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Abstract. Vision Transformers (ViTs) and Convolutional Neural Net-
works (CNNs) trained for supervised tasks are the leading networks used
in practical computer vision. Despite using different techniques, they
both perfect their object recognition skills. In this race, it is overall ac-
curacy that matters at most. But is it enough? Should not we care about
the correct perception of inter-class similarities? We believe we should,
as similarity is a fundamental aspect of categorization and the struc-
ture of the world is highly correlated. Models should reasonably assess
similarities for more nuanced perception, and we should examine it for
more transparency and trust. That is why, we analyzed what state-of-
the-art object recognition networks perceive as similar. We proposed a
framework to visually and numerically examine and compare the per-
ception of different trained models. We used it to answer a series of
similarity-related questions based on experiments on a large population
of 42 models.

Keywords: Explainability · Computer Vision · Deep Learning · Super-
vised Learning · Semantic Similarity

1 Introduction

Is a Poodle similar to a Husky? Are sharks and scuba divers related? Answering
such questions is a standard human ability. In cognitive psychology, different con-
cepts are named semantic units [7]. Relations between them are called semantic
relations with a narrower group - semantic similarities. Goldstone and Son stated
“assessments of similarity are fundamental to cognition because similarities in
the world are revealing. The world is an orderly enough place that similar objects
and events tend to behave (or look - our postscript) similarly” [11], while Rosch
et al. noted that real-world objects exhibit highly correlational structure [31].
Also, maximum information with least cognitive effort is obtained when cate-
gories map the world structure as closely as possible allowing to optimally use
the finite resources [31]. Therefore, natural correlations should be reflected by ro-
bust and accurate categorization systems [31], such as deep vision networks. For
a more human-like and robust categorization, computer vision algorithms should
not only differentiate objects, but also reasonably structure them, especially that
visual and semantic similarities are often related [11].
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Correct similarity assessment is also important for improving explainability
and trust in Artificial Intelligence, as well as ongoing discussions and efforts
of standardization organizations (e.g. European Telecommunications Standards
Institute). Showing people that deep models perceive similarity reasonably and
not that far from how they do it (expressed via human-created semantic rela-
tions), would be somehow comforting. Moreover, humans and computer vision
algorithms tend to make mistakes mostly among categories they perceive simi-
lar [1,5], so models with more reasonable perception could also return more rea-
sonable errors, which would be easier for us to understand and even accept [5].
To do this, computer vision researchers try to force networks to reflect human
similarity judgments [27]. However, the current rush for new learning approaches
practically ignores examination of how modern models trained in a supervised
manner (without enforcement of similarity judgments) perceive the world struc-
ture, while these are dominant models in real-life vision systems. Some limited
works considered this aspect for early Convolutional Neural Networks (CNNs)
with Vision Transformers (ViTs) being underexplored. Therefore, only now, with
heterogeneous CNN, ViT and hybrid models, we are finally able to build repre-
sentative populations of networks and perform a proper examination.

Motivated by this literature deficiency and possibility, we propose the frame-
work with a core metric - Semantic Similarity Alignment Degree (SSAD). We
aim to enable systematic analysis of network similarity perception and compar-
isons between different networks (also with another metric: Network Similarity
Alignment Degree, NSAD). The key feature of our methods is that they do
not require any images, and thus offer efficiency. We performed extensive em-
pirical analysis and delivered thorough findings for the most common vision
benchmark - ImageNet and object recognition. We examined how 42 state-of-
the-art networks perceive inter-class similarities and answered the questions: (1)
Is similarity perceived by ImageNet-trained CNNs and ViTs related to semantic
similarity? (Sec. 4.1); (2) Is there a relationship between the networks’ ability
to align their similarity perception to semantic similarity with their size and Im-
ageNet accuracy? (Sec. 4.2); (3) Do networks perceive other semantic relations
besides similarity? Which ones? (Sec. 4.3); (4) Do different networks share sim-
ilarity perception? (Sec. 4.4). We provide our implementation to enable future
research at https://github.com/kafilus/DeepNetworksSimilarity.

2 Related work

As humans possess remarkable ability to categorize objects and assess their sim-
ilarity, it also became important in computer vision [9, 10, 27, 28]. Researchers
focused on the relation between visual and semantic similarities [7] and other
types of similarity [30]. They also noticed that CNN error patterns show some
kind of hierarchy [1, 5, 17, 26]. Although stimuli-based analysis [19] with tem-
plates/confusion matrices can reveal some approximate inter-class relations, it
is computationally-intensive and its studies can very likely lead to blind alleys [2].
The alternative is to use class templates [8, 26]. Similarity in the deep learning
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domain nowadays is used usually to create new learning approaches [3]. In the
advanced schemes, human similarity judgments are used as a reference to align
the neural representations [27]. While this is an important path, it would also be
important to finally and thoroughly examine how modern networks trained on
traditional class label prediction without any similarity perception enforcement
perceive similarity (the purpose of our study), because works such as [27] rely on
incomplete and potentially partially outdated studies on how networks perceive
similarity (e.g. [1]), as they were conducted for early CNNs (homogeneous, with
much lower accuracy than the current models) and ViTs remain underexplored.
Moreover, attention should be put on other semantic relations than semantic
similarity to better understand how networks perceive similarity. Standard lexi-
cal terms should be used to systematize the relations, because they can provide
a consistent and shared vocabulary for describing similarity sources. To the best
of our knowledge, no work numerically compares the similarity perception of
networks with semantic similarity for such a large set of models. Because real-
world objects exhibit high correlational structure, and thus semantic and visual
similarities often coexist [31], it is a large literature deficiency, and a thorough
analysis is vital with recent works highlighting this necessity [16,27].

3 Methods

In this section, we introduce our framework by formulating all the necessary
data structures and metrics.

