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Abstract. Graph Neural Networks (GNNs) with heat kernel effectively
capture the smoothness of labels and features across nodes, preventing
oscillations during propagation, and denoising the graph. However, ex-
isting models typically employ a global heat kernel, where the diffusion
process depends on a single, uniform diffusion time, inevitably result-
ing in over-smoothing. Additionally, the global heat kernel struggles to
handle heterophilic graphs, where nodes exhibit varying neighbor label
distributions. To address the above issues, we extend the global heat
kernel by a localized scale (i.e., node-level) and integrate it with graph
convolution, yielding the Localized Heat Kernel for GNN (LHK-GNN).
By adaptively adjusting the diffusion time for each node, our approach
enables heat diffusion to accommodate local complexity on graph. Ex-
periments demonstrate the effectiveness of LHK-GNN in mitigating over-
smoothing and handling heterophilic graphs.

Keywords: graph convolution · heat kernel · over-smoothing · het-
erophily.

1 Introduction

Recently, diffusion processes are introduced into Graph Neural Networks (GNNs),
achieving superior performance [7,8,27]. Graph heat diffusion is a well-known dif-
fusion process for graph data, which models the information flow across nodes
to capture the graph’s structural properties. The graph heat kernel [4] is a solu-
tion to the heat equation on graphs, which not only encapsulates the temporal
evolution of the diffusion process but also serves as a powerful spectral tool.
Specifically, many works [27,28] leverage the heat kernel to explore the propa-
gating neighborhood in a continuous manner by tuning the heat diffusion time.
Meanwhile, the exponential decay property of the heat kernel suppresses high-
frequency signals, thereby enhancing the low-pass filtering effect [8].

However, existing graph heat kernels often employ a single, uniform diffu-
sion time in the diffusion process, which has two major issues. (1) They face
the over-smoothing problem, which means they fail to be deep enough: as the
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number of layers increases, the performance of the GNN degrades significantly
[14,12]. From a dynamics perspective, the global heat diffusion process is inher-
ently one where energy gradually dissipates as the diffusion time increases and
ultimately converges to a stable thermal equilibrium state [11]. (2) They assume
that graphs are homophilic. When handling heterophilic graphs, their perfor-
mance deteriorates [18,30]. The labels of neighboring nodes vary significantly in
heterophilic graphs, resulting in complex local patterns. The global heat kernel
relies on a single overall diffusion time, making it ineffective in handling diverse
local patterns.

To address the above issues, inspired by the concept of the generalized trans-
fer operator in graph signal processing (GSP) [24] and the design of node-oriented
spectral filters [29], we propose the Localized Heat Kernel for Graph Neural
Network (LHK-GNN). Specifically, we design an independent and controllable
heat diffusion process for each node, allowing the nodes to adaptively adjust
the diffusion time. It can prevent excessive information diffusion and control the
aggregation scope for relevant node features. Therefore, our method can help
mitigate the over-smoothing problem and handle heterophilic graphs. We evalu-
ate LHK-GNN on ten benchmark datasets, and the experimental results validate
the effectiveness of our method.

Our contributions are summarized as follows:

– We extend the heat kernel function to the node-level one and integrate it into
the spectral graph convolution, resulting in constructing a more fine-grained
heat diffusion process.

– We propose a tensor-based method for efficient heat kernel approximation
across all nodes. The approach reduces computational demands and demon-
strates the successful extension of the heat kernel to the local scale.

– We theoretically prove that the over-smoothing issue observed in existing
heat kernel-based GNNs is a consequence of the properties of the heat kernel,
explicitly defining the connection.

– Existing experimental results validate the superiority of our method over
other diffusion-based GNNs, particularly in mitigating the over-smoothing
problem and handling heterophilic graphs. The code is available online3.

