environments but face challenges in quan-
tifying dynamic changes and suffer from high computational costs. As
a solution, we propose Memory-enhanced Invariant Prompt Learning
(MIP), which enables environmental interventions directly within the la-
tent space by learning a memory bank from the spatial-temporal urban
flow graphs. Then, by performing spatial-temporal interventions on the
variant prompts, diverse environments are constructed in the latent space
to facilitate invariant learning. The invariant prompts, together with a
memory-enhanced causal graph, are fed into an STGNN backbone to
produce accurate predictions. Extensive experiments on two public ur-
ban flow datasets confirm MIP’s effectiveness in improving robustness
against OOD data.

Keywords: Spatial-temporal Graph Neural Networks · Out-of-distribution
Generalization · Invariant Learning.

1 Introduction

Urban flow prediction, which forecasts traffic, pedestrian, and public transporta-
tion dynamics, is crucial for smart cities [18], public transit management [7,33],
and ride-sharing services [4,38]. Typically modeled as a spatial-temporal graph,
nodes (e.g., traffic sensors or geographical grids [29]) in urban flow are connected
based on proximity, with the goal of predicting future traffic flow at each node.
To effectively model these spatial-temporal dependencies, recent solutions are
built upon deep learning-based approaches, particularly Spatial-Temporal Graph
Neural Networks (STGNNs) [17, 33, 37]. These models leverage Graph Neural
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(a) Traffic speed at node A.
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(b) Traffic speed at node B.
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(c) Traffic speed at node C.

Fig. 1: The sampled traffic speed recorded by three sensors in the METR-LA
dataset, where nodes B and C are two closest sensors of Node A. The records
correspond to two Wednesdays in the 3rd and 13th weeks of the dataset.

Networks (GNNs) [17, 33] to capture spatial correlations and sequential mod-
els like Recurrent Neural Networks (RNNs) [17, 20] and Temporal Convolution
Networks (TCNs) [33, 37] for learning temporal dependencies. Some STGNNs
further enhance predictions by incorporating dynamic graph structures based
on temporal feature similarities [3,26,34] or modeling complex spatial-temporal
interactions [6, 12].

Most STGNNs operate under the assumption that urban flow data adheres
to the independent and identically distributed (I.I.D.) nature, which rarely holds
true in real-world scenarios. In reality, once deployed, a trained model may need
to perform inference on unseen data with patterns that are distinct significantly
from the training data, a phenomenon referred to as distribution shift or out-of-
distribution (OOD) during the test phase. Fig. 1 provides a real example from
the METR-LA traffic dataset (see Section 5 for details), which demonstrates
the traffic of three locations on two Wednesdays. Firstly, urban flow exhibits
continuous distribution shifts. For each of the three geographic nodes, the two
traffic records demonstrate entirely different patterns. Such continuous distri-
bution shifts at each location disrupt long-term spatial-temporal patterns and
hinder the generalizability of STGNNs. Secondly, there are heterogeneous shifts
across locations. Although both nodes B and C are adjacent to node A, their
patterns shift in distinct manners. This discrepancy complicates spatial correla-
tions, as GNNs propagate noise from affected nodes. In urban flow prediction,
spatial-temporal regularities can be easily disrupted by unexpected events such
as traffic accidents or extreme weather. Moreover, during inference, it is generally
impractical to assume prior knowledge about the occurrence of such perturba-
tions that result in OOD data, thereby compromising prediction accuracy and
diminishing the effectiveness of existing STGNNs. While frequent retraining can
alleviate this issue, it is computationally prohibitive in such high-throughput
applications. Thus, before entering the update cycle, an ideal STGNN should
stay accurate for a reasonable period of time by generalizing to changed data
distributions.

With the presence of distribution shifts in urban flow prediction, a key to
enhancing the generalizability of STGNNs is to discover and leverage the invari-
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ant (i.e., causal) patterns within spatial-temporal data. Many studies on OOD
generalization [1,25] point out that distribution shifts are driven by the dynam-
ics of underlying environments, where invariant risk minimization [2,22,31] can
be leveraged to optimize the model with augmented data drawn from diverse
environments. As such, some methods [23, 24] decouple invariant patterns from
variant ones learned from the data. For example, when handling graph-structured
data, [5, 32, 39] learn two disentangled graph structures that contain either in-
variant or variant connections between nodes. Unfortunately, these models are
misaligned with urban flow prediction tasks as they only focus on a static graph
topology that does not assume the temporal evolution of node features.

