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Abstract. Graph neural networks (GNNs) have gained widespread adop-
tion in domains such as bioinformatics, social networks, and cheminfor-
matics, yet they remain susceptible to backdoor attacks. Existing back-
door attacks typically rely on subgraph triggers, which often introduce
detectable anomalies and employ random poisoned sample selection, re-
sulting in reduced stealthiness and efficiency. To address these limita-
tions, we propose a novel backdoor attack framework that leverages
data augmentation-based triggers and dynamic poisoned sample selec-
tion. Specifically, we design three alternative data augmentation strate-
gies, edge modification guided by cosine similarity, edge removal based on
degree centrality, and feature masking via gradient saliency, as backdoor
triggers. Furthermore, we introduce a dynamic poisoned sample selection
method informed by forgetting events. This method dynamically prior-
itizes high-impact poisoned samples to enhance attack efficiency while
reducing the number of samples required to achieve the corresponding
attack success rate (ASR). Experiments on four benchmark datasets,
PROTEINS, NCI1, Mutagenicity, and ENZYMES, demonstrate the su-
periority of our method.
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1 Introduction

Graph classification has emerged as a fundamental research direction across mul-
tiple domains, particularly in bioinformatics and drug discovery [17], chemoinfor-
matics [11], protein-protein interaction networks [10], and social network analysis
[5]. With the rapid advancement of GNNs [2,14,9,1], the ability to model and pro-
cess graph-structured data has significantly improved. By capturing high-order
dependencies between nodes and edges, GNNs have demonstrated outstanding
performance in graph classification tasks. However, the widespread adoption of
GNNs in real-world applications has exposed critical security vulnerabilities, par-
ticularly in high-stakes domains where model reliability is crucial. In particular,
backdoor attacks [8,7,20] on graph classification models pose a serious threat,
enabling adversaries to manipulate model behavior while evading detection.
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A backdoor attack occurs when an adversary secretly implants trigger pat-
terns into training data. During inference, the model behaves normally on clean
inputs but misclassifies inputs containing these triggers. This allows attackers to
manipulate model predictions while evading detection. This attack is especially
critical in graph classification due to the complex and high-dimensional nature
of graph data. In such attacks, the adversary modifies the graph structure or
perturbs node features in the training set, ensuring that the poisoned model
behaves normally on clean inputs but misclassifies graphs that contain the em-
bedded trigger. For example, in drug discovery, graph classification models are
used to determine whether a molecular structure exhibits toxicity. An attacker
could introduce a fixed molecular substructure as a trigger in the training data
and alter the labels of these samples to "non-toxic". As a result, the backdoored
model, when presented with a molecule containing the same trigger, incorrectly
classifies it as non-toxic. Such manipulations could allow hazardous compounds
to bypass safety checks or impair competitors by undermining model reliabil-
ity. Given these high-stakes applications, studying backdoor attacks on graph
classification models is essential.

Existing backdoor attack strategies in graph classification primarily rely on
subgraph-based triggers. Zhang et al. [21] introduced a method where a fixed
randomly generated subgraph is inserted into each poisoned sample. Xu et al.
[18] further explored the impact of trigger placement by injecting subgraphs at
both the most and least important positions in the graph. Xi et al. [15] proposed
a more adaptive strategy that generates subgraph triggers via neural networks,
varying their structural properties while keeping the number of injected nodes
fixed. Despite their effectiveness, existing methods face two major limitations:
(1) The injected subgraphs often introduce noticeable anomalies, making them
susceptible to detection and mitigation [3]; (2) Existing methods randomly sam-
ple poisoned samples for trigger injection and label modification, resulting in a
higher poisoning rate required to achieve the expected ASR.

To overcome these challenges, this paper introduces two backdoor attack
designs: (1) Data augmentation-based trigger. Instead of injecting subgraph pat-
terns, we leverage data augmentation [23,12,4] as backdoor triggers. Since data
augmentation is commonly used to expand training datasets and enhance self-
supervised learning (e.g., contrastive learning), it provides a natural way to con-
ceal the trigger pattern. However, relying solely on random data augmentation
is insufficient to enable the model to learn effective triggers. To address this lim-
itation, we propose three data augmentation strategies, covering both topology-
and feature-level transformations, to construct effective and stealthy backdoor
triggers. (2) Dynamic poisoned sample selection mechanism. To further improve
attack efficiency and reduce poisoning rate, we introduce a dynamic poisoned
sample selection mechanism that prioritizes poisoned samples based on their
contribution to the attack. This method identifies critical samples that have the
highest impact on backdoor learning, ensuring that the model learns the trigger
with minimal poisoned samples. The main contributions are as follows.
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Table 1: Methods for backdoor attacks on graph classification tasks.
Attack Name Trigger Type Injection Method Sample Selection

Subgraph Backdoor[21] fixed subgraph subgraph injection random
GNNExplainer[18] fixed subgraph subgraph injection random

GTA[15] adaptive subgraph subgraph injection random
TRAP[19] perturbation-based flip edges random
Motif[22] motif subgraph subgraph injection random

Ours data augmentation flip edges/mask features dynamic selection

– We introduce a novel data augmentation-based trigger design that leverages
topology-level or feature-level transformations to create stealthy and effective
backdoor triggers for graph classification models.

– We introduce a dynamic poisoned sample selection strategy based on the
occurrence of forgetting events, enabling the selection of poisoned samples
that contribute more effectively to the backdoor attack.

