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Abstract. This paper proposes Projective Pruning, a structured deep
neural network sparsification technique that removes highly correlated
weights, as they provide a minimal contribution to the parameter subspace.
Due to the inefficiencies in deep neural networks caused by excessive
overparametrization and highly correlated weights, the method enables
parameter compression while maintaining the high performance of the
models. The approach incorporates a redistribution mechanism to preserve
model performance and expressiveness. Evaluations on multiple vision
and language benchmarks, including large language model architectures,
demonstrate that, unlike most other pruning methods, Projective Pruning
delivers reliable compression while ensuring stable model performance.
Applying this method improves retrainability and achieves competitive
results compared to existing structured pruning methods.
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1 Introduction

In recent years, deep learning has profoundly transformed many disciplines
such as computer vision, natural language processing, speech recognition, rec-
ommendation systems, and computational biology. These advancements have
enabled unprecedented capabilities in pattern recognition, content generation,
and decision-making systems across various domains [?,?].

The most performing models, however, often have billions of parameters
and prohibitively high training costs [?,?]. For instance, state-of-the-art large
language models (LLM) such as GPT-4 are estimated to have over 1.8 trillion
parameters [?], requiring thousands of GPU-years for training and costing tens
of millions of dollars [?].

The environmental impact of such computational demands is highly concern-
ing. Training a single large transformer model can produce carbon emissions
equivalent to the lifetime emissions of five automobiles [?]. The energy con-
sumption of modern AI systems has been increasing exponentially, with energy
usage doubling approximately every 3.4 months between 2012 and 2022 [?]. This
trajectory raises significant sustainability concerns about the future development
of deep learning technologies.

This challenge gave rise to the paradigm of foundation models, which are
pretrained on vast, generic datasets, and can be reusably fine-tuned for various
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downstream tasks [?]. This approach amortizes the initial training costs across
multiple applications, improving overall efficiency.

Moreover, while training constitutes a substantial initial energy investment, it
is the inference process—the deployment and repeated use of trained models—that
accounts for the majority of the total energy consumption over a model’s lifetime.
Recent studies indicate that inference operations represent up to 90% of the
total computational cost for widely deployed models [?,?]. This imbalance is
particularly pronounced in commercial applications of LLM that serve millions
of queries daily.

Nevertheless, even after training, large models require substantial compute,
and memory resources for inference [?, ?]. The memory footprint alone can
exceed the capabilities of many edge devices, limiting AI deployment in resource-
constrained environments such as mobile phones, IoT devices, and autonomous
vehicles [?].

One of the possible solutions to reduce the inference and/or training cost of
deep learning models is model pruning. The concept of pruning builds upon the
observation that neural networks are typically over-parameterized, containing
significantly more parameters than necessary to represent their learned functions
[?]. This redundancy creates an opportunity for compression without substantial
performance degradation.

Therefore, in this paper, we propose a new flexible neural pruning method that
decouples weights in deep learning models. Projective Pruning uses a dependency
graph [?] to group weights, and prune them based on redundancy computed
by their relative distance to orthogonal projections on the subspace spanned
by other parameters in the same group. The pruned weights are then used to
redistribute lost signals to the remaining parameters to maintain the model’s
representational capacity. We test our method on various convolutional and
attention-based models against other pruning algorithms. On average, Projective
Pruning outperforms existing methods in terms of post-pruning retrainability,
and raw performance retention.

2 Background

Model compression has a rich history, tracing back to the late 1980s with pioneer-
ing pruning techniques such as Optimal Brain Damage [?] and Optimal Brain
Surgeon [?]. These early methods aimed to compress neural networks by system-
atically removing parameters based on their significance using second-derivative
and magnitude-based criteria. Initially, such pruning approaches were driven
primarily by necessity due to the severely limited computing resources available
at the time.

As deep learning architectures and hardware capabilities evolved throughout
the decades, the field of model compression expanded significantly, with Han et
al.’s Deep Compression [?] marking a pivotal advancement in modern approaches.
Contemporary research has refined these techniques and established a temporal
classification framework for pruning methodologies. According to recent surveys
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[?], modern pruning methods are typically applied at one of three distinct stages
in a model’s lifecycle:

– Pruning before training [?,?]: The network is pruned at initialization,
before training begins. This approach is motivated by improved convergence
speed and reduced memory costs of sparse training.