To this end, we aim to build an OOD-robust STGNN that can distinguish in-
variant spatial-temporal patterns from urban flow data. Specifically, we propose
Memory-enhanced Invariant Prompt learning (MIP), a novel solution to urban
flow prediction. In MIP, we attach a memory bank to the STGNN architecture,
which learns and memorizes the causal patterns from the dynamic node features.
Based on the information stored in the memory bank, a new graph structure re-
flecting the semantic causality between different locations is built, providing a
complementary graph view to the default, distance-based graph structure for
node representation learning. Then, the prompt vectors carrying invariant or
variant patterns are extracted respectively by attentively querying the memory
bank with each node’s features. Furthermore, to facilitate end-to-end optimiza-
tion via invariant risk minimization and ensure disentanglement between invari-
ant and variant patterns, we put forward an innovative intervention pipeline
that directly operates on the extracted variant prompts. Different from existing
invariant learning methods [35, 41], MIP bypasses the need for learning addi-
tional representations of different environments, and the designed intervention
is a simple-yet-effective approach for implicitly mimicking the effect from data
distribution shifts to node representations. The disentangled invariant patterns,
along with both the geographical and causal graphs, are eventually fed into a
spatial-temporal backbone model to make accurate urban flow predictions. To
be concise, our contributions are summarized below:

– New Challenge. We highlight a largely overlooked challenge in urban flow
prediction: the pervasive presence of OOD data that hinders model gener-
alizability. To address this, we propose a new framework, namely MIP to
mitigate distribution shifts in urban flow prediction.

– New Method. We extract invariant and variant features from a trainable
memory bank and generate a supplementary graph structure. By implement-
ing interventions on variant patterns and leveraging an invariant learning
scheme, the invariant patterns are disentangled from the noisy data to facil-
itate accurate predictions.

– State-of-the-art Performance. Extensive experiments on two real-world
benchmark datasets have demonstrated the superiority of our method over
state-of-the-art baselines when faced with OOD urban flow data.



4 Haiyang Jiang et al.

2 Related Work

2.1 Deep Learning for Urban Flow Prediction

Recently, spatial-temporal neural networks (STGNNs) have established them-
selves as state-of-the-art choices for urban flow prediction. STGNNs consist of
GNN-based modules and sequential models that are alternately stacked, where
typical variants include DCRNN [17], GWNet [33], STGCN [37] and ST-MGCN [9].
Furthermore, attention mechanisms, including multi-head attention, are addi-
tionally used in fusing spatial and temporal information, such as GMAN [40],
ASTGCN [10], and PDFormer [13]. Moreover, introducing some trainable fea-
tures can also improve the performance of STGNNs, even with naive backbone
models, such as STID [27], STAEformer [21], and MegaCRN [14]. Besides, some
physical theories can also guide spatial-temporal prediction, such as PGML [15]
and STDEN [11]. However, these methods are designed based on the I.I.D as-
sumption, making the extracted patterns solely dependent on the observed sam-
ples. Thus, these methods are prone to incorrect predictions when facing unob-
served data with distribution shifts.

2.2 Handling Out-of-Distribution (OOD) Data in Prediction

There are some models [23,35,41] dedicated to overcoming distribution shifts in
spatial-temporal data. For example, CaST [35] disentangles the environmental
feature and the entity feature based on causal treatments [23], and it replaces
the environment feature with the vector closest to it in the environment code-
book, which contains vectors representing environments. CauSTG [41] designs a
hierarchical invariance explorer, which merges the models trained across various
environments. STONE [28] learns both spatial and temporal similarity matrices
as adjacency matrices for STGNN to make predictions and implements interven-
tion by masking these two adjacency matrices. By differentiating raw data from
distinct environments, the aforementioned methods can capture data exhibiting
distribution shifts, enabling STGNNs to learn features across diverse distribu-
tions. Consequently, STGNNs can achieve accurate predictions on OOD data.
However, these methods are heavily dependent on specifically designed model
mechanisms and exhibit high sensitivity to the number of virtual environments.

3 Preliminaries

3.1 Problem Formulation

In urban flow data, a geolocation graph can be defined as: G = {V, E}, where V is
the set of N nodes and E is the set of edges. Correspondingly, A ∈ {0, 1}N×N is
the derived adjacency matrix. In G, a node is a spatial object like a traffic sensor,
where the edges between nodes are commonly established by thresholding their
physical distances [33, 37], thus A is constant in this task. At each time step
1 ≤ t ≤ T , all nodes’ dynamic features are represented via a matrix Xt ∈ RN×k,
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with k representing the dimensionality of time-varying features. Following the
commonly adopted setting [33], given the observed T historical observations
{Xt}Tt=1 and the geolocation graph G, the task objective is to train a model that
predicts the next T urban flow signals {Xt′}2Tt′=T+1:

Y ≃ fθ(X,G), (1)

where X,Y ∈ RT×N×k are respectively the tensorized versions of input {Xt}Tt=1

and output {Xt′}2Tt′=T+1, and fθ(·) is the prediction model parameterized by θ.
Usually, the optimization of θ is based on the I.I.D assumption, which means

the training and test samples are drawn from the same distribution. In urban
flow prediction, this assumption can hardly be guaranteed as the training and
test data points are drawn from different environments, respectively denoted by
Etrain and Etest. Thus, the optimal model parameter θ∗ should achieve minimal
generalization error on an OOD test set, described as follows:

minE(X′,Y′)∼p(X′,Y′|Etest)L(fθ(X
′,G),Y′),

s.t. θ∗ =argmin
θ

E(X,Y)∼p(X,Y|Etrain)L(fθ(X,G),Y), Etrain ̸= Etest,
(2)

where L(·) quantifies the prediction error.

