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Abstract. Graph Neural Networks (GNNs) have become indispensable
tools for analyzing graph-structured data, with applications across nu-
merous domains. However, collecting graph data that is locally stored by
users in privacy-sensitive scenarios remains challenging. Existing meth-
ods applying Local Differential Privacy (LDP) fail to account for ho-
mophily—the tendency of connected nodes to share similar attributes,
which consequently leads to suboptimal performance under limited pri-
vacy budgets. To address this challenge, we propose HPGR (Homophily
Preserving Graph Reconstruction), a novel approach for collecting and
modeling graph topology under LDP, while preserving homophily. Our
method employs a homophily-aware querying and modeling mechanism
that integrates homophily priors into the data collection process, and
enables robust reconstruction of the underlying graph structure despite
the injected noise. We provide theoretical analyses demonstrating that
our method satisfies LDP requirements while effectively preserving ho-
mophily. Extensive experiments on benchmark datasets show that our
approach significantly outperforms existing methods, achieving a supe-
rior balance between privacy protection and model utility.

Keywords: Graph neural network · Differential Privacy.

1 Introduction

Graph neural networks (GNNs) have emerged as indispensable tools across nu-
merous domains, ranging from social networks to healthcare, fraud detection,
and recommendation systems. Central to their success is the exploitation of ho-
mophily [23, 26]—the natural tendency for nodes with similar attributes to form
connections—which underpins the effective propagation of information and the
superior performance of GNNs. However, the collection of relational data re-
quired for these models increasingly conflicts with growing privacy regulations
and decentralized data ownership paradigms.

Consider, for example, a decentralized social networking app like Briar [2],
where user connection records are stored locally on individual devices to enable
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peer-to-peer(P2P) interactions, such as sending messages, sharing files, or track-
ing contacts, without relying on a central server. While this decentralized ap-
proach inherently enhances user privacy, it obstructs centralized relational data
aggregation for training GNN models on graphs to further enhance downstream
tasks, such as user preference classification. Moreover, stringent privacy regu-
lations, such as the GDPR [21], restrict the collection of user connection data
without explicit consent, further complicating data usage for GNN training.

Local differential privacy (LDP) [5] emerges as a compelling solution, by en-
suring that individual data is obfuscated [6] before it is shared or queried. In
the previous scenario, LDP can be applied to perturb connection data with noise
before it leaves the user’s device, ensuring privacy while enabling data collection.
However, most existing LDP mechanisms were designed for tabular or scalar data
and fail to address the intricacies of graph-structured data [8]. Injecting noise
via LDP mechanisms, such as the randomized response mechanism, into graphs
can disrupt the intricate connectivity patterns by either falsely reporting a con-
nection or masking an actual one, and more critically, undermine the homophily
property. Despite several studies [27, 8, 13] on privacy-preserving GNNs, explicit
preservation of homophily under LDP constraints remains underexplored. Exist-
ing approaches have primarily focused on maintaining graph sparsity, neglecting
the key factors necessary to preserve the performance of GNNs.

In this paper, we propose HPGR (Homophily Preserving Graph Reconstruc-
tion), a novel framework that reconciles the stringent privacy requirements of
LDP with the structural imperatives of GNNs. Our key insight is to lever-
age server-side cluster labels (e.g., coarse user categories inferred from public
profiles) to guide the privatization process, preserving inter-cluster connectivity
patterns critical for homophily. HPGR operates in two phases. First, users per-
turb their cluster-specified degree vectors—counts of connections to predefined
server-labeled clusters—using an LDP mechanism that minimizes noise while
retaining community structure. Second, we adopt the Degree-Corrected Stochas-
tic Block Model [9], along with a mixed membership extension, to reconstruct
the graph from these privatized queries. We provide theoretical privacy-utility
trade-off guarantees and empirically validate HPGR on benchmark datasets. Ex-
tensive experiments demonstrate the superiority of our method. GNNs trained
on HPGR-reconstructed graphs retain 88% of their non-private accuracy on av-
erage under strict privacy budgets (1 ≤ ϵ ≤ 4), achieving approximately a 5.8%
improvement over SOTA. Our contribution can be summarized as follows3:

– We introduce a querying mechanism that gathers each user’s cluster-specific
degree vectors instead of raw edge data. This approach embeds homophily
priors into the data collection process while strictly adhering to local differ-
ential privacy constraints.