Semantic similarity and relations (our reference). Semantic similarity
is a relation between items with a similar meaning [18], and is one of semantic
relations [18]. While semantic similarity is limited to synonymy, hyponymy, and
hypernymy (is-a relation, e.g. a dog is a hypernym of a Poodle, a Poodle is a
hyponym of a dog), semantically related concepts can be semantically dissimilar
concepts connected by any type of relation, such as meronymy (A is part of
B), function (A is used to perform B), spatial relations, e.g. proximity (A is
near B) or containment (A is within B) etc. To measure semantic similarity via
WordNet [25] one can use methods such as path length (path) [29] or Leacock and
Chodorow [20]. They are based on path lengths between concepts or information
content of their least common subsumer [29]. As path similarity outperforms the
majority of other measures by a large margin in terms of correlation with human
judgment of semantic relatedness [18], we use it in our study. The advantages of
using this and other WordNet-based measures as a similarity perception reference
is its clear formulation, consistent similarity scores due to derivation from a fixed
and comprehensive lexical database. Also, compared to human judgments it does
not require large-scale polls, already covers more than 150k concepts and was
created via objective and systematic approach to defining word relationships. By
computing the pair-wise similarities between all WordNet nodes in ImageNet-
1k (classes), we obtain the WordNet Class Similarity Matrix (WNCSM).
This matrix is used in our analysis as a semantic similarity perception reference.
See its visualization in Fig. 1.
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Fig. 1. WNCSM for ImageNet.

Network Class Simi-
larity Matrix is computed
based on the similarity of
weights in the final classifier
of a deep learning model [8,
10, 26, 28]. It is an image-
free alternative to using con-
fusion matrices/extracted fea-
tures to approximate similar-
ity. Each neuron c of the clas-
sification layer corresponds to one of the considered classes. Weights connecting
this neuron to the neurons in the penultimate layer can be treated as a class
template (vector representation) of class c [26, 28] (we attach a graphical repre-
sentation of this method in our repository). We denote them as wc with elements
wci corresponding to the weight connecting the neuron representing the c-th class
to the i-th neuron in the previous layer. The dimensionality of wc matches the
number of neurons in the penultimate layer and encapsulates the learned repre-
sentation of class c in the feature space defined by this layer. To compute the
similarity between templates of two classes (k and l), cosine similarity (CS) is
used: CS(k, l) = wT

k wl

||wk||||wl|| [26,28]. Computing the similarities between all classes,
results in the Network Class Similarity Matrix (NCSM) for each examined
network (each element in the k-th row and l-th column in this matrix takes value
CS(k, l)). It can be used for visual (structural) comparison with WordNet Class
Similarity Matrix (WNCSM). It can also be utilized for numerical comparison
with WNCSM (which results in Semantic Similarity Alignment Degree -
SSAD - described in the next section). After sorting each row, it can be used
to manually inspect which pairs of classes the examined network perceives as
the most similar (see Tab. 2 with 5 most similar classes for example classes and
networks). While perfectly, a few human subjects would manually evaluate the
closest neighborhood of each class in the sorted Network Class Similarity Matrix
to examine the similarities, such an approach is not practical as it requires the
analysis of N2 −N class pairs for the dataset with N classes. As an alternative,
we propose to analyze a structure we named Closest Neighbor Pair Ranking
(CNPR). It is generated by sorting the pairs of the closest neighbors (1st two
elements of sorted CSMs) via their similarities values (from the most similar
to the least similar pairs): CNPR = sort(k, l) (maxl ̸=k CS(k, l)). Now, we can
manually analyze all or top K class pairs, which is the head of the CNPR (we
use K = 50 in our manual experiments, which in the case of ImageNet reduces
the number of pairs more than 99.9%).

Semantic & Network Similarity Alignment. Semantic Similarity Align-
ment Degree (SSAD) is a measure that computes to what degree the network
perception of similarity and semantic similarity are related. To do this, the cor-
relation or similarity is computed between NCSM and WNCSM. For Cosine sim-
ilarity it becomes SSADCosine = CS(NCSM,WNCSM), for Spearman Corre-
lation - SSADSpearman = ρ(NCSM,WNCSM), and Kendall - SSADKendall =
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τ(NCSM,WNCSM). These measures can be used to examine networks sep-
arately or to compare them (higher values imply that the network similarity
perception lies closer to the semantic similarity - these perceptions are better
aligned). Values of SSAD can be used to examine the populations of networks,
e.g. how the degree of alignment is related to the accuracy on ImageNet or net-
work size (measured as Pearson/Spearman/Kendall correlation between accu-
racy/size and SSADCosine, SSADSpearman and SSADKendall). Also, a similar
measure, but taking as arguments 2 Network Class Similarity Matrices can be de-
fined and named Network Similarity Alignment Degree (NSAD) to enable
comparisons between networks. For Cosine similarity it becomes NSADCosine =
CS(NCSM1, NCSM2), NSADSpearman = ρ(NCSM1, NCSM2) for Spearman,
and NSADKendall = τ(NCSM1, NCSM2) for Kendall Correlation. NCSM1

and NCSM2 denote NCSMs of network 1 and 2 used for comparison.

(a) VGG16 (b) ResNet101 (c) MobileNetV2 (d) Convnext-T

(e) CVT-21 (f) LeViT-192 (g) MobileViT-S (h) Swin-B

Fig. 2. Example Network Class Similarity Matrices (NCSMs). All networks perceive
similarity in a similar manner, which is exhibited by NCSMs’ close structure.

4 Experiments

In our experiments, we examine ImageNet-1k [32] models for object recognition
due to it being the most important vision benchmark and due to the suitabil-
ity of ImageNet [6] to study semantic relations, as it was created based on the
semantic hierarchy of WordNet [25]. ImageNet-1K, offers a uniform categoriza-
tion (leaf-level categories only) ideal for studying how vision networks represent
complex information hierarchies. When it comes to the ImageNet-trained mod-
els, the last decade brought colossal changes, and we are finally able to create
network populations that are diverse enough to properly examine them from the
perspective of similarity perception. We build the network population (42 net-
works) with CNNs (24) and ViTs (18) - see all networks in Tab. 1. We perform
the experiments listed below on PC with AMD Ryzen 7 5800X3D to awnser the
questions stated in the introduction (no GPU needed) and 64GB RAM:
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1. We generate the NCSMs for all 42 networks and visually compare them with
the WNCSM.