– Pruning during training [?,?]: Pruning is integrated into the training
process, and the model’s size is iteratively reduced as it learns. The large
number of parameters initially helps the model recover from poor initialization
[?], and quickly traverse to the low area of the loss landscape [?]. At the
same time, the iterative pruning reduces the model’s size, and improve its
generalization.

– Pruning after training [?,?,?,?]: The model is fully trained first, then
pruned, and finally fine-tuned to regain any lost performance. This strategy
targets existing pretrained models like vision and large language models with
computationally intensive convolutional or transformer-based architectures.

Beyond pruning, the model compression landscape encompasses several com-
plementary approaches. Knowledge distillation [?,?] transfers information from a
larger "teacher" model to a smaller "student" network by training the smaller
network using the output logits of the fully converged larger model. Low-rank
approximation [?] replaces large matrices with products of smaller matrices to
reduce parameter counts while preserving essential representational capacity.
Quantization [?] achieves speedups and memory savings by reducing the numeri-
cal precision of weights and activations without necessarily changing the network
architecture.

The structural nature of pruning operations represents another important
classification dimension. Unstructured pruning involves setting individual param-
eters to zero while maintaining the original network architecture. This approach
yields a sparse network that often demonstrates improved generalization capabil-
ities but primarily benefits from specialized hardware such as FPGAs [?,?]. A
significant limitation of unstructured pruning is that the overall dimensions of
weight matrices remain unchanged, resulting in minimal speedup on conventional
computing hardware despite the reduction in non-zero parameters.

Structured pruning, by contrast, systematically removes entire groups of
parameters, such as neurons, layers, or channels. This approach directly reduces
the model’s dimensions, leading to concrete improvements in both inference
speed and memory utilization across standard hardware platforms. Between these
approaches lies semi-structured pruning, which removes individual parameters
within organized structural groups. Given that structured sparsity patterns are
increasingly supported by GPU manufacturers, these approaches can deliver
substantial improvements in both training and inference performance [?].

Through this systematic progression of techniques, model compression has
evolved from a necessity imposed by hardware constraints to a sophisticated field
focused on optimizing the efficiency-performance trade-off across diverse neural
network architectures and application domains.
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3 Related Work

Pruning has significantly advanced network acceleration, with numerous studies
demonstrating its effectiveness across various architectural paradigms. This
section outlines key pruning methodologies that form the foundation of modern
network compression techniques.

3.1 Magnitude-Based Pruning Approaches

Magnitude-based pruning represents one of the most widely adopted approaches
due to its simplicity and effectiveness. Han et al. introduced Deep Compression [?],
which established simple structured magnitude pruning as a strong baseline by
removing weights based on their L2 norms. Recent comprehensive surveys have
confirmed that this straightforward approach remains competitive with many
newer techniques [?].

Building upon this foundation, Layer-Adaptive Magnitude-based Pruning
(LAMP) [?] offers a notable advancement by dynamically adjusting layerwise
sparsity based on L2 distortion metrics. This approach eliminates the need for
extensive hyperparameter tuning, making pruning more accessible and practical
for widespread implementation.

3.2 Alternative Pruning Criteria

Interestingly, research has revealed that random pruning produces surprisingly
effective results. Studies by Liu et al. [?] and Sui et al. [?] demonstrate that
random weight elimination can offer competitive performance comparable to
more sophisticated techniques, challenging assumptions about the necessity of
complex pruning criteria.

Network Slimming [?] takes a different approach by enforcing channel-level
sparsity through the addition of scaling factors to channel-wise parameters. This
technique effectively identifies and removes entire channels with minimal impact
on network performance.

Filter Pruning via Geometric Median (FPGM) [?] diverges from mainstream
approaches by focusing on redundancy rather than magnitude. Instead of elimi-
nating low-magnitude weights, FPGM identifies and removes filters that are most
redundant within the representational space of each layer, preserving unique
feature extractors.

3.3 Advanced Mathematical Frameworks

EigenDamage [?] introduces a more sophisticated mathematical framework by
leveraging Kronecker-factored eigenbases for structured pruning. This approach
aims for more precise weight removal by analyzing the eigenvalues of the Hessian
matrix, targeting parameters that contribute minimally to the loss landscape.
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3.4 Architecture-Agnostic Methods

DepGraph [?] represents a significant advancement by enabling general structural
pruning across diverse architectures, including Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), Graph Neural Networks (GNNs),
and Transformers. By modeling inter-layer dependencies through a graph-based
approach, DepGraph ensures structural integrity through grouped norm pruning
while providing a flexible framework that can accommodate arbitrary pruning
criteria.