– We propose a novel homophily-preserving graph reconstruction method and
incorporate homophily priors to refine the reconstructed topology. This not
only boosts GNN performance but also bridges the gap between degree-
vector queries and graph homophily metrics.

3 Experiment code can be found at: https://github.com/xyl-alter/HPGR.git
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– We provide theoretical error analyses from four perspectives: privacy, spar-
sity, homophily, and accuracy. The experimental results further demonstrate
significant improvements over existing approaches.

2 PRELIMINARY

2.1 Problem statement

This work focuses on protecting the local neighborhood information of nodes
in a semi-supervised node classification task on undirected, unweighted graphs.
GNN training needs three inputs: node features X, labels Y , and neighborhood
relations encoded in the adjacency matrix A. In our decentralized setting, the
server can access X and Y (e.g. from the public user profiles), but the graph
topology A remains distributed-each node i locally stores its local neighborhood
Ai ∈ {0, 1}n. The server is considered honest-but-curious (i.e., adheres to pro-
tocols but may infer sensitive information), aims to collect A to conduct GNN
training. This raises a privacy challenge: transmitting raw neighborhood data
risks exposing sensitive connections. We adopt ϵ-edge local differential privacy
(LDP) [27] to protect edge privacy, which ensures that even when one node’s
local graph structure is altered, the privacy-preserving algorithm remains robust
against inference of the actual graph topology.

Definition 1. (ϵ-Edge Local Differential Privacy [27]). For ϵ > 0, a randomized
algorithm A : {0, 1}n → O satisfies ϵ-edge local differential privacy if for any
two adjacent neighborhood vectors A′

i, Ai ∈ {0, 1}n of node i which differ only in
one entry, i.e., |Ai −A′

i|1 = 1, and for any possible output O ∈ O, we have

Pr(A(Ai) = O) ≤ eϵ · Pr(A(A′
i) = O). (1)

The ϵ-edge LDP guarantees that modifying a single edge in a node’s local neigh-
borhood does not significantly alter the output of the privacy-preserving al-
gorithm, thereby preventing the server from reliably inferring the existence or
absence of any specific edge. The privacy budget ϵ indicates the level of privacy
protection: the smaller the budget is, the stricter the privacy protection, and the
greater the disturbance. Key notations in this paper are shown in Table 1.

2.2 Homophily in graphs

Homophily—the tendency of nodes with similar characteristics to form connec-
tions—is critical for GNN performance. We adopt a variant of the class-label
homophily proposed in [12] as our homophily metric:

h =
1

c

c∑
k=1

hk, hk =

∑
u∈Ck

dku
u∑

u∈Ck
du

=
Mk,k∑c
j=1 Mk,j

, (2)

where ku is the cluster node u belongs to, dku
u is the number of edges between

node u and nodes in ku, and M is the cluster connection matrix indicating the
number of edges within and between clusters.
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Symbol Description Symbol Description

X feature matrix of nodes di cluster-specified degree vector of node i
Y labels of nodes d list of node degrees
A graph adjacency matrix Π prior link probability matrix
n the number of nodes P posterior link probability matrix
c the number of classes/clusters C node classification matrix
ϵ the privacy budget M cluster connection matrix

Table 1: Basic Notations

Graph homophily is crucial for GNN performance. Figure 1 shows the impact
of homophily on the node classification performance of GNN models, demon-
strating a sharp decline in GNN performance as homophily decreases. This em-
phasizes the need to preserve homophily when querying private graphs to achieve
optimal GNN results. However, conventional differential privacy mechanisms,
such as the Laplace mechanism and randomized responses, fail to maintain ho-
mophily, highlighting the importance of allocating additional privacy budget for
homophily-preserving queries.
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Fig. 1: Performance of three GNN models on SBM-reconstructed Cora dataset.
Nodes with the same labels are connected with probability p while nodes with
different labels are connected with probability q. The expected homophily score
of the SBM (Stochastic Block Model)-generated graph is h = p/(p+ (c− 1)q).