3.2 Invariant Learning under Distribution Shifts

Let HI ,HV ∈ RT×N×d respectively denote all T × N variant and invariant
patterns with dimensionality d extracted from input X. Drawing on causality
theory [23,24], there exists a prediction function pred(·), for which the invariant
feature HI is sufficiently predictive for Y and the variant feature HV does not
hold causation to Y [32, 39]. Given that, we can rewrite our objective below:

argmin
θ,ψ

E(X,Y)∼p(X,Y|Etrain)L(fθ(HI ,G),Y),

s.t. HI ,HV = fψ(X), Y ⊥ HV |HI ,
(3)

where we use HI ,HV ∈ RT×N×d to respectively denote all T × N variant and
invariant patterns with dimensionality d extracted from input X. Here, fψ(·)
is the invariant learning backbone model parameterized by ψ that disentangles
invariant patterns with the variant ones from the dynamic node features. In
this setup, the prediction model fθ is only fed with the invariant patterns to
derive final predictions. Based on the formulation, a key step is to train fψ(·)
towards distinguishing invariant and variant patterns. To achieve this, based on
the interventional distribution in causality theory [32], a common objective can
be described following invariant learning loss:

min
ψ

E(X̂,Y)∼p(X̂,Y|Ê)L(pred(fψ(X̂),G),Y)

+λV ar(X̂,Y)∼p(X̂,Y|Ê)L(pred(fψ(X̂),G),Y),
(4)
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where Ê ̸= Etrain denotes an intervention sampled from an intervention set,
which imposes changes on the original environment and leads to features X̂ ̸=
X with shifted distributions. Ideally, Ê only performs intervention on variant
patterns, leaving the invariant features unaffected. pred(·) denotes a predictor
that uses both invariant and variant patterns emitted by fψ(X̂) to predict the
ground truth label. Note that as pred(·) is not responsible for generating the final
predictions, it does not necessarily share the same structure or parameterization
with fθ(·). The first term minimizes the prediction loss, whereas in the second
term, V ar denotes the variance and λ is a balancing hyperparameter. As the
variant patterns are unrelated to the label Y, the prediction should remain
stable regardless of the variant patterns introduced by Ê, translating into a
lower variance. As such, fψ(·) is trained to differentiate invariant patterns HI

and variant patterns HV amid distribution shifts in urban flow.

4 MIP: The Proposed Method

In this section, we introduce a universal framework named Memory-enhanced
Invariant Prompt learning (MIP) for urban flow prediction under OOD scenarios,
whose main components are depicted in Figure 1. In what follows, we unfold
the design of MIP by introducing the design of the memory bank, as well as
the backbones for invariant learning (i.e., fψ(·)) and spatial-temporal prediction
(i.e., fθ(·)) backbone model.

4.1 Memory-enhanced Invariant Prompt Learning

A key advantage of MIP is that rather than generating intervened environments
Ê and simulating changes in latent patterns, it directly intervenes in the latent
space to mimic representation changes after intervention. To do this, we first
mine latent patterns correlated with predicted labels from time-varying node
features. Therefore, we extract and store these representative causal features
with a memory bank [14]. The memory bank can be represented as Φ ∈ RM×d,
where M and d represent the number of virtual nodes and their dimensions,
respectively. Essentially, each of the M virtual nodes in the memory bank is
assigned a d-dimensional prototype vector Φ[m] ∈ Rd (m ≤ M) that summa-
rizes a part of the latent, invariant features within the spatial-temporal node
features X. The memory bank Φ supports two subsequent computations: gen-
erating variant and invariant prompts through a querying process as described
below, and providing a causal graph to supplement the geographical graph for
node representation learning as described in Section 4.3.