2 Related Work

2.1 Diffusion Process on Graphs

Graph diffusion process is fundamental in graph learning and is typically for-
mulated using partial differential equations (PDEs) to analyze how information
diffuses across a graph [16,25,8]. One specific branch of graph diffusion is the
heat diffusion model, which characterizes the spread of information in a way
similar to heat flowing through connected nodes over time [4,27]. The second
branch of graph diffusion is the random walk [25,7], which can be viewed as a

3 https://github.com/ridethelights/LHKGNN

https://github.com/ridethelights/LHKGNN


Localized Heat Kernel for Graph Neural Networks 3

discrete version of PDE-based diffusion. In a random walk, the state of nodes
gradually converges to a stable distribution as time progresses. This process is
analogous to the reaching of thermal equilibrium during heat diffusion [3]. The
third branch of graph diffusion is anisotropic diffusion, which captures directional
information flow by allowing different propagation rates in different regions of
the graph [20,6].

2.2 GNNs with Heat Kernel

Xu et al. [27] first combine heat kernel with graph convolution and design a
graph convolutional neural network based on heat kernel. Their method effec-
tively captures the smoothness of labels and features across nodes influenced by
the graph structure. Gasteiger et al. [8] construct a generalized diffusion matrix
that incorporates heat kernel coefficients, and combine it with graph convolution
networks, effectively smoothing the neighborhood over the graph and denoising
the graph. Zhao et al. [28] combine the heat kernel with Simplifying Graph
Convolutional Networks (SGC) [26], which can effectively prevent oscillations.
Overall, previous works have guided feature propagation in GNNs from a global
heat diffusion perspective. Unlike these methods, our approach assigns an in-
dependent heat kernel to each node. Each node can adaptively adjust the heat
diffusion range, making the diffusion process more refined.

3 Preliminary

3.1 Notation

Let G = (V,E) be an undirected graph, where V is the set of nodes with n
nodes, and E is the set of edges. Adjacency matrix A gives the connectivity
of G, with Aij = Aji denoting the connection between nodes i and j. The
normalized graph Laplacian matrix is defined as L = I−D−1/2AD−1/2, where
I is the identity matrix, and D is a diagonal matrix with Dii =

∑
j Aij . Since

L is real and symmetric, it has orthonormal eigenvectors U = (u1, u2, . . . , un)
with non-negative eigenvalues {λi}ni=1. We assume λ1 ≤ λ2 ≤ · · · ≤ λn. Thus,
L = UΛUT, where Λ = diag({λi}).

3.2 Spectral Graph Convolution

Regarding the eigenvectors of the normalized Laplacian matrix as a set of bases
U, the Fourier transform of a graph signal x ∈ Rn is defined as x̂ = U⊤x, and
its inverse is x = Ux̂ [24]. Based on the graph Fourier transform, the spectral
graph convolution operator ∗G can be defined as:

x ∗G g = U
(
(U⊤g)⊙ (U⊤x)

)
= UĝUx, (1)

where g ∈ Rn denotes the kernel in spatial domain, ĝ = U⊤g denotes the
spectral kernel, and ⊙ represents Hadamard multiplication.
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Early studies typically perform an eigendecomposition on the normalized
Laplacian matrix L to derive the Fourier basis U and treat the spectral kernel ĝ
as the trainable parameters. However, the high computational cost of eigenvalue
decomposition severely limits the practical use of these methods. To bypass the
eigendecomposition, current works [5,2] usually use the K-order polynomial to
approximate different spectral kernels, which can be represented as:

ĝ = ĝ(Λ) =

K∑
k=0

αkΛ
k, (2)

where Λ denotes the eigenvalue matrix, ĝ(·) denotes the spectral filtering func-
tion, and αk is the learnable coefficient for the k-th order. Inserting into Equa-
tion (1), the graph convolution can be represented as:

x ∗G g = U

K∑
k=0

αkΛ
kU⊤x =

K∑
k=0

αkL
kx. (3)

3.3 Heat Kernel for Spectral Graph Convolution

The heat kernel is defined as h(λi) = e−tλi , where t denotes the diffusion time.
According to Xu et al. [27], the convolution based on heat kernel can be repre-
sented as:

x ∗G g = U

K∑
k=0

αkΛ
k
tU

⊤x, (4)

where Λt = diag ({h(λi)}ni=1). In other words, Equation (4) can be represented
as: (α0I+α1e

−tL+ · · ·+αKe−KtL)x. Due to the high computational complexity,
K is set to 1, thus ĝ = ĝ(Λ) = diag ({α0 + α1h(λi)}ni=1). When t is small, the
computation of e−tL can be approximated using the Taylor expansion, specifi-
cally: e−tL ≈

∑∞
k=0

(−t)k

k! Lk. A more common approach to approximate e−tL is
using Chebyshev polynomials [10].