2.3 Degree-Corrected Stochastic Block Model (DC-SBM)

The Degree-Corrected Stochastic Block Model not only preserves the homophily
of the graph but also maintains the degree distribution of nodes. In the DC-SBM
model, the probability of an edge between node i and j is given by:

P (Aij = 1) = θiθjΦgigj , (3)



Leveraging Homophily under LDP for Effective GNNs 5

where θi, θj are degree correction parameters correlated to the degree of node
i and node j, and Φgigj is the probability that nodes in category gi and gj are
connected, where gi and gj are the categories node i and node j belong to. Φgigj

is computed with

Φgigj =
Mgigj

rgirgj
, (4)

where Mgigj is the number of edges between nodes in gi and nodes in gj , and
rgi and rgj are the number of nodes in gi and gj .

3 METHODS

We propose Homophily-Preserving Graph Reconstruction(HPGR) algorithm
for effective graph neural networks under local differential privacy. The server
makes homophily-aware queries to the nodes (clients) to reconstruct the graph
for GNN training. During the query stage, the server first group local nodes
into clusters. It queries both the neighborhood and the cluster-specified degree
vector—number of edges connecting to each cluster, of each node. Local nodes
respond by applying randomized response (RR) and Laplace (Lap) mechanism to
perturb the adjacency lists the degree vectors. Thereafter, the server constructs a
DC-SBM random graph based on the collected noisy degree vector and employs
Bayesian estimation to refine the collected topology. The edge probabilities in the
random graph serve as priors, while the noisy adjacency matrix acts as evidence,
allowing the server to compute posterior probabilities for each potential link and
reconstruct the graph for GNN training.

3.1 Homophily-aware topology collection under LDP

The server first clusters nodes into c clusters based on their labels, and then
queries each node for its adjacency vector Ai and cluster-specified degree vector
di. By collecting degree vectors, the server gathers information on node con-
nectivity across clusters, reflecting graph homophily. In the cases where part
of node labels are unavailable, the server uses pseudo labels for the unlabeled
nodes. Pseudo labels are generated by an MLP, C = MLP(X,Y ) ∈ RN×c. To
ensure privacy protection during the querying process, the server divides the
total privacy budget ϵ into two components with proportion δ: ϵa = ϵ · δ and
ϵd = ϵ · (1 − δ), which are allocated for querying adjacency and degree vectors
respectively. By controlling the distribution of the privacy budget, the server
can balance the need for better graph statistics (i.e., homophily) or more precise
adjacency details.

The neighborhood query is straightforward, while for degree vector queries,
the server should first send labels to each node. However, if the client is untrusted
or potentially curious, revealing clustering information can lead to privacy leak-
age of node labels. In such cases, techniques such as homomorphic encryption
and Secure Multi-Party Computation(SMPC) can be applied to avoid revealing
the clustering information or the clients’ local data.
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Upon receiving a query, the local node calculates its degree vector by defini-
tion and uses random response (flipping one bit with probability p = 1

1+exp(ϵa)
)

[22] and Laplace mechanisms (adding Laplace noise with scale 1
ϵd

) [6] to perturb
the adjacency and degree vectors respectively to ensure LDP compliance. To bet-
ter utilize the classification information provided by MLP, a soft query-response
mechanism is also employed, where the server queries with a classification matrix
C ∈ Rn×c and the local node computes its degree vector with Ai · C. Exper-
iments show that the soft query mechanism often achieves better performance
by acknowledging the uncertainty in pseudo labels, while at the cost of a higher
communication overhead. The practical algorithm for the soft response on the
client side is shown in Algorithm 1, with the hard response as a special case
where C is one-hot.

Algorithm 1 client-side response under LDP
Input: Ai: Adjacency list, C: Cluster matrix, ϵ: Privacy budget, δ: Privacy parameter
Output: Ãi ∈ {0, 1}n: private adjacency vector, d̃i ∈ Rc: private degree vector
1: function Injection(Ai, C, ϵ, δ)
2: ϵd = δϵ ▷ privacy budget for degree vector query
3: ϵa = (1− δ)ϵ ▷ privacy budget for adjacency vector query
4: for j ∈ {1, 2, · · · , n} do

5: Ãij =

{
Aij , with probability exp(ϵa)

1+exp(ϵa)

1−Aij , with probability 1
1+exp(ϵa)

▷ apply RR mechanism

6: end for
7: d̂i = Ai · C ▷ calculating degree vector
8: for j ∈ {1, 2, · · · , c} do
9: sample lj ∼ Laplace(0, 1

ϵd
)

10: d̃i[j] = d̂i[j] + lj ▷ apply Laplace mechanism
11: end for
12: return (Ãi, d̃i)
13: end function

Theorem 1. The client-side response algorithm above achieves ϵ-edge LDP.