2. We compare numerically NCSMs with the WNCSM via SSAD and manually
on the basis of their structure.

3. We measure the correlation (Pearson, Spearman, Kendall) between SSAD
and network size and ImageNet accuracy (for the whole population and for
CNNs and ViTs separately).

4. We manually search in the CNPRs for other semantic relations that cause the
perceived similarity (homophony, hypernymy, hyponymy, synonymy, sister
terms, meronymy, holonymy, containment, physical proximity).

5. We examine to which extent networks share similarity perception via NSAD
and histograms of correlations between all NCSMs.

4.1 Is similarity perceived by networks related to semantic
similarity?

Table 1. SSADCosine/Spearman/Kendall values sorted by SSADCosine. It can be ob-
served that smaller models generally achieve lower SSAD values than larger ones.
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1 MobileViT-small [24] 0.818 0.079 0.055
2 MobileViT-xx-small [24] 0.819 0.097 0.067
3 MobileNetV2 [33] 0.822 0.108 0.075
4 EfficientNetV2-B1 [37] 0.833 0.19 0.132
5 CvT-21 [40] 0.834 0.182 0.127
6 EfficientNetV2-B0 [37] 0.834 0.19 0.132
7 LeViT-256 [12] 0.835 0.15 0.104
8 CvT-13 [40] 0.835 0.144 0.1
9 DeiT-tiny-patch16-224 [39] 0.835 0.172 0.12
10 LeViT-384 [12] 0.836 0.168 0.117
11 ResNet152V2 [14] 0.836 0.192 0.134
12 InceptionV3 [36] 0.836 0.19 0.132
13 LeViT-128 [12] 0.836 0.177 0.123
14 InceptionResNetV2 [35] 0.836 0.181 0.126
15 ResNet101v2 [14] 0.837 0.195 0.136
16 LeViT-128S [12] 0.837 0.171 0.119
17 ResNet50v2 [14] 0.837 0.197 0.137
18 EfficientNetV2-B2 [37] 0.837 0.213 0.148
19 LeViT-192 [12] 0.839 0.198 0.137
20 EfficientNetV2-B3 [37] 0.839 0.235 0.164
21 DeiT-S-patch16-224 [39] 0.841 0.202 0.141
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22 ConvNeXt-S [23] 0.841 0.232 0.162
23 DeiT-B-patch16-224 [39] 0.842 0.184 0.127
24 ResNet152 [13] 0.843 0.255 0.178
25 Xception [4] 0.843 0.228 0.159
26 ConvNeXt-B [23] 0.844 0.275 0.192
27 ResNet101 [13] 0.844 0.266 0.186
28 ResNet50 [13] 0.844 0.265 0.185
29 DenseNet201 [15] 0.845 0.265 0.186
30 DenseNet169 [15] 0.845 0.264 0.185
31 DenseNet121 [15] 0.846 0.267 0.187
32 Swinv2-B-p4-w16-256 [21] 0.846 0.243 0.169
33 NASNetMobile [41] 0.846 0.256 0.179
34 NASNetLarge [41] 0.846 0.258 0.181
35 Swinv2-S-p4-w16-256 [21] 0.848 0.27 0.189
36 Swin-S-p4-w7-224 [22] 0.849 0.284 0.199
37 Swin-T-p4-w7-224 [22] 0.850 0.298 0.209
38 ConvNeXt-T [23] 0.850 0.322 0.225
39 Swinv2-T-p4-w16-256 [21] 0.852 0.302 0.212
40 Swin-B-p4-w7-224 [22] 0.857 0.295 0.208
41 VGG16 [34] 0.857 0.371 0.262
42 VGG19 [34] 0.857 0.375 0.265

Although the source of inspiration of ImageNet - WordNet - is naturally hier-
archical (see Figure 1 for the WNCSM), no information regarding the semantic
similarity of classes was used during the training of the examined networks. De-
spite that, all 42 networks (both the CNNs and transformers) used in the analysis
were able to relate classes with each other. In Figure 2, we provide example NC-
SMs for 8 networks: 4 CNNs and 4 ViTs. The clearly visible block diagonal
structure of all NCSMs exhibits high resemblance to the WNCSM (the Class
Similarity Matrix created with semantic similarity). This structure is weaker for
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the mobile models, though still visible. Models from the ConvNeXt and Swin
transformer (hierarchical transformer) families build less-noisy class similarity
landscape (high contrast of NCSMs). It indicates the potential superiority of
these models to other ones, which exhibit a lot of outside group noise in their
NCSMs.

A similar structure of the WNCSM and all NCSMs undoubtedly shows that
the similarity perceived by all networks (CNNs and ViTs) is related to the se-
mantic similarity. Let us now quantify this phenomenon by computing 3 variants
of Semantic Similarity Alignment Degree (SSAD). The numerical results sorted
by the increasing SSADCosine value have been presented in Table 1. We also
included a larger table with the number of parameters, the most similar pairs
and the ImageNet testing accuracy in Appendix B, Table B.1. Although the
value ranges differ significantly for different SSAD variants, the overall ordering
of networks is very similar. All measures show a positive correlation between
network size and semantic similarity. The lowest SSAD values have been ob-
tained for small, mobile models (Mobile-ViTs, MobileNetV2), and the highest
ones for the largest (and the oldest) models with quite modest accuracy - VGGs
(it may be due to their different classifier structure, consisting of a Flattening
and a few Dense layers). On the other hand, although the MobileViT-S’ accuracy
is quite high, network’s semantic relation is not as developed as the one of other
networks.

(a) All networks (b) Transformers (c) CNNs

Fig. 3. Spearman correlation between size and accuracy for three variants of SSAD.
ViTs exhibit positive correlations between all versions of SSAD and both the accuracy
and size.