Learning Invariant and Variant Prompts. As a core part of OOD gener-
alization, given all nodes’ temporal features Xt ∈ RN×k at time t, MIP extracts
both causal and spurious patterns from them – which we term invariant and
variant prompts in this work. To do this, we firstly project Xt into a query
matrix Qt ∈ RN×d:

Qt = XtWQ + bQ, (5)
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Fig. 2: The main components of MIP.

where WQ ∈ Rk×d and bQ ∈ Rd are trainable parameters of the linear layer. As
Qt contains both invariant and variant patterns, we further disentangle them by
querying the invariant memory bank. To obtain invariant prompts, we multiply
the query matrix Qt with the memory bank Φ to obtain an affinity matrix StI ,
based on which the invariant prompt can be drawn from the memory bank in a
self-attentive fashion. This process can be formulated as:

Ht
I = StIΦ, StI = softmax

(
QtΦ

⊤) , (6)

where Ht
I ∈ RN×d is the computed invariant prompt. Similarly, the variant

prompt can be extracted in an analogous process, with a minor modification:

Ht
V = StVΦ, StV = softmax

(
−1 ·QtΦ

⊤) , (7)

where negation is applied before the softmax function, so as to flip the score dis-
tribution and assign higher weights to invariant patterns that are less relevant to
the memory Φ. As this is executed for all time steps, we can obtain a sequence
of T prompts {H1

I ,H
2
I , ...,H

T
I } and {H1

V ,H
2
V , ...,H

T
V }. By respectively concate-

nating invariant and variant prompts across time, we can obtain two prompt
tensors HI ,HV ∈ RT×N×d for subsequent computations.

4.2 Invariant Learning with Latent Intervention

As per our discussions earlier, the variant prompt HV is environment-dependent
but unrelated to the label Y, and the invariant prompt HI is causally linked
to Y. To distill HI from X, a common approach as described in Section 3.2
is to perform invariant learning with intervened raw data X̂. However, directly
intervening the raw data is a less favorable option for urban flow prediction tasks
due to the risk of introducing additional noises, while some workarounds [30,32,
35] need to additionally parameterize and learn the underlying environments
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Algorithm 1 Intervene(HV , r)

1: Input: Variant prompt tensor HV ∈ RT×N×d, intervention rate r
2: Output: Intervened variant prompt ĤV ∈ RT×N×d

3: ĤV ← HV

4: for s=1,2,...,⌊ rN
2
⌋ do

5: Randomly sample a node pair (w, v) s.t. w, v ∈ [1, N ];
6: Randomly select a time step pair (i, j) s.t. i, j ∈ [1, T ];
7: ĤV [i, w]← HV [j, v], ĤV [j, v]← HV [i, w];
8: end for
9: return ĤV

in order to alter the raw data distribution. Also, when STGNNs are used as
the predictor pred(·), multiple complex forward passes are required to optimize
Eq.(4), which is computationally impractical considering the large spatial and
temporal spans N and T in urban flow graphs.

Latent Intervention Mechanism. In this paper, we innovatively propose
to generate spatial-temporal interventions in the latent space, which more effec-
tively mimics the changes in the learnable patterns after possible distribution
shifts within the input data. Specifically, given the extracted variant prompts
HV , we exchange features in HV between different nodes and time points with a
predefined rate r. The details of the latent intervention mechanism are described
in Algorithm 1. To be succinct, we simplify this process into the following:

ĤV = Intervene(HV , r), (8)

where ĤV denotes the intervened variant prompts after rN feature exchanges
between nodes have taken place. Note that, the swap is not constrained to node
features at the same time step, so as to account for the spatial-temporal fluctua-
tions within the variant patterns. Also, by producing intervened variant prompts
with representations learned from the original input data, the generated ĤV re-
mains plausible and challenging for refining the invariant prompts ĤI .

Invariant Learning. After obtaining the intervened variant prompts ĤV ,
we are able to train the prompt extractor described in Section 4.1 via invariant
learning, so as to distinguish the invariant and variant prompts. To achieve this,
the invariant and the intervened variant prompts are concatenated and then
input into a supplementary predictor pred(·) to generate predictions:

Ỹ = pred(HI ||ĤV ,A), (9)

where || denotes tensor concatenation along the last dimension, Ỹ ∈ RT×N×k is
the predicted urban flow at all locations and time steps. The choice of pred(·) is
flexible with most STGNNs. Since pred(·) is only responsible for differentiating
invariant and variant prompts and will not be used for computing the final
predictions, we adopt GWNet [33], a simple yet effective STGNN as pred(·). For
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training, we first define the loss for a single node n at one time step t:

l(t, n) =
1

k

k∑
k′=1

|Ỹ[t, n, k′]−Y[t, n, k′]|, (10)

based on which the invariant learning loss is defined:

Linv = E(t,n)l(t, n) + λ1V ar(t,n)l(t, n), t ∈ [1, T ], n ∈ [1, N ], (11)

where the first and second terms respectively reduce the mean and variance of the
prediction error across locations and time steps. More specifically, the first term
ensures that pred(·) is optimized towards correctly predicting the urban flow in
different environments with HI , while the second term enforces that when the
predictions are conditioned on HI , there are minimal performance fluctuations
despite the presence of noisy signals from intervened variant prompts HV .