The proof of this theorem is straightforward, since the RR and Laplace mecha-
nisms satisfy ϵa and ϵd-LDP respectively. According to the composition theorem,
the total privacy budget is ϵa + ϵd = ϵ.

3.2 Graph reconstruction

After receiving replies from local nodes, the server obtains noisy adjacency vec-
tors Ã1, Ã2, · · · , Ãn and degree vectors d̃1, d̃2, · · · , d̃n. The server then computes
a prior distribution of edges with degree vectors and regards the adjacency vec-
tors as evidence to estimate posterior probabilities through Bayesian estimation.
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Prior distribution estimation given degree vectors Although DC-SBM
is well suited for hard queries, applying it to soft queries (i.e., the mixed mem-
bership scenario [14]) is challenging, particularly in degree corrections for mixed
membership. Here we introduce our Mixed Membership DC-SBM (MM-DCSB
M) model, where the traditional DC-SBM is a special case when C is a one-hot
matrix. Our MM-DCSBM algorithm requires three inputs: cluster connection
matrix M (representing the number of edges between clusters), degree list d (re-
flecting the degree of each node), and the cluster matrix C obtained in Section
3.1.

Cluster connection matrix. The server computes M̃ = CT · D̃, where D̃ =
[d̃1, d̃2, . . . , d̃n]

T is the matrix of noisy degree vectors, and M̃ is the noisy cluster
connection matrix. Due to Laplace noise injection, M̃ may not be symmetric,
but the server can correct it with the following maximum likelihood estimation.

Theorem 2. The maximum likelihood estimation of M̃i,j is

M̃i,j,MLE =
nj

ni + nj
M̃i,j +

ni

ni + nj
M̃j,i ∼ N(Mi,j ,

4ninj

(ni + nj)ϵ2d
), (5)

where ni =
∑

k∈[1,n] Ck,i, nj =
∑

k∈[1,n] Ck,j are the number of nodes in cluster
i and cluster j, Mi,j is the cluster connection matrix without noise injection.

Degree list. Instead of allocating extra privacy budget for querying node de-
grees, we sum the queried degree vectors to obtain unbiased estimates.

We represent our MM-DCSBM in Algorithm 2. The key difference between
our algorithm and the traditional DC-SBM lies in degree regularization, where
mixed membership precludes calculating the regularization factor R for each
node independently. This results in Φ being computed via element-wise division
in the DC-SBM algorithm, while through multiplication by the inverse matrix
in our algorithm. To validate our algorithm, we present Proposition 1. A more
detailed analysis of its properties is provided in Section 4.

Proposition 1. When C is a one-hot matrix, meaning each node explicitly be-
longs to a cluster, the MM-DCSBM algorithm in Algorithm 2 reduces to the
traditional DC-SBM algorithm introduced in Subsection 2.3.

Posterior distribution estimation given noisy adjacency vector Infer-
ring the posterior probability of each edge’s existence with Bayesian estima-
tion has been demonstrated to be both effective and efficient [27]. In line with
previous works, we treat the edge existence probability in the reconstructed
MM-DCSBM random graph as the prior probability and the adjacency vectors
obtained through the random response mechanism as the evidence. Formally,
the posterior edge existence probability between node i and j can be calculated
with

Pij = P[(Aij , Aji) = (1, 1)|(Ãij , Ãji)] =
qijΠij

qijΠij + q′ij(1−Πij)
, (6)
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Algorithm 2 MM-DCSBM modeling algorithm
Input: M : cluster connection matrix, d: node degree list, C: Node classification matrix
Output: Π: the prior link probability matrix
1: function MM-DCSBM(M,d, C)
2: R = CT · diag(d) · C ▷ Computer the regularization factor
3: M̂ = R−1 ·M ·R−1 ▷ normalize the cluster connection matrix
4: Φ = C · M̂ · CT ▷ compute the probability of links with SBM matrix
5: Θ = dT · d
6: Π = Φ⊙Θ ▷ correct SBM matrix with node degrees
7: return Π
8: end function

where Πij is the prior distribution, qij and q′ij are the joint distribution of
(Ãij , Ãji). More specifically, we have

qij =


p2, (Ãij , Ãji) = (0, 0)

p(1− p), (Ãij , Ãji) = (1, 0)

p(1− p), (Ãij , Ãji) = (0, 1)