The qualitative results in Tab. 2 visualize it. The table presents top 5 similar
classes to example 4 classes from the animal, objects and a geological forma-
tion semantic groups according to example networks and WordNet. Even in the
close similarity neighborhood of example classes for MobileViT-S, we obtain un-
related classes, such as ski - chain saw, sleeping bag - pencil box. Hierarchical
transformers obtained high SSAD results. They are followed by ConvNeXts,
ResNets, NASNets and DenseNets. Other networks - pure Transformer (DeiT)
and transformer-convnet hybrids (CvT, LeViT) were placed below the afore-
mentioned networks along with EfficientNets and ResNetsV2. It is visible that a
family membership strongly impacts SSAD (e.g. see how DenseNets take places
after each other in the table, and members of other families lie close to each
other). Moreover, other examples in Table 2 show that the closest neighborhood
of classes that are natural creations (tiger shark and Alps) largely coincides with
the results returned by WordNet. WordNet similarity returns only loosely con-
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nected categories for artificial objects such as ski - lighter, while networks return
rather closely related categories (not particularly semantically similar).
Table 2. 5 most similar classes to 4 examples according to WordNet and 5 networks.

Class Similarity 1st neighbor 2nd neighbor 3rd neighbor 4th neighbor 5th neighbor

tiger WordNet hammerhead white shark electric ray stingray barracouta

shark ConvnextTiny white shark hammerhead dugong scuba diver stingray
Swin base white shark hammerhead scuba diver stingray dugong
VGG16 white shark hammerhead dugong stingray sturgeon
MobileViT-S hammerhead white shark dugong stingray scuba diver
ResNet101 white shark hammerhead scuba diver sturgeon stingray

ski WordNet lighter pick remote control oil filter pier

convnext tiny snowmobile dogsled alp ski mask puck
swin base snowmobile dogsled alp bobsled snowplow
vgg16 snowmobile dogsled bobsled alp paddle
MobileViT-S snowmobile snowplow alp ski mask chain saw
ResNet101 snowmobile alp ski mask bobsled snowplow

sleeping Wordnet mailbag backpack purse plastic bag pot

bag Convnext tiny mountain tent quilt pajama punching bag stretcher
Swin base mountain tent quilt stretcher bath towel studio couch
vgg16 quilt mountain tent studio couch stretcher sweatshirt
MobileViT-S mountain tent stretcher studio couch quilt pencil box
ResNet101 mountain tent stretcher studio couch bath towel punching bag

alp WordNet volcano promontory cliff seashore coral reef

convnext tiny valley promontory volcano cliff ski
swin base valley promontory cliff volcano mountain bike
vgg16 valley cliff volcano promontory mountain tent
MobileViT-S valley ibex cliff mountain bike ski
ResNet101 valley ski mountain bike promontory volcano

4.2 How do network size and accuracy relate with Semantic
Similarity Alignment Degree?

The relationship between the size of the model and its semantic alignment, which
we noticed visually in Tab. 1, prompted us to investigate it numerically, as well
as the relationship between SSAD and model accuracy. Fig. 3 presents the Spear-
man correlation for SSAD and size/ImageNet accuracy. Moderate positive corre-
lations between size and SSAD suggest that larger networks’ perceive similarity
closer to the semantic similarity, which supports our qualitative finding. Al-
though it occurs for the whole population, the correlation is significantly higher
for ViTs than CNNs. These results are supported by scatter plots of SSAD(size)
for CNNs and ViTs presented in Fig. 4. The scatter plots reveal a clear, posi-
tive (non-linear) relationship for ViTs, and existent, but less evident for CNNs.
For the SSAD-accuracy correlation, Spearman correlation results imply a low
positive correlation for all networks. By analizing the networks separately, we
can see that ViTs exhibit a moderate positive correlation, while CNNs - a small
negative correlation.

To analyze these correlations in more detail, we provide the scatter plots of
SSAD(accuracy) in Fig. 4. It is visible that while for ViTs the positive relation-
ship between these two can be observed, for CNNs no obvious relation exists.
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(a) CNN: SSAD(size). (b) ViT: SSAD(size)

(c) CNN: SSAD(accuracy). (d) ViT: SSAD(accuracy).

Fig. 4. SSAD and accuracy/size Scatter plots. A visible relation between ViTs’ SSAD
and both: accuracy and size can be noticed.

Moreover, by analyzing the positions of the networks in the scatter plot for ViTs,
we observe that networks are not always ordered by size. This indicates that the
positive relationship between accuracy and SSAD is not confounded by network
size. The results indicate that not only ViTs’ accuracy scales with size but also
their capacity to align better with semantic similarity. Consequently, their de-
gree of Semantic Similarity Alignment correlates with accuracy. Also, the highest
SSAD-accuracy correlation results for SSADCosine imply its best suitability for
performance analysis. In contrast, due to the fact that CNNs’ accuracy is not
correlated with SSAD, it suggests that it can be used as an additional criterion
for the model selection. For models with the same accuracy, the model with
higher SSAD can be selected, because its perceived similarities can be better
explained with semantic similarities and lexical ontologies.

4.3 What other semantic relations are perceived?

In Fig. 5 we include examples of the most similar categories to example categories
from Tab. 2. We can notice some co-occurring (presumably often) objects in the
same image, which is the most probable cause of some similarities in this table.
They are not connected to semantic similarity, but other semantic relations. In
the next fragments, let us provide some concrete examples from the TOP 50
pairs of CNPRs obtained for the tested networks. For each example, we name a
semantic relation that presumably resulted in the emergent similarity, having a
direct impact on visual features of the image.