4 Methodology

Inspired by the generalized transition operator in graph signal processing [24]
and the design of node-oriented spectral filters [29], we design the Localized
Heat Kernel for GNN (LHK-GNN) that effectively overcomes the issues of over-
smoothing and heterophily.

4.1 Spectral Graph Convolution with Localized Heat Kernel

We first adapt the spectral graph convolution to operate on individual nodes.
Then we extend the graph heat kernel to the node level, creating a localized heat
kernel. The localized kernel is then integrated with node-oriented spectral graph
convolution. The design of our approach is based on the generalized transition
operator [24], defined as follows:
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Definition 1. For any spatial kernel g ∈ Rn on a given graph G, and any
i ∈ {1, . . . n}, the generalized transition operator Ti : Rn → Rn is expressed via
generalized convolution with the Kronecker delta function δi centered at node i:

Ti(g) :=
√
N(g ∗ δi) =

√
N

n∑
l=1

ulu
⊤
l (i)ĝ(λl).

.

For node-oriented filtering [29], g is first aligned at node i using the operator
Ti, then spectrally convolved with x. This operation can be written as:

x ∗G Ti(g) =
√
N

n∑
l=1

ulx̂(λl)u
T
l (i)ĝ(λl). (5)

Defining ĝi(λl) as: ĝi(λl) =
√
NuT

l (i)ĝ(λl), which leads to the following expres-
sion for the convolution:

x ∗G Ti(g) =

n∑
l=1

ĝi(λl)ulu
T
l x = UĝiU

Tx. (6)

Here, ĝi(λl) represents the value of the signal at node i after the spectral filtering
operation, where uT

l (i) is the i-th element of the l-th eigenvector ul, and ĝ(λl) is
the spectral filter evaluated at eigenvalue λl. Considering the ĝ(·) in Section 3.3,
the ĝi(λl) can be represented as:

ĝi(λl) =
√
NuT

l (i)
(
α0 + α1e

−tλl
)

=
√
NuT

l (i)α0 +
√
NuT

l (i)α1e
−tλl .

(7)

Now, we extend the heat kernel in Section 3.3 to the node level by using
a localized scale: hi(λl) = e−tiλl , which serves as the heat kernel for node i.
Due to the learnability of α0 and α1, we can approximate

√
NuT

l (i)α0 and√
NuT

l (i)α1e
−tλl as γi0 and γi1hi(λl), respectively. Based on this, we have the

following:
ĝi(λl) ≈ γi0 + γi1hi(λl),

ĝi = diag ({γi0 + γi1hi(λl)}nl=1) .
(8)

Thus, the convolution with localized (i.e., node-level) heat kernel can be repre-
sented as follows:

x ∗G Ti(g) = δi
(
U

(
γi0I+ γi1e

−tiΛ
)
U⊤x

)
= δi(γi0I+ γi1e

−tiL)x,
(9)

where δi = [0, 0, . . . , 1, . . . , 0] denotes a row vector with the i-th element being 1
and the remaining elements being zeros.
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Fig. 1: The workflow. The feature matrix X is first transformed by an MLP to
obtain X0. A ⊙ B denotes the Hadamard product, which applies broadcasting
to A if necessary. After undergoing localized heat kernel convolution, we obtain
X̃, where X̃i = δi(e

−tiLX0). Finally, the output Z is a weighted combination of
X0 and X̃.

4.2 The Implementation of LHK-GNN

This section describes the implementation of LHK-GNN, including its overall
architecture and the method used to approximate the localized heat kernel. Fig-
ure 1 presents the overall workflow.