3.5 Transformer-Specific Techniques

As transformer architectures have become increasingly dominant, specialized
pruning methods have emerged. SliceGPT [?] employs Principal Component
Analysis (PCA)-based projections to identify and remove weights associated with
the smallest singular values in transformer models. While highly effective for large
language models, this approach has limitations: it can only prune dimensions
that do not directly interact with nonlinear structures and requires coordinated
pruning across multiple layers to maintain architectural consistency.

These pruning methodologies collectively demonstrate the evolution from
simple heuristic approaches to sophisticated, architecture-specific techniques that
leverage advanced mathematical concepts to optimize neural network efficiency
while preserving performance.

4 Methodology

We first introduce Projective Pruning for fully connected layers and then extend
the concept to arbitrary learning structures. Projective Pruning decouples weights
by identifying neurons with high redundancy based on their projection onto the
subspace formed by other neurons in the same layer. If a neuron’s signal can be
closely represented as a linear combination of others, it is pruned, and its weights
are redistributed across the remaining neurons. The strength of the redistributed
signal varies for each parameter and is proportional to the coefficients of the
linear combination. This approach minimizes the impact on the model’s overall
expressiveness while compensating for the lost information.

4.1 Fully Connected Layers

Consider two adjacent fully connected layers with weights W ∈ Rn,m, bias b ∈ Rn

in the first layer and V ∈ Rk,n, a ∈ Rk in the second layer. The forward pass
through these two layers is given by

hi+1 = σ(Whi + b), (1)
hi+2 = σ(V hi+1 + a), (2)
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where σ is a nonlinear activation function, and hi → hi+1 → hi+2 are hidden
states that transition from Rm to Rn to Rk. Projective Pruning decreases the
shared dimension n by removing redundant neurons (output dimension) in the
first layer and input dimension in the second.

(a) Two adjacent fully connected layers before pruning, with a shared dimension n.

(b) The same layers after pruning r redundant neurons, reducing the shared dimension
to n− r while preserving the input dimension m and output dimension k.

Fig. 1: Illustration of pruning a dense layer.

Pruning a single neuron corresponds to removing a row in W , its associated
element in b, and a column in V . Initially, the overall mapping of these two
layers is σ(V · σ(Whi + b) + a), as illustrated in ??. After pruning r rows, we
get σ(V ′ · σ(W ′hi + b′) + a) with reduced weights W ′ ∈ Rn−r,m, b′ ∈ Rn−r,
V ′ ∈ Rk,n−r as shown in ??. The pruned composite function maintains the same
domain Rm and codomain Rk, so no structural changes are required.

4.2 Projective Pruning

Our goal is to determine the reduced weights W ′, b′,V ′, so that the new composite
transformation approximates the original one (a is unaffected, and thus ignored):

∀hi ∈ D : V ′ · σ(W ′hi + b′)
approx.
≈ V · σ(Whi + b). (3)

The nonlinear function σ prevents us from simply merging the two layers
into one (V W )hi + (V b+ a) and pruning the entire layer losslessly. Minimizing
the difference between the left and the right side of the ?? requires either
some training data or assumptions about its distribution (over which domain
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to minimize). Unlike data-dependent methods, Projective Pruning prioritizes
general expressivity over data fitness, and does not use any data assumptions.

Criterion. Neurons are pruned iteratively one at a time. The most redundant
neuron (row) in W is identified as the one which is closest to its projection onto
the subspace spanned by the other neurons. This heuristic assumes that highly
correlated neurons can be fully replaced by strengthening the signal of similar
neurons.

Although this assumption holds only partially as neurons are not active all
the time or the activation function may not have a linear form (similar to ReLU,
GELU, Swish), pruning under this assumption encourages weights to better
utilize the full parameter range. The reliance on this assumption can be regulated
by the parameters α, β, γ (discussed in ??) which control the amount of the
pruned signal to be redistributed.

4.3 Orthogonal Projection

Fig. 2: Assuming the vector set (wT
i ,w

T
x ,w

T
y ,w

T
z , . . .) in W is linearly indepen-

dent: The figure shows the projection of wT
i onto the subspace spanned by the

other rows. The projection W T
−iq̂ resides within the subspace ⟨wx,wy,wz, . . .⟩

and its distance from wi defines the redundancy score di.