Homophones/partial homophones Our analysis of the CNPR allowed us
to indicate some pairs in ImageNet that due to the same name (such words are
called homophones) or almost the same name either (1) include in their training
folders some incorrectly labeled images or (2) the folders’ content overlap. The
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(a) (b) (c) (d) (e) (f)

Fig. 5. Co-occurence of concepts makes them similar/related for networks: (a) sharks
are photographed with divers; (b) ibex lives in Alps; (c, d) bikes/skis are used in
mountains; (e) a skier with skis and a mask; (f) a sleeping bag with a tent. All images
are from the Imagenet-1k dataset.

example of (1) includes MobileViT-S placing tiger - tiger cat at the 47th
place in the ranking. Although tigers and tiger cats do exhibit some similarities,
this very high similarity value is most probably caused by the confusion of two
WordNet nodes – tiger cat (WN 3.0: 02123159-n) and Felis tigrina, tiger cat
(WN 3.0: 02126465-n) – the first node is a hyponym of a domestic cat and the
other one – of a wildcat. As a result of category names being homophones, some
labeling issues occurred while creating the training set of ImageNet: the folder
representing a domestic cat includes many tigers. The example of (2) can be
Swin-Base placing sunglasses - sunglass at the 19th place in the ranking.
While the term ‘sunglasses’ (WN 3.0: 04356056-n) is obvious, sunglass (WN 3.0:
04355933-n) is defined in WordNet as “lens that focuses the rays of the sun; used
to start a fire” and it should definitely be separated from sunglasses, while the
content of sunglass training folder has been created with sunglasses and is only
a misleading duplicate of the sunglasses category.

(a) Cosine Similarity (b) Kendall Corr. (c) Spearman Corr.

Fig. 6. Similarity/correlation (corr.) matrices computed for all NCSMs (NSADCosine,
NSADKendall, NSADSpearman). Fig. 7 shows that visible clusters of networks repre-
sent the models from the same family – truly similar models via architecture.

Hypernyms/hyponyms Although ImageNet classes are WordNet leaves,
some hypernymity relations can still be found. Our analysis of the CNPRs al-
lowed us to indicate some examples: mushroom - agaric placed at the 43th
(DenseNet121) and tub - bathtub placed at the 7th (CVT-13) place in CNPR.
In the case of mushroom - agaric, the definition of mushroom (WN 3.0: 07734744-
n) has been extended from “fleshy body of any of numerous edible fungi” to “ed-
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ible or poisonous fungi” (the training folder contains also poisonous mushrooms,
such as flybanes). After extending the definition, agaric (WN 3.0: 12998815-n)
becomes mushroom’s hyponym. A similar example is tub - bathtub (in Ima-
geNet, tub is just a category with bathtub and additional other tubs, such as
hot tub etc.). Yet another example is assault rifle - rifle placed at the 35th
place in the EfficientNetV2-B0’s CNPR.

Fig. 7. NSADCosine from Fig. 6 shows
that networks cluster in families (similar
networks), showing the its usefulness for
image-free network comparisons.

Synonyms CNPRs allowed us to
indicate synonyms within ImageNet
classes that can be considered dupli-
cates/redundant. Two examples are:
missile - projectile and laptop
- notebook placed at the 1st (by
the majority of networks) and the
27th (DeiT-Tiny) places. While these
terms differ slightly in WordNet, they
are treated as synonyms in ImageNet:
missile (WN 3.0: 03773504)/projec-
tile (WN 3.0: 04008634-n) represent
rocket explosives, while the second
pair – portable computers. Some im-
ages are duplicated within the folders.

Siblings/sister terms This is
the broadest relation group including
categories that share (1) visual/functional similarities, (2) inter-species relation
(e.g. ancestor-descendant, a common ancestor), (3) within-species gender rela-
tion. We provide a few examples: (1) cassette player - tape player placed
11th by Xception and barbell - dumbbell placed 43th by ResNet101V2 in the
CNPR; (2) Indian elephant - tusker (19th place, VGG16), brown bear -
American black bear (43th place, ResNet50), tiger beetle - ground beetle
(41th place, ResNet50); (3) hen - cock (ranked 47th in NASNet-L’s CNPR).

Meronyms/holonyms Another relation that can be found via interpreting
the results in the Closest Neighbor Pair Ranking is meronymy or holonymy. It
occurs, when one concept is a physical part of another concept. A few examples
that our analysis helped us to recognize are: screen - monitor placed at the
11th place by InceptionV3, typewriter keyboard - space bar placed at the
33rd place by EfficientNetV2-B1 and breastplate - cuirass (breastplate, WN
3.0: 03146219-n, is the front part of a cuirass, WN 3.0: 02895154-n) placed at
the 29th place by MobileViT-S.

Containment High similarity perception can occur when the containment
semantic relation exists (it can be perceived as specific type of co-occurrence).
It means that one concept is contained by another one (e.g. room/landscape).
An example from the ResNet50’s CNPR (rank 21) can be a pair barber chair
- barber shop. The other examples are ibex - Alps, skis/mountain bike -
Alps from top5 neighbors of example classes (Tab. 2, Fig. 5).
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Fig. 8. Distribution of network similarities computed for the whole class space and a
single domain – animals (NSAD: Network Similarity Alignment Degree with variants
Cosine Similarity, Kendall and Spearman). Models are more similar in a single domain.

Physical proximity Another reason why a network perceives concepts as
similar is their frequent co-occurence (physical proximity) in the training images.
The example of such a relation can be academic gown - mortarboard from
the 41st place (Xception) in the Closest Neighbor Pair Ranking. The other ones
can be Tiger Shark - scuba diver, skis - ski mask and sleeping bag -
mountain tent from top5 neighbors of example classes (Tab. 2, Fig. 5).

4.4 Do networks share similarity perception?

In Fig. 6, we present the matrices obtained for the comparison of NCSM of all ex-
amined networks with different NSAD variants (NSADCosine, NSADKendall,
NSADSpearman). Each value in these matrices reflects the similarity in how a
specific pair of networks perceives relationships among classes. Network similar-
ity perception is the most similar within network families (see a block diago-
nal structure of the matrices). It shows the impact of architectural choices on
learning class similarities. We obtained the highest differences for mobile mod-
els (MobileViTs, MobileNetV2) compared to all the other models. It manifests
itself as stripes belonging to index 0 and a distinctive cross in Fig. 6. We show
in Fig. 7 that NSAD values cluster the models from the same family
together (thus architecturally similar models), showcasing the useful-
ness of our methods for image-free model comparison.