Architecture. To reduce the dimensionality of features and enhance the model’s
performance, we firstly employ an MLP to non-linearly transform [9] the raw fea-
ture matrix X ∈ Rn×f , yielding X0 = MLP(X;Θ). Thus the feature propagation
rule of LHK-GNN can be represented as:

Yi = δi(γi0I+ γi1e
−tiL)X0. (10)

We treat ti as a learnable parameter, enabling each node to adaptively adjust
the diffusion time. For the node classification task, we adopt the negative log-
likelihood (NLL) loss. Thus we need to apply the softmax function [1] on Yi to
obtain the predication Zi = softmax(Yi).

Approximation for Localized Heat Kernel. We use the Chebyshev poly-
nomial to approximate e−tiL. Specifically,

e−tiL ≈
K−1∑
k=0

ck(ti)Tk(L̃),

where L̃ = L− I and Tk(L̃) denotes the k-th Chebyshev polynomial. The coef-
ficients ck(ti) depend on the diffusion time ti and can be computed as follows:

ck(ti) =
β

π

∫ 1

−1

Tk(x)e
−ti(1+x) dx = β(−1)ke−tiIk(ti), (11)
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Algorithm 1: LHK-GNN
Input: Feature matrix X, scaled Laplacian L̃, number of expansions K
Parameters: Learnable vector T , parameters Γ0, Γ1, MLP parameters Θ
Note: Ik(T ) denotes the modified Bessel function of the first kind; A⊙B

denotes the Hadamard product, which applies broadcasting to A if
necessary.

1 Feature Transformation:
2 X0 ← MLP(X;Θ);

3 Chebyshev Expansion:
4 for k ← 0 to K − 1 do
5 if k = 0 then
6 c0 ← exp(−T )⊙ I0(T );
7 else
8 ck ← 2 exp(−T )⊙ (−1)k Ik(T );
9 end

10 end

11 Chebyshev Polynomials:
12 T0 ← X;
13 T1 ← L̃X;
14 for k ← 2 to K − 1 do
15 Tk ← 2 L̃Tk−1 − Tk−2;
16 end
17 X̃ ←

∑K
k=0

(
ck ⊙ Tk

)
;

18 Output:
19 Z ← Γ 0 ⊙X0 + Γ 1 ⊙ X̃;

where β = 1 for k = 0 and β = 2 for k ≥ 1, and Ik(ti) is the modified Bessel
function of the first kind. By combining the revised coefficients, we obtain the
following approximation for e−tiL:

e−tiL ≈ e−tiI0(ti)T0(L̃) + 2

K−1∑
k=1

(−1)ke−tiIk(ti)Tk(L̃). (12)

In practice, implementing LHK-GNN by iteratively approximating each node’s
heat kernel would require an enormous amount of computational resources.
Therefore, a more efficient approach is to approximate the heat kernels for all
nodes simultaneously using a tensor-based method (as shown in Algorithm 1),
which avoids the overhead associated with iterative traversal.

4.3 Analysis for LHK-GNN: Tackling Over-Smoothing and
Heterophily

Compared to other GNNs with heat kernel, the most significant distinction of
our model is its ability to adaptively adjust the heat diffusion time for each node,
which helps address the issues of over-smoothing and heterophily.



8 T. Qin et al.

Tackling Over-Smoothing. Over-smoothing refers to the phenomenon in
GNNs where node representations become indistinguishable from each other as
the number of layers increases. Consequently, the performance of GNNs gradu-
ally deteriorates with deeper architectures. Based on Chien et al. [2], we formally
define the over-smoothing problem as follows:

Definition 2. Given a propagation matrix A and a graph feature matrix X, the
k-step feature propagation can be expressed as X(k) = AkX(0). If lim

k→∞
X(k) =

X(∞), the phenomenon is referred to as over-smoothing.