4.3 Urban Flow Prediction with Causal Graph Generation

Once the invariant features HI are extracted, a spatial-temporal backbone model
is in place for producing the final predictions. In MIP, our backbone model con-
sists of alternately stacked GNN layers and temporal Transformer layers, which
take invariant prompts HI and adjacency matrix A as its input. However, A is
normally constructed solely based on the physical distances between nodes. As
a result, this can introduce biases during GNN’s information propagation, be-
cause geographic proximity does not necessarily imply similar temporal patterns,
especially in OOD scenarios. In this section, we introduce a memory-based ap-
proach for generating a causal graph as a supplement to A, followed by details of
the backbone STGNN. Causal Graph Generation. To address the limitation
of the geolocation graph that is purely distance-based, we introduce an auxil-
iary graph based on the semantic distance between causal node representations,
which are constructed from highly invariant features from the memory bank Φ.
This causal graph complements the geolocation-based graph, thus providing ad-
ditional predictive signals. This memory bank-based causal graph is constructed
as the following:

Ã = softmax
(
E1E

⊤
2

)
, E1 = WAΦ, E2 = WBΦ, (12)

where WA,WB ∈ RN×M are trainable projection matrices that map the M
prototype vectors in the memory bank into N node representations E1 and
E2. As the memory bank already encapsulates critical information about the
urban flow, the newly developed causal adjacency matrix provides additional
information propagation channels between nodes.

GNN Layer. The GNN layer is fed with both the geographical and causal
adjacency matrices A, Ã and the invariant prompts HI to learn node represen-
tations with information propagation. Since the geographical adjacency matrix
A is symmetric and hardly captures the directed nature of interactions in urban
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flow data, we derive forward and backward transition matrices from A through
a bidirectional, degree-weighted random walk [17]:

Pf = D−1A, Pb = (D⊤)−1A⊤, (13)

where D is the degree matrix of A. It is worth mentioning that, the GNN layer
processes each time step t separately. By incorporating the causal adjacency
matrix, for each time step t, the propagation process in the GNN from layer l
to l + 1 is summarized as follows:

Gt
l+1 =

Z∑
z=0

(Pz
fG

t
lW

z
1 +Pz

bG
t
lW

z
2 + ÃzGt

lW
z
3), (14)

where z ≤ Z controls the order of the information propagation, and W(k) ∈ Rd×d
denotes the learnable weights. Note that the initial node embeddings are set to
Gt

0 = Ht
I when l = 0.

Temporal Transformer Layer. Once the GNN layer processes all graphs
at all time steps, we can collect T feature matrices produced by the final graph
propagation layer, denoted by G1,G2, ...,GT ∈ RN×d. For a certain node n,
we can stack all its d-dimensional, time-sensitive features across T steps into a
matrix, denoted by Gn ∈ RT×d. With that, we learn the dependencies across all
temporal features of a node through a transformer layer as:

G′
n = softmax

(
GnWQ (GnWK)

⊤
√
d

)
(GnWV ) ,

Zn = MLP(G′
n),

(15)

where WQ,WK ,WV ∈ Rd×d are trainable query, key and value projection
weights, and MLP(·) denotes a feedforward multilayer perceptron.
Prediction Layer. After obtaining N outputs for all nodes H′

1,H
′
2, ...,H

′
N ∈

RT×d, we can stack all feature matrices into Z ∈ RT×N×d. Then, we generate
the final predictions with an MLP:

Ŷ = MLP (Z) , (16)

where the MLP projects Z into Ŷ ∈ RT×N×k that carries the predicted urban
flow per time step per location.

4.4 Model Optimization

Now, we detail the optimization strategy for MIP. Firstly, based on the prediction
Ŷ ∈ RL×N×k generated by the backbone model, the prediction error is as follows:

Ltask =
1

TN

T,N,k∑
t,n,k′=1

|Ŷ[t, n, k′]−Y[t, n, k′]|. (17)
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In addition, as we extract invariant prompts from a memory bank, we use
an auxiliary regularization loss to enhance the quality of features stored within
the memory bank:

Lreg =
T,N∑
t,n

max
{
∥Ht

I [n]−Φ[a]∥2−∥Ht
I [n]−Φ[b]∥2 + κ, 0

}
+

T,N∑
t,n

∥Ht
I [n]−Φ[a]∥2,

(18)
where κ is a distance margin, a, b are the indices of the most and second similar
virtual nodes w.r.t. node n based on the affinity score StI computed in Eq.(6).
As such, Lreg encourages diversity within the information encoded by different
virtual node prototype vectors in the memory bank. Finally, the optimization
objective aims to minimize the following overall loss:

L = Ltask + Linv + λ2Lreg, (19)

with a balancing hyperparameter λ2. As MIP is being trained towards con-
vergence, the intervention on variant patterns, i.e., ĤV = Intervene(HV , r) is
re-executed in every training epoch, so as to inject more variations in the su-
pervision signals. It is worth noting that, once MIP is trained, only the spatial-
temporal backbone model described in Section 4.3 is activated for making pre-
dictions in the inference stage.