We also present the histograms of the pair-wise similarity/correlation values
(NSAD) between networks in Fig. 8 (red histogram). The distributions are
roughly Gaussian with relatively high mean. Inspired by the clear box structure
of CSMs for the animal group (visible in individual Class Similarity Matrices),
we decided to compute the correlations/similarities between network CSMs and
generate histograms for only these classes (we drop others, therefore we use a
smaller set of class representations) and see how it impacts the distributions (Fig.
8 – green histograms). These distributions have higher central values compared
to those computed based on the whole class set, indicating more homogeneous
similarity perceptions among networks within the animal domain. This result
suggests that model similarity is greater within single-domain class
groups than across broader, multi-domain categories.
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5 Discussion

Fig. 9. CSM for COCO 2017 and DETR-
ResNet50.

Our analysis and the proposed tool set
helped us to answer the questions de-
fined in the Introduction. (1) Is sim-
ilarity perceived by ImageNet-
trained CNNs and ViTs related
to semantic similarity? All the ex-
amined networks developed similarity
perception related to semantic simi-
larity. It is supported by their CSMs
similar to those created with seman-
tic similarity via WordNet and the
numerical analysis with SSAD. Al-
though perceived and semantic simi-
larities are related, they are not equiv-
alents, which suggests that network
perception encompasses other seman-
tic relations than similarity.; (2) Is there a relationship between the net-
works’ ability to align their similarity perception to semantic simi-
larity with their size and ImageNet accuracy? Network size and seman-
tic alignment are positively correlated (stronger correlation for ViTs than for
CNNs). ViTs exhibit a positive correlation between their SSAD and accuracy,
while CNNs do not. This suggests that SSAD can be used as an additional crite-
rion for model selection. At similar accuracy, a model with higher SSAD can be
chosen, as its perceived similarities can be more easily explained with semantics,
having a positive impact on explainability. In our future work, we will dig deeper
into the differences in similarity perception of CNNs and ViTs. We will examine
why attention-based models better align with semantics, explore links between
representation geometry and self-attention, and test whether model size causally
influences the alignment. We will also focus on evaluating the robustness of SSAD
to determine the significance of its variations, as the score differences are often
small.; (3) Do networks perceive other semantic relations besides simi-
larity? Deep networks perceive not only the semantic similarity, but also other
semantic relations, such as meronymy, containment or physical proximity. While
the analysis of CNPRs is a manual effort it can improve our understanding of
the causes of some developed similarities.; (4) Do different networks share
similarity perception? Yes, the networks largely share similarity perception.
It is proven by highly similar structure of their Class Similarity Matrices, high
alignment of all Network CSMs with WordNet CSMs (the same reference used
for all networks) and high similarities between the CSMs of different networks.
The practical implication is that because this perception is not identical and
because it is shared mostly within model families (therefore implicitly similar
models), the network alignment can be used to compare the representational
similarity of models at a category level.
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Limitations: As we focused on ImageNet, it could introduce biases in class
representation affecting the validity of our conclusions. While it provided a strong
foundation for investigating visual representations, we also include a CSM ob-
tained for COCO 2017 object detection in Fig. 9 to improve generalizability.
We provide more CSMs for different tasks (COCO detection, segmentation), as
well as for a Self-Supervised Learning (SSL) model in Appendix A. The box-
diagonal structures present across all matrices (sorted via WordNet nodes) un-
derscore that networks across various tasks and datasets align their perception
with semantics, reflecting the inherent correlations of the visual world. Iden-
tifying non-similarity relations requires manual inspection, limiting scalability.
We will explore how to automate it in our future work, however manual analysis
still best captures their context-dependent nature. While our approach, based on
the final-layer weights, offers simplicity and efficiency, other approaches to obtain
representations could be used to form a more comprehensive similarity view, e.g.
confusion matrices, intermediate-layer features, weights, and bias contributions
could be used. A limitation can be the reliance on WordNet similarity, as its
linguistically driven structure may not align with visual similarity. Also, visual
similarity may sometimes be more relevant for certain tasks. However, Word-
Net’s well-defined organization is beneficial for modeling and often aligns with
visual similarities, e.g. when stemming from shared functionalities or evolution.

6 Conlusions

The framework introduced in the paper can help to better understand deep
models (e.g. what they perceive similar, whether their perception aligns with
semantics or with the one of other networks) and their training datasets (e.g.
labeling issues, overlapping, duplicated classes). Our methods do not require
any images for testing, while our insights and results can serve as a reference for
future comparisons and benchmarking due to analyzing a large set of networks.
As a large part of the visual and semantic similarities naturally intersect, vision
networks should be able to discover such links, and they do. The degree of this
alignment can be measured by the proposed metrics, and thus can be used as an
additional model selection criterion. We showed that our metrics enable image-
free comparison of different networks, as they cluster models from the same
family (architecturally similar) together, which is important for the growing
area of model representational similarity comparisons [19].

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Bilal, A., Jourabloo, A., Ye, M., Liu, X., Ren, L.: Do convolutional neural networks
learn class hierarchy? IEEE Transactions on Visualization and Computer Graphics
24(1), 152–162 (2017)



How CNNs and ViTs perceive similarities between categories 15

2. Bowers, J.S., Malhotra, G., Dujmović, M., Montero, M.L., Tsvetkov, C., Biscione,
V., Puebla, G., Adolfi, F., Hummel, J.E., Heaton, R.F., et al.: Deep problems with
neural network models of human vision. Behavioral and Brain Sciences 46 (2023)

3. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: International
Conference on Computer Vision. pp. 9650–9660 (2021)

4. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Conference on Computer Vision and Pattern Recognition. pp. 1251–1258 (2017)

5. Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000
image categories tell us? In: European Conference on Computer Vision (2010)

6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: Conference on Computer Vision and Pattern
Recognition (2009)

7. Deselaers, T., Ferrari, V.: Visual and semantic similarity in imagenet. In: Confer-
ence on Computer Vision and Pattern Recognition. pp. 1777–1784 (2011)

8. Filus, K., Domanska, J.: Netsat: Network saturation adversarial attack. In: IEEE
International Conference on Big Data. pp. 5038–5047 (2023)

9. Filus, K., Domańska, J.: Extracting coarse-grained classifiers from large convo-
lutional neural networks. Engineering Applications of Artificial Intelligence 138,
109377 (2024)