(1− p)2, (Ãij , Ãji) = (1, 1)

, q′ij =


(1− p)2, (Ãij , Ãji) = (0, 0)

p(1− p), (Ãij , Ãji) = (1, 0)

p(1− p), (Ãij , Ãji) = (0, 1)

p2, (Ãij , Ãji) = (1, 1)

,

where p = 1
1+eϵa is the probability of bit flipping in the random response mech-

anism.

4 Utility analysis

In this section, we analyze the utility of our method from three aspects: sparsity,
homophily, and precision. Before delving into the detailed analysis, we first in-
troduce three key properties of our proposed MM-DCSBM algorithm, presented
as Theorem 3.

Theorem 3. Let Π be the prior distribution computed with the MM-DCSBM
model proposed in Algorithm 2 given the cluster connection matrix M̃ , degrees of
nodes d̃, and classification matrix Cps, i.e. Π = MM-DCSBM(M̃, d̃, Cps), then

CT
ps ·Π · Cps = M̃ (7a), |Π|1 = |M̃ |1 (7b),∑
k Πik∑
k Πjk

=
d̃i

d̃j

∀i, j ∈ {1, 2, · · · , n}, Cps,i = Cps,j (7c).
(7)

Theorem 3 demonstrates that the MM-DCSBM model preserves homophily,
sparsity, and degree distribution of the input graph by ensuring that the recon-
structed graph maintains the connection probabilities between clusters (Equa-
tion 7a), the total number of edges (Equation 7b), and the relative degrees of
nodes within the same cluster (Equation 7c). These properties enable transform-
ing the algorithm’s output back into the input during further analysis. Notably,
without the MLE process, i.e., M̃ = CT [d̃1, · · · , d̃n]T holds, Equation 7c can be
enhanced with

∑
k Πik = d̃i, ∀i ∈ {1, 2, · · · , n}, regardless of the value of Cps.
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4.1 Sparsity analysis

Sparsity is a common property of real-world graphs. However, topologies col-
lected by differential privacy mechanisms, such as the random response mech-
anism, are often overly dense. For a graph with n nodes and m ∼ O(n) edges,
using the RR mechanism with flip probability p gives an expected edge count
of (n2 − m)p + m(1 − p) ∼ O(n2). Overly dense graphs can lead to excessive
computational overhead during GNN training, and incorrectly connected edges
can severely degrade GNN performance.

We use E(||Π|1 − |A|1|) as sparsity metric. Theorem 4 provides a bound on
the sparsity gap between our prior link probability and the real topology.

Theorem 4. Considering the sparsity distance between the prior distribution
matrix Π and the original adjacency matrix A, we have

E[||Π|1 − |A|1|] ≤
2
√
2

ϵd

√
cn

π
. (8)

Corollary 1. The l1-distance between the posterior probability and the original
topology is bounded by

E(|P −A|1) ≤ 2|A|1 +
2
√
2

ϵd

√
cn

π
. (9)

In real-world graphs, the number of edges is typically of order O(n), while our
method’s graph density estimation error is O(

√
n). Comparing our method with

Blink [27] which also emphasizes sparsity, their estimation error is constrained
by E[||Π|1 − |A|1|] ≤ n

2ϵd
, which is of a higher order than ours.

4.2 Homophily analysis

Since the homophily metric in Equation 2 only relates to the cluster connection
matrix, we use E(|Mtrue − M̃ |1,1) as our utility metric, where M̃ is the cluster
connection matrix collected by the server and Mtrue is the actual one. Under
such metric, Theorem 5 provides a guarantee of homophily. As the core Theorem
of this work, we provide a brief proof here.