According to Definition 2, the over-smoothing problem can be equivalently de-
scribed as lim

k→∞
Ak = A∞, meaning that as the power k increases, A converges

to a steady-state matrix. Based on the above discussion, we theoretically ana-
lyze that traditional heat kernel-based GNNs may exhibit the over-smoothing
phenomenon. Specifically, we have the following:

Proposition 1. Let A = α0I + α1e
−tL, where L is the normalized Laplacian,

α0 + α1 = 1, and 0 < α1 < 2. Then, for any t > 0, the sequence of matrix
powers converges, i.e., limk→∞ Ak = A∞, where A∞ is a projection matrix onto
the invariant subspace corresponding to the eigenvalue 1.

Proof. Since L is the normalized Laplacian, it is symmetric and diagonalizable.
Let {λi} be its eigenvalues (with λi ≥ 0), and denote by U an orthogonal matrix
that diagonalizes L.

Then, the heat kernel can be written as e−tL = Ue−tΛUT , where Λ is the
diagonal matrix of eigenvalues. Consequently, e−tL is also symmetric and diago-
nalizable with eigenvalues e−tλi . Thus, the eigenvalues of A = α0I+α1e

−tL are
given by µi = α0 + α1e

−tλi . In particular, when λi = 0, we have

µi = α0 + α1 = 1. (13)

For λi > 0, note that
µi = 1− α1

(
1− e−tλi

)
. (14)

Since 0 < e−tλi < 1 for t > 0 and λi > 0, and given 0 < α1 < 2, it follows that
|µi| < 1. Because A is diagonalizable (and hence all eigenvalues are semisimple),
taking powers of A yields Ak = U(θ0I+θ1e

−tΛ)kUT . As k → ∞, all components
corresponding to eigenvalues with |µi| < 1 decay to zero, while the components
corresponding to µi = 1 remain unchanged. Thus,

lim
k→∞

Ak = A∞, (15)

where A∞ is the projection onto the invariant subspace associated with the
eigenvalue 1.

This completes the proof.

The above analysis of over-smoothing in heat kernels is based on feature iter-
ation. From a diffusion perspective, we can similarly conclude that heat kernels
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induce over-smoothing. Considering the heat kernel e−tL, as t → ∞, it converges
to a steady-state matrix. This indicates that when the heat diffusion time is too
long, the graph approaches a thermal equilibrium state, where node energy no
longer changes with increasing diffusion time. Therefore, reducing t can alleviate
the over-smoothing issue.

However, an excessively small t may compromise the properties of the heat
kernel, preventing sufficient smoothing of graph labels. Thus, adaptively adjust-
ing the heat diffusion time t for each node provides a more flexible way to control
the diffusion process. According to [13], nodes with high degrees tend to converge
to their stable states earlier than low-degree nodes, as evident. Based on this,
for nodes with high degrees and similar or identical neighbor labels, a smaller
t is required to prevent rapid convergence to a thermal equilibrium state. Con-
versely, for nodes with diverse or highly dissimilar neighbor labels, a larger t is
needed. This allows for identifying similar nodes by adjusting the diffusion range
while preventing the incorporation of misleading information due to an overly
restricted scope.

Tackling Heterophily. Heterophily refers to the tendency of connected nodes
to have different labels or features. According to [19], the node-level homophily
ratio is a metric for measuring node homophily, defined as follows:

Definition 3. Let G = (V,E) be a labeled graph where each node v has a label
y(v). The node-level homophily of a node v is defined as:

H(v) =
1

|N (v)|
∑

u∈N (v)

1
[
y(u) = y(v)

]
,

where N (v) denotes the set of neighbors of v, and 1[·] is an indicator function
that returns 1 if the condition is true, and 0 otherwise.

Traditional models rely on a global heat diffusion time to process graph data,
which performs well on homophilic graphs but often proves ineffective on het-
erophilic graphs. The reason is that these methods are fundamentally based on
the homophily assumption, which posits that connected nodes tend to have the
same label or similar features. From the perspective of heat diffusion, since the
diffusion time t defines the range of neighbors [27], traditional methods assign the
same neighbor range to each node, which does not guarantee the effective exclu-
sion of nodes with different labels for every node. In contrast, the node-specific
LHK-GNN defines an independent neighbor range for each node (as shown in
Figure 2), which theoretically allows for the effective exclusion of nodes with
different labels for each node.