Let wT
i denote the i-th row of W , and let W−i be W without this row. The

projection of wT
i onto the subspace spanned by the rows of W−i is found by

solving:
q̂ = argmin

q
∥W T

−iq −wi∥2, (4)

where q̂ represents the coefficients of the linear combination of the projection.
Equivalently, q is the solution q̂ only if W T

−iq −wi is orthogonal to the span
⟨w1, . . . ,wi−1,wi+1, . . . ,wn⟩. This yields the normal equation W−i(W

T
−iq̂ −
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wi) = 0 with a closed-form solution q̂ =
(
W−iW

T
−i

)−1
W−iwi. The redundancy

is then quantified by the norm of the difference between the original vector and
its projection di = ∥W T

−iq̂ −wi∥2, as illustrated in ??.
We introduce a parameter λ to stabilize the matrix inverse. The full expression

of the criterion for selecting the neuron to prune is therefore given by

argmin
i
∥W T

−i

(
W−iW

T
−i + λI

)−1
W−iwi −wi∥2. (5)

4.4 Redistribution Mechanism

Fig. 3: The redistribution schema in which wi is pruned, with its weights readjust-
ing unpruned parameters using the coefficients q̂ of the orthogonal projection.

After identifying the neuron, we remove its row from W , its bias element
from b, and its associated column from V . This keeps the unpruned signals
properly aligned while maintaining the model’s overall structure. We also reuse
the coefficients of the linear combination to proportionally reinforce the remaining
weights (??):

∀j ̸= i : wj ← wj · (1 + αq̂j), (6)
bj ← bj · (1 + βq̂j), (7)
vj ← vj · (1 + γq̂j), (8)

where wT
j , bj , vj are elements of W , b, V , and α, β, and γ determines the

amount of signal redistributed back.

4.5 Generalization to Other Structures

Projective Pruning can also be applied to 2D convolutional layers by reshaping
the weights into a matrix, where each row represents a flattened filter. The
pruning criterion and the mathematical framework stay the same: redundancy is
measured across filters within the same layer (??).
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Conceptually, this can be viewed as shifting the vector space from Rn to
Rd,h,w, where d is the input channel, and (h,w) is the kernel size. The pruned
dimension corresponds to the shared channel dimension between consecutive
layers. This concept extends naturally to other types of convolutions.

More generally, flattening weights allows this analogy to extend to any deep
learning structure where prunable units form a vector space of the same dimen-
sion. For example, in attention layers, Projective Pruning targets the key-query
matrices. Projections are computed on joint key-query pairs, and pruning is
applied to the shared key-query dimension.

5 Efficient Implementation

A naive implementation of the algorithm is computationally prohibitive. It
requires inverting a large matrix for each neuron at every pruning step. To make
this approach feasible, we introduce three key optimizations: a fast method for
matrix inversion, a lazy update scheme for iterative pruning, and the use of
weight masking.

5.1 Fast Matrix Inversion

To identify which neuron to prune, we evaluate expression (??), which requires
the inverse of a different matrix G−i :− W−iW

T
−i + λI ∈ Rn−1,n−1 for each

of the n candidate rows. However, these inverses do not need to be computed
independently.

Instead, we first compute the inverse of the full matrix G :−WW T + λI. We
then derive each required sub-matrix inverse G−1

−i from the blocks of G−1. Let the
symmetric positive-definite matrices G and G−1 be permuted and partitioned as
follows:

Pi,nGPi,n =

(
G−i Gi

GT
i Gii

)
=:

(
A B

BT C

)
, (9)

Pi,nG
−1Pi,n =

(
g−i gi

gT
i gii

)
=:

(
a b

bT c

)
, (10)

where Pi,n is a permutation matrix. The block G−i is the matrix G with the i-th
row and column removed, and Gi ∈ Rn−1 is the removed column excluding the
i-th element Gii ∈ R. The blocks of G−1 are defined analogously.