5 Experiments

5.1 Experimental Settings

We evaluate our model on two well-established benchmarks, namely METR-
LA [17] and NYCBike [38]. METR-LA [17] is a traffic speed prediction dataset
collected with 207 sensors across Los Angeles, from 1st March 2012 to 30th June
2012, the data points are sampled with 5 5-minute time interval. NYCBike1 [38]
is a dataset of bike rental records from 1st April 2014 to 30th September in New
York City, where the city is divided into 8× 16 equally-sized grids, and the data
points are sampled with a 1-hour time interval. As NYCBike1 records both in
and out flows of bikes, we treat them as two prediction tasks and respectively
denote them as NYCBike1 (In) and NYCBike1 (Out).

We split both datasets chronologically: the first 60% is for training, the fol-
lowing 10% for validation, and three test sets are constructed by evenly slic-
ing the remaining data (10% for each). This is to fully mimic real-world appli-
cation scenarios where a trained model is expected to provide predictions for
multiple consecutive time periods with varying distributions. For convenience,
we number the tree test sets with 0, 1, and 2. Generally, as test sets 0-2 be-
come farther apart from the training set in time, their distribution shifts tend
to become stronger. Based on the number of time steps available, we predict
the next 12 time steps based on the past 12 on METR-LA and predict the
next 6 time steps based on the past 6 on NYCBike. We compare MIP with



12 Haiyang Jiang et al.

Table 1: Performance comparison results. The best results are marked in bold
and the second-best results are underlined.

METR-LA
test set 0 test set 1 test set 2 overall results

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

STGCN 3.33 7.15 10.14% 3.63 7.47 10.90% 3.63 7.58 10.21% 3.53 7.40 10.42%
DCRNN 3.33 7.28 10.01% 3.58 7.49 10.80% 3.69 7.87 10.41% 3.53 7.55 10.41%
STNorm 3.33 7.17 10.09% 3.65 7.57 11.16% 3.63 7.61 10.23% 3.53 7.45 10.49%
GMSDR 3.27 6.99 9.75% 3.49 7.36 10.83% 3.50 7.47 10.01% 3.42 7.27 10.20%
MegaCRN 3.22 7.05 9.69% 3.64 7.65 11.04% 3.79 8.00 10.75% 3.55 7.57 10.49%
CauSTG 3.33 7.08 9.86% 3.64 7.44 10.81% 3.66 7.55 10.10% 3.55 7.36 10.26%
TESTAM 3.36 7.33 9.56% 3.62 7.58 10.26% 3.69 7.89 9.98% 3.56 7.60 9.93%
MIP 3.28 6.87 9.52% 3.55 7.19 10.40% 3.57 7.28 9.73% 3.46 7.11 9.88%

NYCBike1 (In)
test set 0 test set 1 test set 2 overall results

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

STGCN 4.90 8.41 50.38% 4.69 7.55 51.11% 5.33 9.42 63.05% 4.97 8.46 54.84%
DCRNN 6.24 10.04 80.58% 5.90 9.18 77.03% 6.47 10.74 92.59% 6.20 9.99 83.40%
STNorm 4.83 8.52 46.49% 4.53 8.29 50.51% 5.28 9.37 56.21% 4.88 8.38 49.35%
GMSDR 5.10 8.96 48.70% 4.86 8.14 49.14% 5.41 9.68 61.02% 5.12 8.92 52.95%
MegaCRN 4.62 7.96 46.65% 5.15 8.87 55.35% 5.62 9.51 65.81% 5.13 8.78 55.93%
CauSTG 4.95 8.51 49.21% 4.83 7.91 49.47% 5.37 9.45 59.73% 5.05 8.63 52.80%
TESTAM 5.06 8.51 47.69% 5.18 8.38 49.23% 5.83 9.93 59.42% 5.04 8.66 51.13%
MIP 4.74 8.13 45.10% 4.56 7.27 43.32% 5.26 9.18 55.27% 4.87 8.16 47.56%