Balancing Over-Smoothing and Heterophily. A special case arises when
high-degree nodes exhibit low homophily. If a small diffusion time is applied,
it may fail to effectively aggregate features from similar nodes, leading to per-
formance degradation. To address this, one solution is to categorize nodes into
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(a) The optimal diffu-
sion range of node a

(b) The optimal diffu-
sion range of node b

(c) The diffusion range
of LHK-GNN

Fig. 2: Illustration of different diffusion ranges. (a): We restrict diffusion to
integer-order neighbors. Since most of node a’s first-order neighbors share its
label, its optimal range is first-order (light blue). However, in this setting, node
b aggregates features only from its first-order neighbors, whose labels differ from
b, preventing it from effectively capturing useful information. (b): Node b’s opti-
mal range is third-order (light pink). In this setting, node a fails to learn effective
features. (c): Traditional methods enforce a uniform range like (a) and (b), pre-
venting optimal diffusion. LHK-GNN instead enables each node to diffuse within
its optimal range.

different intervals based on their homophily levels, measured by homophily ratio
in Definition 3, and assign each interval an upper bound ϵi and a lower bound ηi
for diffusion time. The diffusion time for each node is then learned within these
threshold constraints. The upper bound in high-degree intervals is set lower than
that in low-degree intervals, though the difference remains moderate to ensure
that high-degree nodes can still adaptively adjust their diffusion range accord-
ing to the downstream task’s loss function. This approach prevents excessively
small diffusion times from failing to aggregate meaningful features while avoid-
ing overly large diffusion times that lead to over-smoothing, thereby achieving a
balance between over-smoothing and heterophily.

5 Experiments

In this section, we evaluate the performance of LHK-GNN on node classifica-
tion tasks across 10 benchmark datasets. Section 5.1 provides details on the
datasets, baselines, and hyperparameter settings used in the experiments. Sec-
tion 5.2 presents the experimental results, including the performance on both
homophilic and heterophilic graphs. Section 5.3 provides an analysis of the in-
fluence of diffusion time. Section 5.4 provides the parameter study.

5.1 Experimental Setup

Datasets. We evaluate our model on ten commonly used real-world datasets.
Among them, five are homophilic datasets: Cora, CiteSeer, and PubMed [22],
Computers, and Photo [23], and the other are heterophilic datasets: Chameleon
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Table 1: Statistics of the datasets

Homophilic datasets Heterophilic datasets

Datasets Cora Cite. PubMed Comp. Photo Cham. Squi. Actor Texas Corn

Nodes 2,708 3,327 19,717 13,752 7,650 2,277 5,201 7,600 183 183
Edges 5,278 4,552 44,324 245,861 119,081 31,371 198,353 26,659 279 277
Features 1,433 3,703 500 767 745 2,325 2,089 932 1,703 1,703
Classes 7 6 3 10 8 5 5 5 5 5
HG 0.81 0.70 0.79 0.80 0.83 0.24 0.22 0.21 0.05 0.30

and Squirrel [21], Actor, Texas, and Cornell [19]. Besides, we follow [2] to adopt
two data splitting strategies: the sparse splitting 2.5%/2.5%/95% for training,
validation, and testing, respectively, and the dense splitting 60%/20%/20%. For
experiments, we perform 100 runs with different random splits. The dataset
statistics are provided in Table 1. Note that HG is used to measure the proportion
of homophily in the graph, defined as: HG = |{(u,v)∈E|yu=yv}|

|E| .

Baselines. We select commonly used diffusion-based GNNs as baselines, includ-
ing GCN [15], GraphHeat [27], APPNP [7], GDC [8], HKGCN [28], GPRGNN [2],
and HiD-Net [17]. Among them, GCN, GraphHeat, and HKGCN can be regarded
as heat kernel-based GNNs (with GCN considered as a first-order heat diffusion
GNN). APPNP and GPRGNN are random walk-based GNNs, where their it-
erative node feature updates can still be viewed as an information diffusion
process. GDC defines a generalized diffusion matrix that supports multiple dif-
fusion modes, including heat diffusion. HiD-Net constructs a generalized neural
diffusion framework on Graphs.