Theorem 5. Assume that Mtrue is the cluster connection matrix given true
labels Ctrue and noise-free adjacency matrix A, and M̃ is that given pseudo
labels Cps and prior edge distribution matrix Π, denote di as the degree of node
i, then we have

E(|Mtrue − M̃ |1,1) = E(|CT
trueACtrue − CT

psΠCps|1,1)

≤ 2c

ϵd

√
cn

π
+

n∑
i=0

2|Ctrue,i − Cps,i|1di.
(10)
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Proof. According to the triangle inequality,

E(|Mtrue − M̃ |1,1) = E(|CT
trueACtrue − CT

psΠCps|1,1)
≤ E(|CT

trueACtrue − CT
psACps|1,1) + E(|CT

psACps − CT
psΠCps|1,1).

(11)

For the first part, suppose D = Ctrue − Cps, then

CT
trueACtrue − CT

psACps = DTACps + CT
psAD +DTAD. (12)

If Ctrue and Cps differ only in the i-th line, i.e., only the i-th row of D is non-zero:

1. DTAD = 0c×c, since there’s no self-loop and DTAD = Ai,iD
T
i Di = 0c×c.

2. |DTAC|1 = |Cps,i − Ctrue,i|1di, since |DTS|1 =
∑

l Di,l|Si|1 = |Di|1|Si|1 =
|Cps,i − Ctrue,i|1di, where S = AC.

Replace one row in Cps with the corresponding row in Ctrue in sequence, where
Ci represents the i-th state. By accumulating |CT

i ACi − CT
i−1ACi−1|1, we have

|CT
trueACtrue − CT

psACps|1 ≤
n∑

i=1

2|Ctrue,i − Cps,i|1di. (13)

For the second part, according to Theorem 2 and Theorem 3, we have CT
psACps−

CT
psΠCps = M − M̃MLE and M̃i,j,MLE =

nj

ni+nj
M̃i,j +

ni

ni+nj
M̃j,i, where M̃i,j ,

M̃j,i are two random variables drawn from N(Mi,j , 2ni
1
ϵ2d
) and N(Mj,i, 2nj

1
ϵ2d
)

respectively. Therefore, we have M̃i,j,MLE ∼ N(Mi,j ,
4ninj

(ni+nj)ϵ2d
) and |M̃i,j,MLE−

Mi,j |1 ∼ |N(0,
4ninj

(ni+nj)ϵ2d
)|1. Denote σ =

4ninj

(ni+nj)ϵ2d
. Through integration, we have

E(|M̃i,j,MLE −Mi,j |1) =
∫ ∞

0

x
1√
2πσ

exp{− x2

2σ2
}dx =

√
2

π

2

ϵd

√
ninj

ni + nj
.

According to the Cauchy’s Inequality and Harmonic-Geometric Mean Inequality,

∑
i,j∈{1,2,··· ,c}

√
ninj

ni + nj
≤

√
c2
√ ∑

i,j∈{1,2,··· ,c}

ninj

ni + nj
≤

√
2

2
c
√
cn, (14)

since
∑c

i=1 ni = n. So we have

E(|CT
psACps − CT

psΠCps|1) =
∑
i,j

E(|Mi,j − M̃i,j,MLE |1) ≤
√

1

π

2

ϵd
c
√
cn. (15)

Combining Equation 13 and Equation 15 yields the proof.

The error in Theorem 5 can be split into two parts: random error (the first
term in Equation 10) caused by noise injection, and systematic error (the second
term) caused by misclassification. The random error is inversely proportional to
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ϵd and scales as O(
√
n). The systematic error arises from the discrepancy between

true and pseudo labels. In our approach, training set nodes are assigned true
labels to reduce systematic error. For unlabeled nodes, provided that the MLP
achieves a reasonable accuracy—an assumption that generally holds for real-
world datasets—this term won’t greatly compromise the homophily constraint.

Corollary 2. Under the same classification matrix Ctrue, difference between the
two cluster connection matrix is bounded by

E(|CT
trueACtrue − CT

trueΠCtrue|) ≤
2c

ϵd

√
cn

π
+

n∑
i=0

2|Ctrue,i − Cps,i|1(di + d̃i),

where d̃i is the degree of node i in Π.

4.3 Precision analysis

In this section, we analyze the effects of Bayesian estimation on the precision of
the estimated edges, as stated in Theorem 6.