From the identity In = (Pi,nGPi,n)(Pi,nG
−1Pi,n), we can establish a relation-

ship between the blocks:(
In−1 0

0 1

)
=

(
Aa+BbT Ab+Bc

BTa+CbT BTb+Cc

)
(11)
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The upper blocks give Aa + BbT = In−1, and Ab + Bc = 0, from which we
derive:

BbT = B(cc−1)bT = (Bc)c−1bT = −Abc−1bT (12)

Aa+BbT = Aa−Abc−1bT = A(a− bc−1bT ) = In−1 (13)

The first equation in (??) is valid because c, a diagonal element of a positive-
definite matrix, is guaranteed to be strictly positive (c ̸= 0). The final equation
in (??) provides a direct formula for the required inverse:

G−1
−i = A−1 = a− 1

c
bbT = g−i −

1

gii
gig

T
i . (14)

This efficient formulation allows us to derive all necessary inverses from the
sub-blocks of the single inverse G−1, and avoid explicit matrix inversions inside
a loop.

5.2 Iterative Pruning with Lazy Updates

After pruning a neuron, the weight matrix W changes, which in turn invalidates
the previously computed matrix G and its inverse. Recomputing G−1 and the
associated G−1

−i matrices at every step remains expensive. The lazy update scheme
avoids this by tracking changes without modifying the underlying weight matrices
until the end.

We track the cumulative multiplicative updates for each neuron using coeffi-
cient vectors, u(t)

ϕ for ϕ ∈ {α, β, γ}, initialized as vectors of ones. At each pruning
step t, the coefficient vector for the unpruned neurons is updated in-place:

u
(t+1)
ϕ ← u

(t)
ϕ ⊙

(
1 + ϕq̂

(t)
i

)
, (15)

where ⊙ is the element-wise product and q̂
(t)
i is the coefficient vector of the linear

combination of the projection of the pruned row wT
i . To maintain its validity for

subsequent steps, we apply a similar update:

∀j not pruned : q̂
(t+1)
j ← q̂

(t)
j ⊙

1

1 + ϕq̂
(t)
i

(16)

The final weight updates are applied only once after all r pruning iterations
are complete:

∀j not pruned : w′
j ← wj ·

(
u(r)
α

)
j
, (17)

b′j ← bj ·
(
u
(r)
β

)
j
, (18)

v′
j ← vj ·

(
u(r)
γ

)
j
. (19)
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5.3 Masking and Views

To support the lazy update scheme, pruned rows are not physically removed from
data structures during the iteration. Instead, a binary mask tracks the status of
each neuron.

Operations with weights and coefficients are performed efficiently on unpruned
elements via masking (eq. ??, ??) and views (eq. ??). By preserving the shape of
the underlying matrices, this method avoids costly memory reallocations while
maintaining the relevant coefficients up-to-date.

6 Experimental Results

We evaluate Projective Pruning on various deep learning architectures and
datasets covering both computer vision (image and point cloud classification)
and language modeling (next-token prediction). All experiments are conducted
in a pruning-after-training scenario, with results reported either with or without
recovery fine-tuning. The former evaluates model trainability after the compres-
sion, while the latter evaluates the pruning method’s ability to retain accuracy
on its own.

Additionally, we analyze the impact of redistribution parameters α, β, γ, and
the regularization term λ on model performance. Overall, the results indicate
that Projective Pruning is a viable alternative to existing structured pruning
algorithms. The code is available at github.com/bnjpm/projective-pruning.

6.1 Vision Tasks

We evaluate Projective Pruning on image classification tasks using the CIFAR-
10/100 and ImageNet datasets [?, ?], and on point cloud classification with
ModelNet40 [?]. Architectures include VGG-19 [?], ResNet56 [?], MobileNetV2 [?],
ViT [?], and PointNet [?]. Projective Pruning is compared against eight baselines:
random pruning, MagnitudeL2, Slimming [?], FPGM [?], EigenDamage [?],
LAMP [?], DepGraph, and DepGraph-SL [?]. Models are pruned globally at 2×
and 3× FLOPs reduction using dependency graph-based grouping [?].

Results in ?? demonstrate that Projective Pruning achieves state-of-the-art
performance on common benchmark computer vision datasets. On CIFAR-10, it
outperforms competitors for ResNet56 at 3× FLOPs reduction (0.9402 vs. 0.9401
for DepGraph-SL) and MobileNetV2 at 3× FLOPs reduction (0.9051 vs. 0.9041
for MagnitudeL2). For CIFAR-100, it attains the highest accuracy on VGG-19
at 3× FLOPs speedup (0.7387 vs. 0.7352 for DepGraph-SL) and ResNet56 at
2× FLOPs reduction (0.7256 vs. 0.7239 for DepGraph-SL). On ModelNet40,
Projective Pruning dominates PointNet at both 2× (0.8966) and 3× (0.8963)
reduction, surpassing all baselines.