10. Filus, K., Domańska, J.: Similarity-driven adversarial testing of neural networks.
Knowledge-Based Systems p. 112621 (2024)

11. Goldstone, R.L., Son, J.Y.: Similarity. Oxford University Press (2012)
12. Graham, B., El-Nouby, A., Touvron, H., Stock, P., Joulin, A., Jégou, H., Douze,

M.: Levit: a vision transformer in convnet’s clothing for faster inference. In: Inter-
national Conference on Computer Vision. pp. 12259–12269 (2021)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Conference on Computer Vision and Pattern Recognition. pp. 770–778 (2016)

14. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: European Conference on Computer Vision. pp. 630–645 (2016)

15. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected con-
volutional networks. In: Conference on Computer Vision and Pattern Recognition.
pp. 4700–4708 (2017)

16. Huang, T., Zhen, Z., Liu, J.: Semantic relatedness emerges in deep convolutional
neural networks designed for object recognition. Frontiers in Computational Neu-
roscience 15, 625804 (2021)

17. Jere, M., Rossi, L., Hitaj, B., Ciocarlie, G., Boracchi, G., Koushanfar, F.: Scratch
that! an evolution-based adversarial attack against neural networks. arXiv preprint
arXiv:1912.02316 (2019)

18. Kolb, P.: Experiments on the difference between semantic similarity and related-
ness. In: Nordic Conference of Computational Linguistics. pp. 81–88 (2009)

19. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network rep-
resentations revisited. In: International conference on machine learning (2019)

20. Leacock, C., Chodorow, M.: Combining local context and wordnet similarity for
word sense identification. WordNet: An electronic lexical database 49(2) (1998)

21. Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong,
L., et al.: Swin transformer v2: Scaling up capacity and resolution. In: Conference
on Computer Vision and Pattern Recognition. pp. 12009–12019 (2022)

22. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Conference
on Computer Vision and Pattern Recognition. pp. 10012–10022 (2021)



16 Katarzyna Filus and Joanna Domańska

23. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet
for the 2020s. In: Conference on Computer Vision and Pattern Recognition. pp.
11976–11986 (2022)

24. Mehta, S., Rastegari, M.: Mobilevit: Light-weight, general-purpose, and mobile-
friendly vision transformer. In: International Conference on Learning Representa-
tions (2022)

25. Miller, G.A.: WordNet: An electronic lexical database. MIT press (1998)
26. Mopuri, K.R., Shaj, V., Babu, R.V.: Adversarial fooling beyond" flipping the

label". In: Conference on Computer Vision and Pattern Recognition Workshops
(2020)

27. Muttenthaler, L., Linhardt, L., Dippel, J., Vandermeulen, R.A., Hermann, K.,
Lampinen, A., Kornblith, S.: Improving neural network representations using hu-
man similarity judgments. Advances in Neural Information Processing Systems 36
(2024)

28. Nayak, G.K., Mopuri, K.R., Shaj, V., Radhakrishnan, V.B., Chakraborty, A.: Zero-
shot knowledge distillation in deep networks. In: International Conference on Ma-
chine Learning. pp. 4743–4751 (2019)

29. Pedersen, T., Patwardhan, S., Michelizzi, J., et al.: Wordnet:: Similarity-measuring
the relatedness of concepts. (2004)

30. Roads, B.D., Love, B.C.: Enriching imagenet with human similarity judgments and
psychological embeddings. In: conference on computer vision and pattern recogni-
tion. pp. 3547–3557 (2021)

31. Rosch, E., Lloyd, B.B.: Cognition and categorization (1978)
32. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision 115, 211–252 (2015)

33. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Conference on Computer Vision and
Pattern Recognition. pp. 4510–4520 (2018)

34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

35. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and
the impact of residual connections on learning. In: AAAI Conference on Artificial
Intelligence. vol. 31 (2017)

36. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the in-
ception architecture for computer vision. In: Conference on Computer Vision and
Pattern Recognition. pp. 2818–2826 (2016)

37. Tan, M., Le, Q.: Efficientnetv2: Smaller models and faster training. In: Interna-
tional Conference on Machine Learning. pp. 10096–10106 (2021)

38. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for
one shot learning. Advances in neural information processing systems 29 (2016)

39. Wu, B., Xu, C., Dai, X., Wan, A., Zhang, P., Yan, Z., Tomizuka, M., Gonzalez,
J., Keutzer, K., Vajda, P.: Visual transformers: Token-based image representation
and processing for computer vision. arXiv preprint arXiv:2006.03677 (2020)

40. Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., Zhang, L.: Cvt: Introduc-
ing convolutions to vision transformers. In: International Conference on Computer
Vision. pp. 22–31 (2021)

41. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Conference on Computer Vision and Pattern
Recognition. pp. 8697–8710 (2018)



How CNNs and ViTs perceive similarities between categories 17

A Generalizability of the findings - other networks

We show CSMs for 3 networks trained on COCO 20171 (80 classes, object
detection, semantic segmentation) in Fig. A.1. We also provide a CSM for a
Self-Supervised Learning (SSL) model (DINOv22) in Fig. A.2 for the mini-
ImageNet [38] templates. All matrices show a characteristic box-diagonal struc-
ture. The boxes for COCO include classes related via semantic relations, such as
the membership to one basic-level category (e.g. animals for dog, sheep etc.) or
physical proximity (e.g. forks or bananas can be both often found in a kitchen).

(a) DETR,
object detection 3

(b) YOLOST,
object detection 4

(c) MaskFormerT
semantic segmentation 5

Fig.A.1. Class Similarity Matrices generated for COCO 2017 models.

B ImageNet additions

Fig.A.2. DINOv2’s CSM.