Theorem 6. Suppose that the probability that the prior distribution is correct is
q, where q = Πij if Aij = 1 and 1−Πij otherwise. ϵa is the privacy budget allo-
cated for the random response mechanism, then the probability that the posterior
probability Pij is correct satisfies

lim
ϵa→0

E(P (Pij = Aij |Aij)) = q, lim
ϵa→+∞

E(P (Pij = Aij |Aij)) = 1, (16)

and we have that P (Pij = Aij |Aij)) is monotonic increasing with ϵa > 0.

Theorem 6 shows that with a small privacy budget, the precision of the posterior
probability depends on the precision of the prior estimation. While with an
abundant budget, the RR mechanism makes the estimated graph approach the
actual one. This indicates that as the privacy budget increases, the benefit of a
better prior diminishes. Experiments shows that our method mainly improves
performance under small privacy budgets and converges to the baseline GNN
performance as the budget increases, which is consistent with this conclusion..

5 EXPERIMENTS

5.1 Experimental settings

Datasets. We conduct experiments on four real-world datasets: Cora [24], Ama-
zon [19] (including Computers and Photo), LastFM [16] and Facebook [15]. These
datasets cover several representative real-world network types, and also demon-
strate the scalability of our method on graphs of different scales.

Experimental setup. For all datasets and models, we randomly split the
nodes into train/validation/test nodes with a ratio of 2:1:1. We selected GCN [10],
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GraphSAGE [7], and GAT [20] as the primary models for testing due to their
representative approaches to graph neural networks. We test the performance
of all prior-based method with ϵ ∈ {1, 2, · · · , 8}. We conduct grid search on δ
and report the best performance. For other frameworks, we search for their best
hyper-parameters respectively. We conduct injection 5 times to generate 5 noisy
graphs, and we train GNNs on each graph 5 times to reduce randomness.

5.2 Experimental results

Compare to other prior-based methods Based on the Bayesian estima-
tion framework, we compare the performance of other graph prior construction
methods with ours. We use the following methods as baselines:

1. Blink [27]: Blink constructs the prior graph with β-model. Given a vector
β = [β1, β2, · · · , βn] ∈ Rn, an edge between node i and node j is given with
probability of Πij =

exp(βi+βj)
1+exp(βi+βj)

. Blink collects the degree of each node, and
estimates β with maximum likelihood estimation. This work only utilizes the
degree distribution, without taking advantage of graph’s homophily.

2. HAGEI [25]: A work contemporaneous with ours likewise proposes exe-
cuting degree vector queries, and it constructs the prior graph with the

Chung-Lu model: Πij =
d
ci
j ·

∑
i∈V

d
ci
i

|Uci |∑
j∈Ucj

d
ci
j +

∑
i∈V d

ci
i

+
d
cj
i ·

∑
j∈V

d
cj
j

|Ucj |∑
i∈Uci

d
cj
i +

∑
j∈V d

cj
j

, where

dcij represents the noisy number of edges node j connects to cluster ci, and
|Uci | represents the number of nodes in cluster Uci . However, this work pro-
vides no theoretical error analysis and thus fails to bridge the gap between
degree vector queries and a specific homophily metric.

After fetching the posterior link probability matrix P, we adopt the following
two methods to sample a graph for GNN trainning:

– Hard sampling. An edge is sampled if its posterior probability is above
0.5. All the sampled edges are regarded as undirected and unweighted.

– Soft sampling. The probability of each edge’s existence is used as the weight
of the edge. Correspondingly, we adopt dense convolution in GNN models.
We didn’t train the GAT model under soft sampling strategy since it is not
reasonable to let all nodes attend over all others.

Results in Table 2 show that our prior graph sampling method consistently
outperforms other methods, particularly with a moderate privacy budget. Our
approach not only outperforms other methods under soft sampling strategies
but, more importantly, within our framework, soft sampling often yields better
results than hard sampling. In comparison, hard sampling leads to a sparser
graph due to the truncation threshold being set to 0.5. For example, when the
server collects eij = 1 and eji = 0 due to the random response mechanism
(common with small privacy budgets), Equation 6 shows that Pij ≥ 0.5 if and
only if Πij ≥ 0.5. However, due to the inherent sparsity of the original graph,
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Fig. 2: Performance comparison between HPGR(ours) and other methods. X-
axis represents privacy budget ϵ and y-axis represents test accuracy (%).

the prior probability Πij is often smaller than 0.5 even if an edge exists. This
causes hard sampling to truncate values, which reduces noise but sacrifices fine-
grained structural details. Excellent performance under soft sampling strategy
suggests that our approach effectively utilizes detailed topological information
while minimizing the impact of noise on downstream tasks.