NYCBike1 (Out)
test set 0 test set 1 test set 2 overall results

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

STGCN 5.04 8.84 46.64% 4.78 7.83 47.81% 5.51 9.56 62.02% 5.11 8.74 52.16%
DCRNN 5.38 9.04 54.46% 4.97 7.84 52.51% 5.78 10.15 65.90% 5.38 9.01 57.62%
STNorm 5.19 9.23 44.80% 4.83 7.90 43.63% 5.57 9.70 58.47% 5.20 8.94 48.97%
GMSDR 4.98 8.75 45.79% 4.73 7.74 44.74% 5.55 9.56 60.67% 5.09 8.68 50.40%
MegaCRN 5.53 9.58 49.97% 5.13 8.49 48.76% 5.82 10.48 64.23% 5.49 9.51 54.32%
CauSTG 5.04 8.73 46.13% 4.95 8.04 46.68% 5.60 9.71 56.65% 5.20 8.83 49.82%
TESTAM 4.88 8.45 43.63% 5.08 8.59 46.03% 5.54 9.59 56.81% 5.16 8.88 48.82%
MIP 4.94 8.68 44.72% 4.66 7.56 43.22% 5.51 9.45 57.60% 5.03 8.56 48.51%

the following state-of-the-art baselines: STGCN [37], DCRNN [17],STNorm [8],
GMSDR [19],MegaCRN [14], CauSTG [41], TESTAM [16]. Similar to previous
studies [19, 28, 33], we evaluate all methods in terms of Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Er-
ror (MAPE). Hyperparameters and implementation notes are available in our
released code: https://github.com/Ocean-Jiang0729/MIP.

5.2 Performance Comparison with Baselines

1 2 3 4 5 6 7 8

1.5000MIP
2.3333GMSDR
4.4583CauSTG
5.0000STGCN 5.2917TESTAM

5.3333DCRNN
5.9583STNorm
6.1250MegaCRN

Overall Evaluation

Fig. 3: Critical difference w.r.t. perfor-
mance on all 9 test sets. Smaller scores
indicate better performance.

We compare MIP with SOTA base-
lines, recording the final horizon matri-
ces in Table 1. MIP consistently out-
performs all baselines across the three
test sets, demonstrating strong general-
ization, versatility, and adaptability in
urban flow prediction. On the METR-
LA dataset, as test set 0 is the closest to
the training set, its distribution changes
less than the other two test sets. Thus,
the models achieve similar performance
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Fig. 4: Ablation study: RMSE of MIP and its variants.

on test 0, and some baselines get the best result, such as the MAPE of MegaCRN
on test set 0. However, the distribution shift happens more on test 1 and test
2, and the performance of all the models becomes worse. Some baseline models,
such as MegaCRN, TESTAM, and GMSDR, get similar RMSE on test set 0,
while their RMSE scores on test set 1 and test set 2 increase largely. On the
NYCBike1 dataset, all the models perform well on test set 1 on both bikes’
in and out tasks. A reasonable explanation is that the distribution of this test
set is more similar to that of the training set. Although TESTAM achieved the
best performance on all three evaluation matrices on test set 0, it performed
worse on test sets 1 and 2, even with the biggest RMSE on test set 1. Notably,
while some models outperform MIP on test set 0, they struggle with distribution
shifts and consequently exhibit performance degradation on test set 2. Moreover,
when evaluating these models across all test sets (referred to as overall results),
our model consistently delivers superior performance across all evaluation met-
rics, with the sole exception of achieving second place in terms of MAE on the
METR-LA dataset. In Fig 3, we also calculate the critical difference diagram
of all the models on all the datasets and evaluation matrices. By obtaining the
highest rank among all 9 test sets, MIP demonstrates the ability to provide
stable predictions across test sets that exhibit a variety of distribution shifts.

5.3 Ablation Study

To explore the significance of each core component in MIP, we carry out an
ablation study with the following variants: Backbone is the backbone model
alone; add cau-adj only adds the causal adjacency matrix based on the back-
bone model; add prompt only feeds the prompt learned from the memory bank
into the backbone model and omits the causal adjacency matrix and the invari-
ant learning loss; w/o cau-adj removes the causal adjacency matrix; and w/o
invariant learning removes the invariant loss.

The results are presented in Fig. 4. We can see that MIP beats all the vari-
ants on both datasets. The backbone model gets the worst results on most of the
test sets, as the naive GNNs and temporal Transformer layers cannot capture
the distribution shift and the heterophily of the node features. add cau-adj
performs much better than the backbone model, even better than add prompt
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Fig. 5: RMSE of MIP with different intervention rates.
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Fig. 6: RMSE of MIP with different virtual node numbers in the memory bank.

and w/o cau-adj sometimes, as the causal adjacency matrix connects nodes
with similar urban flow data, even if they are far away from each other in topol-
ogy. add prompt performs better than the backbone model, as it learns some
useful features from the memory bank. The performance of w/o cau-adj de-
creases much more than MIP. Even though it distinguishes the invariant and
variant prompts with the invariant learning loss, its RMSE is bigger than the
w/o invariant learning. As the invariant prompts are propagated to their
distance-based neighbours rather than their semantic-based neighbours, some
nodes receive the opposite features from their own features. w/o invariant
learning gets worse results than MIP as it mixes the invariant and variant
prompts together for the absence of invariant learning.