Hyper-Parameters. For the baselines, we use the best combination of hyper-
parameters provided in the original paper to report the results for each dataset.
For our proposed LHK-GNN, we use a 2-layer MLP for feature transformation.
For each dataset, we search for the optimal hyperparameters within {1e-3, 5e-3,
1e-2, 5e-2} for learning rate, within {0.3, 0.5, 0.7, 0.8, 0.9} for dropout, within
{16, 32, 64} for hidden channels, and within {0, 1e-5, 5e-5, 1e-4, 5e-4} for weight
decay to achieve the best performance. In all experiments, we use the Adam
optimizer and apply standard early stopping after 200 epochs.

5.2 Experimental Results

We use sparse splitting for homophilic graphs and dense splitting for heterophilic
graphs according to [2]. The results are presented in Table 2 and Table 3, re-
spectively. The results show that LHK-GNN achieves the best performance on
7 datasets and the second-best performance on 3 datasets. Compared to the
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Table 2: Results on real-world homophilic datasets in the sparse splitting
(2.5%/2.5%/95%): Mean accuracy across runs (%) ± 95% confidence interval.
Boldface denotes the best results, and underlining denotes the second-best.

Method Cora CiteSeer PubMed Computers Photo

GCN 76.43±0.87 66.71±0.73 84.35±0.90 82.46±0.75 90.61±1.08
GraphHeat 77.67±1.04 66.84±0.96 83.62±1.12 82.78±0.63 90.68±0.89
APPNP 78.74±1.06 67.34±1.02 84.46±0.83 82.13±0.67 90.43±1.15
GDC 77.79±0.78 67.16±0.55 84.62±0.68 82.78±0.72 91.19±1.10
GPRGNN 79.34±0.81 67.73±0.72 84.27±1.14 82.97±0.90 91.72±0.95
HKGCN 78.52±0.92 67.05±0.91 83.89±0.88 82.34±0.59 90.75±0.97
HiD-Net 79.53±1.03 66.87±0.99 84.32±0.74 84.14±0.60 91.45±0.91
LHK-GNN 80.02±1.13 67.92±0.87 84.81±0.56 83.36±0.75 92.3±1.25

Table 3: Results on real-world heterophilic datasets in the dense splitting
(60%/20%/20%): Mean accuracy across runs (%) ± 95% confidence interval.
Boldface denotes the best results, and underlining denotes the second-best.

Method Chameleon Squirrel Actor Texas Cornell

GCN 61.21 ±0.95 44.92 ±0.87 32.14 ±0.94 76.45 ±1.20 68.31 ±0.88
GraphHeat 64.68 ±0.79 45.61 ±0.66 34.51 ±1.02 80.82 ±1.08 72.92 ±1.15
APPNP 62.16 ±0.91 40.66 ±0.75 39.44 ±1.11 91.24 ±0.87 91.26 ±1.00
GDC 67.53 ±0.92 44.83 ±0.81 39.32 ±1.02 91.66 ±1.05 91.43 ±0.98
GPRGNN 67.78 ±0.82 50.27 ±0.65 39.65 ±0.85 91.83 ±0.91 92.17 ±0.88
HKGCN 63.44 ±0.88 46.76 ±0.93 34.73 ±1.06 78.63 ±0.82 74.66 ±1.04
HiD-Net 68.41 ±0.81 48.86 ±0.79 40.07 ±0.93 92.54 ±0.95 92.37 ±1.10
LHK-GNN 70.67 ±0.92 56.34 ±0.87 39.88 ±0.95 93.47 ±1.08 92.24 ±1.20

baselines, LHK-GNN has superior performance on heterophilic graph datasets,
especially on Chameleon and Squirrel, LHK-GNN outperforming the baselines
by an average of 5.64% and 10.35%, respectively. Apart from that, compared to
heat kernel-based GNNs such as GraphHeat and HKGCN, LHK-GNN achieves
significant performance gains on every dataset—–including an average improve-
ment of about 12% on heterophilic graphs. These comparisons demonstrate that
LHK-GNN is more effective than existing diffusion-based GNNs in handling both
homophilic and heterophilic graphs.