Compare to other methods We also compare our method with other dis-
parate locally differential private GNN frameworks, and they are:

1. Random Response(RR): The server employs the RR mechanism to collect
adjacency information without applying any additional denoising operations.

2. Symmetric Random Response(SymRR): The server only collect the
lower triangular adjacency matrix with RR, ensuring that the reconstructed
graph remains undirected.

3. Degree-Preserving Random Response(DPRR) [8]: DPRR performs
an unbiased estimation of node degrees in the original topology based on
the observed degrees in the collected topology. Subsequently, it randomly
samples an equal number of collected edges for each node, corresponding to
its estimated degree, to reconstruct the corrected topology.

4. Locally Differential Private GNN(LDPGNN): LDPGNN, a variant
of DPGNN proposed in [18], utilizes the Laplace mechanism to collect the
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Fig. 3: Comparison between soft and hard queries (instead of sampling strate-
gies). X-axis represents privacy budget and y-axis represents test accuracy(%).

private topology. The server then estimates the unbiased number of edges in
the entire graph and retains the corresponding number of highest-weighted
entries in the collected topology.

5. Solitude [13]: Solitude formulates the sparsity of the collected topology as
an optimization objective for GNN training. Its optimization goal is given
by minÂ,θ L(Â|θ) + λ1|Â− Ã|F + λ2|Â|1.

The experimental results in Figure 2 show that our method outperforms baseline
approaches. When the privacy budget is limited, both the random response (RR)
and Laplace (Lap) mechanisms significantly distort the graph’s topology, making
it challenging for GNNs to extract meaningful signals from graphs with a low
signal-to-noise ratio. As a result, methods relying on the RR or Lap mechanisms
(such as RR, DPRR, SYMRR, and LDPGCN) exhibit poor performance. How-
ever, despite the differential privacy mechanisms’ ability to obscure the presence
or absence of individual edges, relatively accurate statistical information can
still be derived. By leveraging homophily statistics, we are able to preserve node
connectivity within and across classes. In homophilic graphs, the prior distribu-
tion encodes the knowledge that “nodes of the same class are more likely to be
connected”, enabling the GNN to extract low-frequency signals from the graph.

Comparison between hard and soft queries We analyze the difference be-
tween the proposed soft and hard query mechanisms from Section 3.1, with re-
sults shown in Figure 3. In most cases, the soft query outperforms the hard query,
particularly when the privacy budget is relatively sufficient, as it reduces bias
from MLP misclassification by accounting for classification uncertainty. However,
the soft query requires transmitting an n× c classification probability matrix in-
stead of an n-sized classification vector, increasing the communication burden.
This represents a trade-off between resource consumption and performance.

6 RELATED WORK

Differentially Private GNNs. Differentially private GNNs can be divided
into two categories based on the goal of privacy protection: global differentially
private GNNs and local differentially private GNNs.
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Global differentially private GNNs aim to train node embedding vectors or
labels privately at the sever side. GAP [17] achieves edge-level and node-level
differential privacy by adding noise during the convolution process. DPDGC
[3] improves upon the node-level differential privacy definition proposed in [17],
achieving better performance by injecting noise into the graph topology and
node features individually. DPGCN [4] extends the DP-SGD method [1] to the
GNN domain, achieving node-level differential privacy.

Local differentially private GNNs focus on protecting node features and graph
topology at the client side. LDPGNN [18] focuses on protecting node features
and labels, while LDP-GE [11] focuses on protecting only node features. Solitude
[13], DPRR [8], and Blink [27] aim at protecting the graph topology, and these
methods have been introduced in detail in Section 5.

7 Conclusion

In this paper, we introduce HPGR, a method that effectively leverages homophily
to enhance the performance of GNNs under LDP. HPGR not only advances the
state of the art in privacy-preserving graph learning but also highlights the crit-
ical importance of integrating domain-specific structural insights—such as ho-
mophily—into privacy mechanisms. This work opens new avenues for developing
secure, high-utility graph-based machine learning applications in decentralized
and privacy-sensitive environments.
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