In Table B.1, we extend Tab. 1
with the number of model parame-
ters and ImageNet accuracy. We can
see that ImageNet accuracy and net-
work size increase with larger SSAD
values. For each network, we also pro-
vide the pair of classes perceived as
the most similar. Most networks per-
ceive the projectile-missile pair as the
most similar classes (connected se-
mantically via a synonymity relation).
3 out of 4 LeViTs perceive the jaguar-
leopard pair as the most similar, sug-
gesting that the membership to a given network family also impacts what pair
is perceived as the most similar. Besides a few networks returning different
1 COCO 2017 dataset.
2 DINOv2 - HuggingFace model card.
3 DETR (End-to-End Object Detection) - HuggingFace model card.
4 YOLOS (tiny-sized) - HuggingFace model card.
5 MaskFormer - HuggingFace model card.

https://cocodataset.org
https://huggingface.co/docs/transformers/main/model_doc/dinov2
https://huggingface.co/facebook/detr-resnet-50
https://huggingface.co/facebook/detr-resnet-50
https://huggingface.co/facebook/maskformer-swin-tiny-coco
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classes than missile-projectile, all pairs show highly semantically related con-
cepts (bathtub-tub, husky-Eskimo dog).
Table B.1. Models with SSAD, ImageNet accuracy (Acc.) and parameters (Params.).

Name Params. Acc. Most similar pair Cosine Spearman Kendall

1 MobileViT-small [24] 5.6M 78.4 [24] projectile - missile 0.818 0.079 0.055
2 MobileViT-xx-small [24] 1.2M 69 [24] projectile - missile 0.819 0.097 0.067
3 MobileNetV2 [33] 3.5M 71.3 6 projectile - missile 0.822 0.108 0.075
4 EfficientNetV2-B1 [37] 8.2M 79.8 6 projectile - missile 0.833 0.19 0.132
5 CvT-21 [40] 20M 82.5 [40] projectile - missile 0.834 0.182 0.127
6 EfficientNetV2-B0 [37] 7.2M 78.7 6 missile - projectile 0.834 0.19 0.132
7 LeViT-256 [12] 18.9M 81.6 [12] leopard - jaguar 0.835 0.15 0.104
8 CvT-13 [40] 20M 81.6 [40] projectile - missile 0.835 0.144 0.1
9 DeiT-tiny-patch16-224 [39] 5.7M 72.2 7 projectile - missile 0.835 0.172 0.12
10 LeViT-384 [12] 39.1M 82.6 [12] leopard - jaguar 0.836 0.168 0.117
11 ResNet152V2 [14] 60.4M 78 6 missile - projectile 0.836 0.192 0.134
12 InceptionV3 [36] 23.9M 77.9 6 missile - projectile 0.836 0.19 0.132
13 LeViT-128 [12] 9.2M 78.6 [12] leopard - jaguar 0.836 0.177 0.123
14 InceptionResNetV2 [35] 55.9M 80.3 6 missile - projectile 0.836 0.181 0.126
15 ResNet101v2 [14] 44.7M 77.2 6 projectile - missile 0.837 0.195 0.136
16 LeViT-128S [12] 7.8M 76.6 [12] tub - bathtub 0.837 0.171 0.119
17 ResNet50v2 [14] 25.6M 76 6 missile - projectile 0.837 0.197 0.137
18 EfficientNetV2-B2 [37] 10.2M 80.5 6 missile - projectile 0.837 0.213 0.148
19 LeViT-192 [12] 11M 80 [12] jaguar - leopard 0.839 0.198 0.137
20 EfficientNetV2-B3 [37] 14.5M 82 6 projectile - missile 0.839 0.235 0.164
21 DeiT-small-patch16-224 [39] 22.1M 79.9 7 missile - projectile 0.841 0.202 0.141
22 ConvNeXt-small [23] 50.2M 82.3 6 projectile - missile 0.841 0.232 0.162
23 DeiT-base-patch16-224 [39] 86.6M 81.8 7 missile - projectile 0.842 0.184 0.127
24 ResNet152 [13] 60.4M 76.6 6 projectile - missile 0.843 0.255 0.178
25 Xception [4] 22.9M 79 6 missile - projectile 0.843 0.228 0.159
26 ConvNeXt-base [23] 88.6M 83.8 [23] projectile - missile 0.844 0.275 0.192
27 ResNet101 [13] 44.7M 76.4 6 missile - projectile 0.844 0.266 0.186
28 ResNet50 [13] 25.6M 74.9 6 missile - projectile 0.844 0.265 0.185
29 DenseNet201 [15] 20.2M 77.3 6 projectile - missile 0.845 0.265 0.186
30 DenseNet169 [15] 14.3M 76.2 6 projectile - missile 0.845 0.264 0.185
31 DenseNet121 [15] 8.1M 75 6 projectile - missile 0.846 0.267 0.187
32 Swinv2-base-p4-w16-256 [21] 87.9M 84.6 [22] missile - projectile 0.846 0.243 0.169
33 NASNetMobile [41] 5.3M 74.4 6 missile - projectile 0.846 0.256 0.179
34 NASNetLarge [41] 88.9M 82.5 6 missile - projectile 0.846 0.258 0.181
35 Swinv2-small-p4-w16-256 [21] 49.7M 84.1 8 missile - projectile 0.848 0.27 0.189
36 Swin-small-p4-w7-224 [22] 49.6M 83.2 8 missile - projectile 0.849 0.284 0.199
37 Swin-tiny-p4-w7-224 [22] 28.3M 81.2 8 projectile - missile 0.85 0.298 0.209
38 ConvNeXt-tiny [23] 28.6M 81.3 6 projectile - missile 0.85 0.322 0.225
39 Swinv2-tiny-p4-w16-256 [21] 28.3M 82.8 8 missile - projectile 0.852 0.302 0.212
41 Swin-base-p4-w7-224 [22] 87.8M 83.5 8 husky - eskimo dog 0.857 0.295 0.208
40 VGG16 [34] 138M 71.3 6 projectile - missile 0.857 0.371 0.262
42 VGG19 [34] 144M 71.3 6 missile - projectile 0.857 0.375 0.265

6 Keras Applications
7 Data-efficient Image Transformer (DeIT) - HuggingFace model card
8 Swin Transformer - Girhub Repository

https://keras.io/api/applications/
https://huggingface.co/facebook/deit-tiny-patch16-224
https://github.com/microsoft/Swin-Transformer
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