5.3 The Influence of Diffusion Time

Each node has an independent heat diffusion time, resulting in a complex heat
diffusion pattern. To better understand how this heat diffusion pattern helps
mitigate over-smoothing and handle heterophilic graph datasets, we study the
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(a) I1 (b) I2 (c) I3

Fig. 3: Boxplots of diffusion times for each dataset across three intervals.

(a) Cora (b) CiteSeer (c) PubMed

(d) Photo (e) Texas (f) Cornell

Fig. 4: Test accuracy with increasing number of propagation steps.

relationship between each node’s diffusion time and its degree, and separately,
between its diffusion time and its heterophily ratio.

Over-Smoothing. The key to mitigating over-smoothing is to adjust the dif-
fusion time for different local patterns. According to Section 4.3, different local
patterns can be distinguished based on the degree of the nodes. Taking 6 datasets
as examples, we divide the diffusion time into five intervals based on the degree
and train the diffusion time in each interval Ii , constraining it with different
thresholds ϵi and ηi . The results, as shown in Figure 3. Under the settings spec-
ified in Figure 3 for LHK-GNN, we compare LHK-GNN with other graph dif-
fusion models while varying the propagation step k from 2 to 10. The baselines
include two models that are effective in handling over-smoothing—GPRGNN
and HiD-Net—as well as other models, such as GCN, GraphHeat, and HKGCN.
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(a) Chameleon (b) Squirrel (c) Texas

Fig. 5: LHK-GNN and GraphHeat diffusion time comparison.

The results are shown in Figure 4. From the results, we can observe that with
the increase of k, LHK-GNN consistently performs better than other baselines.

Heterophily. According to section 4.3, the key to handling heterophilic datasets
is adaptively adjusting the heat diffusion time for each node based on the level
of homophily ratio. To verify whether our model can adjust the heat diffusion
range based on nodes with different homophily ratios, we relate the heat diffu-
sion times learned by LHK-GNN and GraphHeat to the homophily ratio of each
node. Using Chameleon, Squirrel and Texas as examples, the results are shown
in Figure 5. The results show that LHK-GNN increases diffusion time in low-
homophily regions and decreases it in high-homophily regions, while GraphHeat
keeps the diffusion time unchanged. This validates that our method can adap-
tively adjust diffusion time based on the homophily of nodes, thereby enabling
flexible and effective handling of heterophilic graphs.

5.4 Parameter Study

In this section, we investigate the sensitivity of parameters on all datasets. There
are two types of parameters: each interval has an upper bound ϵi and a lower
bound ηi.

From the results (as shown in Figure 6), we have following observations: (1)
as ϵi increases, the model’s performance on all datasets improves and converges
to a stable state. This implies that when ϵi is sufficiently large, the model can
learn the optimal diffusion time in each interval and is not affected by further
increases in ϵi. (2) Increasing η1 has no impact on performance, indicating that
low-degree nodes (interval I1) require a longer diffusion time for effective feature
aggregation. In contrast, rising η2 and η3 gradually degrade performance, sug-
gesting that nodes in intervals I2 and I3 (with higher degrees) need a moderate
diffusion time to avoid aggregating too many harmful features.
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(a) ϵ1 (b) ϵ2 (c) ϵ3

(d) η1 (e) η2 (f) η3

Fig. 6: Parameter influence on performance.

6 Conclusion

In this paper, we extend the heat kernel to the node level and integrate it with
graph convolution to propose the Localized Heat Kernel for GNN (LHK-GNN).
Our method allows each node to adaptively adjust the diffusion time, enabling
different diffusion ranges based on node degree and the similarity of neighbor-
ing labels. This approach theoretically alleviates over-smoothing and effectively
handles heterophilic graphs. Experimental results demonstrate the effectiveness
of our method in mitigating over-smoothing and handling heterophilic graphs.
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