5.4 Parameter Sensitivity Analysis

Intervention rate: The intervention rate is closely related to the ability to
separate the invariant and variant features. We set this parameter from 0.05 to
0.95 with an interval of 0.1, and evaluate our model on both datasets. In Fig. 5,
we record the RMSE of the final horizon. The MIP demonstrates insensitivity to
varying intervention rates, as evidenced by the small fluctuating RMSE across
different levels of intervention. In the spatial-temporal model, the intervened
variant prompts will propagate to all the nodes in an urban graph, even a small
intervention rate will make all the nodes contain variant patterns before the
prediction layer. Thus, the change in intervention rate does not influence the
prediction RMSE.
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Fig. 7: RMSE of MIP with different settings of λ1.
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Fig. 8: RMSE of MIP with different settings of λ2.

Number of nodes in memory bank: We investigate the sensitivity of the
number of nodes in the memory bank and show the results in Fig. 6. The MIP
performs well on all the datasets with 30 nodes in the memory bank. With a
small number of nodes, MIP cannot extract high-quality invariant features due
to the limited diversity. On the contrary, with more nodes in the memory bank,
diverse invariant features lead to the increasing training difficulty of both the
prediction model and the invariant learning backbone model.
The Weight Coefficients in The Loss Function: In Eq.(19), the loss func-
tion consists of task loss, invariant loss, and auxiliary loss. The composition
ratio of the last two losses is controlled with hyperparameters λ1 and λ2, and
we implement an experiment to investigate which one works better. Firstly, we
set λ2 = 0.01, and λ1 from 0.1 to 1.0, with a step as 0.1, and record the RMSE
of the last horizon on both datasets in Fig. 7. On all the datasets, the RMSE
of the test set 0 is stable, and it fluctuates on test sets 1 and 2. Concretely, on
the METR-LA dataset, the model gets better generalization ability at λ1 is 0.3,
as the RMSE on the test set 2 is the smallest. As for the NYCBike1 dataset,
the RMSE also fluctuates on test set 1 and test set 2, which indicates that the
MIP is not sensitive to this hyper-parameter on this dataset. Furthermore, we
set λ1 = 0.1 and λ2 from 0.01 to 0.1, with the step as 0.01, and the results are
shown in Fig. 8. On all the datasets, the RMSE on test sets 0 and 1 fluctu-
ates. On the METR-LA dataset, the RMSE on test set 2 gradually decreases as
λ2 rises, as there are more nodes in this dataset, the proportion of L1 and L2

should be larger to make sure the invariant prompt are diversity enough for all
the nodes. While on the NYCBike1 dataset, the RMSE on test set 2 reaches the
low point at about 0.04 or 0.05, as the number of nodes in this dataset is less
than it in METR-LA, a low proportion of L1 and L2 can make the invariant
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Fig. 9: Case study on MIP’s prediction performance under distribution shifts.

prompt to be diversity enough for NYCBike1 dataset. All these experiments are
carried out with 30 nodes in the memory bank.

5.5 Case Study

We further conduct a case study in Fig. 9, where we randomly select a sensor in
the METR-LA dataset and visualize its real and predicted traffic speeds in test
sets 0 and 2. To ensure a fair comparison, the same time period on Tuesday is
used for this sensor. In Fig. 9a and 9d, the tendencies of ground truths are to-
tally different, which means distribution shift happens. Moreover, the prediction
of MIP is closest to the ground truth, while the variant model and the base-
line make biased predictions. Furthermore, the heatmap of two prompt scores
corresponding to each sample(Fig. 9b and 9c, Fig. 9e and 9f) show completely
different distributions, the prompt score of MIP tend to select more feature from
a certain memory node, while the variant tends to combine features from various
memory nodes. This phenomenon demonstrates that invariant learning can help
the model extract invariant prompts and overcome the OOD problem.

6 Conclusion

In this paper, we introduce a new framework named MIP to solve the distribution
shift problem in urban flow prediction. MIP stores the most important informa-
tive signal during the training process in a memory bank. Then, a memory-based
causal graph structure is generated based on the memory bank. Furthermore,
the invariant and variant prompts are extracted from the memory bank and we
design a spatial-temporal intervention mechanism to create diverse distribution
and propose an invariance learning regularization to help the prompt extractor
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separate the invariant and variant prompts. Extensive experiments on two real-
world datasets demonstrate that our method can better handle spatial-temporal
distribution shifts than state-of-the-art baselines.
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