Key strengths of Projective Pruning include its superiority on lightweight
architectures (e.g., MobileNetV2) and high pruning ratios (3× speedup). For
example, on MobileNetV2 (CIFAR-100, 3×), it achieves 0.6911 accuracy vs.

https://github.com/bnjpm/projective-pruning
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Table 1: Models are pretrained, globally pruned, and fine-tuned on CIFAR-10/100
and ModelNet40. The results show the top-1 accuracy of pruned models with
2/3× FLOPs reduction.

(a) CIFAR-10

Model VGG-19 ResNet56 MobileNetV2
Accuracy 0.9368 0.9392 0.8938

Method 2× 3× 2× 3× 2× 3×

Random 0.7538 0.6338 0.9295 0.8963 0.8561 0.8884
MagnitudeL2 0.9398 0.9356 0.9346 0.9315 0.8997 0.9041
Slimming 0.9387 0.9367 0.9408 0.9389 0.9064 0.9030
FPGM 0.9388 0.9363 0.9340 0.9241 0.9025 0.9011
EigenDamage 0.9367 0.9361 0.9292 0.9108 0.9005 0.8981
LAMP 0.9389 0.9383 0.9297 0.9133 0.9019 0.9021
DepGraph 0.9402 0.9370 0.9362 0.9313 0.9010 0.9000
DepGraph-SL 0.9392 0.9387 0.9407 0.9401 0.9045 0.8977
Projective (ours) 0.9388 0.9384 0.9403 0.9402 0.9061 0.9051

(b) CIFAR-100

Model VGG-19 ResNet56 MobileNetV2
Accuracy 0.7377 0.7269 0.6699

Method 2× 3× 2× 3× 2× 3×

Random 0.7049 0.6558 0.7099 0.6708 0.7068 0.6042
MagnitudeL2 0.7318 0.7227 0.7143 0.6900 0.6843 0.6823
Slimming 0.7380 0.7350 0.7213 0.7257 0.6892 0.6865
FPGM 0.7357 0.7181 0.7076 0.6919 0.6856 0.6848
EigenDamage 0.7403 0.7284 0.6739 0.6369 0.6792 0.6848
LAMP 0.7414 0.7308 0.6750 0.6378 0.6824 0.6862
DepGraph 0.7326 0.7237 0.7177 0.6925 0.6847 0.6849
DepGraph-SL 0.7366 0.7352 0.7239 0.7253 0.6873 0.6129
Projective (ours) 0.7396 0.7387 0.7256 0.7242 0.6995 0.6911

(c) ModelNet40

Model / Accuracy PointNet / 0.9238

Method 2× 3×

Random 0.8517 0.8840
MagnitudeL2 0.8902 0.8886
Slimming 0.8936 0.8934
FPGM 0.8878 0.8870
EigenDamage 0.8912 0.8851
LAMP 0.8906 0.8849
DepGraph 0.8898 0.8886
DepGraph-SL 0.8938 0.8926
Projective (ours) 0.8966 0.8963
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0.6865 for the Slimming method. Additionally, without fine-tuning, Projective
Pruning retains expressiveness better than heuristic methods, as shown by its
post-pruning accuracy on ViT models (??). This underscores its mathematical
advantage in preserving critical signal pathways during redundancy removal, even
for complex architectures.

Fig. 4: Pretrained (PytorchHub) vision transformers evaluated on ImageNet. The
models are pruned uniformly across all layers. Top-1 accuracy is reported with
no recovery fine-tuning.

6.2 Language Modeling

We evaluate the effectiveness of Projective Pruning on the GPT-2 model using
the Penn Treebank [?] and WikiText-2 [?] datasets with pre-trained weights
(OpenAI) [?]. ?? presents the perplexity scores of the pruned models without fine-
tuning. The results demonstrate that Projective Pruning consistently outperforms
other methods, particularly for small to medium-sized models (124M, 355M, and
774M parameters) at moderate pruning rates (10% and 20%). For instance, on the
Penn Treebank dataset with a 20% pruning ratio, Projective Pruning achieves a
perplexity of 46.66 for the 124M model, significantly lower than Random (70.32),
MagnitudeL2 (459.13), and DepGraph-SL (85.97). Similarly, on WikiText-2,
Projective Pruning maintains strong performance, with perplexities of 39.13
(124M) and 26.26 (355M) at 20% pruning, showing its ability to retain model
expressiveness after significant weight reduction.

However, at higher pruning rates (30%) and for larger models (1.5B parame-
ters), random pruning shows competitive performance, occasionally surpassing
Projective Pruning. This suggests that for highly overparametrized models, Ran-
dom Pruning is seemingly a valid option due to the high level of redundancy in
weights.

The key strength of Projective Pruning lies in its ability to preserve model
performance at moderate pruning levels, especially for smaller architectures, as its
mathematical foundation in redundancy identification and weight redistribution
ensures minimal loss of information. This makes it particularly suitable for
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resource-constrained environments where maintaining accuracy while reducing
model size is critical.

Table 2: Perplexity of the pretrained GPT-2 model after pruning on the Penn
Treebank and WikiText-2 datasets. Projective Pruning on average outperforms
other pruning methods across S/M/L model sizes, while random pruning shows
the best performance retention in the XL model.

Penn Treebank WikiText-2

Ratio Method 124M 355M 774M 1.5B 124M 355M 774M 1.5B

0% None 35.86 27.18 23.14 21.10 29.94 21.71 19.44 17.40

10%

Random 49.75 35.39 24.45 22.05 45.32 25.74 20.88 18.14
MagnitudeL2 248.64 466.72 59.79 37.80 217.69 540.25 50.62 29.84
DepGraph-SL 53.67 28.31 23.52 24.94 57.91 29.86 21.39 18.31
Projective 38.50 29.43 23.92 21.91 31.79 22.75 20.14 17.89

20%

Random 70.32 43.34 28.18 23.57 67.29 42.30 22.48 18.83
MagnitudeL2 459.13 685.59 101.99 56.20 494.08 911.08 93.29 44.18
DepGraph-SL 85.97 41.92 26.19 26.01 81.71 44.19 22.71 18.91
Projective 46.66 35.69 26.10 23.27 39.13 26.26 21.81 18.96

30%

Random 131.55 86.41 31.91 26.49 118.68 81.58 27.43 20.65
MagnitudeL2 687.52 1053.79 152.41 91.55 858.36 1399.66 154.61 70.28
DepGraph-SL 121.88 79.21 29.16 32.72 104.12 51.49 24.19 21.13
Projective 66.31 51.77 31.64 26.66 62.37 37.90 25.78 21.48

6.3 Hyperparameter Analysis

Redistribution parameters. α, β, and γ regulate the redistribution of pruned
signals. To study their impact, we use a simple feedforward network with two
convolutional layers and four dense layers (extended LeNet) on the FashionMNIST
dataset [?]. In ??, pruning is applied equally across dense layers, and performance
is compared against Magnitude-L2 pruning, random pruning, and variations
of Projective Pruning with different weight readjustments. Pruning is assessed
without retraining to measure accuracy retention directly.

Regularization term. λ stabilizes the inverse of W−iW
T
−i. While this matrix is

typically well-conditioned, it can become ill-conditioned when rows are highly
correlated. In widening fully connected layers, W−iW

T
−i is always singular, in

which case the inverse is undefined. Adding a small value to the diagonal introduces
a bias towards 0 for q̂ (flattens redundancy scores), but it ensures that the matrix
is always full rank, and the inverse is well-defined. λ represents a trade-off between
bias and stability (??).
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Fig. 5: (upper left) Comparison of Projective Pruning variants on FashionMNIST.
Accuracy is reported after training and pruning with no retraining. Error bars
show the 95% confidence interval. Other subfigures show impact of hyperparam-
eters on model accuracy with varying α/β (upper right), γ (lower left), and λ
(lower right). Non-varying parameters are set to default values: 0.5 for α, β, γ,
and 10−3 for λ.

7 Conclusion

We introduced Projective Pruning, a structured pruning algorithm for neural
compression that minimizes weight co-adaptation by removing linearly redundant
parameters. Additionally, we designed a redistribution scheme that preserves
model performance by reallocating the pruned weights’ signal. Our method was
evaluated against state-of-the-art pruning techniques across diverse domains,
including standard vision and language modeling benchmarks. The results show
that Projective Pruning retains model expressiveness effectively, the method
performs consistently across different model sizes and pruning ratios, with par-
ticularly strong performance in scenarios involving relatively small parameter
counts and aggressive pruning conditions.
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