– We conducted attack evaluations on GCN and GIN models across four bench-
mark datasets. The results demonstrate that our approach achieves better
attack performance while maintaining a low clean accuracy drop (CAD).

2 Related Work

Backdoor attacks in graph classification remain an emerging area of research,
with significant challenges yet to be addressed. Early research by [21] pioneered
the idea of injecting predefined fixed subgraph patterns into training samples,
prompting the GNN model to associate these subgraphs with attacker-designated
target labels. Based on this, [18] further explored how the injection position of
trigger subgraphs affects the attack performance, revealing that strategic place-
ment at critical positions significantly influences attack success. [15] introduced
an adaptive trigger generation approach using neural networks, producing trig-
gers with fixed node counts but varied topologies, thereby enhancing the attack’s
flexibility and reducing detectability. [19] proposed perturbation-based triggers,
leveraging meta-gradients computed on adjacency matrices to guide structural
modifications. More recently, [22] investigated how different subgraph motifs
influence the effectiveness of backdoor attacks from a motif-based perspective.
Despite these advancements, existing methods have largely ignored the critical
role of sample-level variations in backdoor attack effectiveness, leaving room for
more efficient and stealthy approaches. We summarize and compare mainstream
backdoor attack methods on graph classification tasks in Table 1.
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3 Preliminaries and Problem Definition

3.1 Graph Classification and GNNs

A graph classification task operates on input graphs G = (V, E), where V denotes
the node set with feature vectors {xi}vi∈V and E represents the set of edges
capturing pairwise relationships between nodes. The goal is to learn a function
f : G → yG that maps structural and attribute information to a graph-level
label yG.

Modern approaches leverage GNNs, which iteratively refine node embeddings
through neighborhood aggregation. At layer l, the embedding h

(l)
i of node vi is

updated via:

h
(l)
i = COMBINE(l)

(
h
(l−1)
i ,AGGREGATE(l)

(
{h(l−1)

j | j ∈ N (i)}
))

,

where N (i) is the neighbor set of vi, AGGREGATE(l)(·) integrates neighbor-
ing embeddings, and COMBINE(l)(·) fuses aggregated features with the node’s
current state.

To obtain graph-level predictions, a readout function aggregates the final-
layer node embeddings {h(L)

i }vi∈V into a global graph representation:

zG = READOUT
(
{h(L)

i }
)
,

where READOUT(·) is typically a pooling or summarization function that ag-
gregates node-level embeddings from the final layer L into a single vector rep-
resentation for the entire graph. The resulting graph embedding zG is then fed
into a classifier (e.g., multi-layer perceptron) to predict yG.

This architecture enables GNNs to capture both local structural patterns
(via neighborhood aggregation) and global graph characteristics (via readout
operations), forming the foundation for modern graph classification systems.

3.2 Problem Formulation

Attacker’s Knowledge and Capability. We analyze two attack scenarios,
considering both white-box and black-box settings. In the white-box attack (as
demonstrated in our experiments on the GCN model), the attacker employs
a surrogate model with the same architecture as the victim model, enabling
a more precise simulation of the target’s behavior and thereby enhancing the
attack’s effectiveness. In contrast, the black-box attack (evaluated using our
method on the GIN model) involves a surrogate model with a different architec-
ture from the victim model, preventing the attacker from directly accessing the
target’s parameters or structural details. Instead, the attack relies on transfer-
ring adversarial patterns learned from the surrogate model. In both cases, the
attacker manipulates a small portion of the training data by injecting structural
or feature-based trigger patterns and modifying the corresponding labels, leading
the victim model to misclassify inputs during inference.
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Fig. 1: The framework of our backdoor attack on graph classification task.

Adversary’s Objective. Formally, given a GNN classifier F , a targeted attack
class yt, and a trigger graph denoted by Ggt , the adversary aims to achieve two
main objectives:{

F (Ggt) = yt, for trigger-embedded graphs Ggt ,

F (G) = Fo(G), for clean graphs G.
(1)

The first objective ensures the attack effectiveness: whenever the trigger gt
is embedded, the trojaned model F consistently classifies the input graph into
the attacker-specified target class yt. The second objective ensures attack eva-
siveness: the trojaned model F behaves identically to a clean model Fo on clean
graphs, making the backdoor difficult to detect.

4 Method

We propose a novel backdoor attack framework for graph classification that
comprises two designs: trigger construction via graph augmentation and dynamic
poisoned sample selection based on forgetting events. As illustrated in Figure 1,
the attack process begins by applying a data augmentation-based strategy to
generate poisoned samples, where each clean graph is perturbed using one of
three predefined augmentation methods. Specifically, these methods include two
topology-level strategies and one feature-level strategy. To preserve stealthiness,
only one augmentation strategy is applied to each poisoned sample at a time.

Following augmentation, we adopt a dynamic poisoned sample selection strat-
egy, which adaptively filters out low-impact poisoned samples and adjusts the
selection process based on real-time ASR feedback. This enables the identifi-
cation of high-value samples that maximize the effectiveness of the backdoor
attack. During testing, we apply our designed trigger to clean samples, causing
them to be classified as the target class by the backdoored GNN.
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In the following sections, we first describe the three augmentation strate-
gies used to construct backdoor triggers, and then detail our dynamic poisoned
sample selection strategy.

4.1 Trigger Construction via Graph Augmentation

Topology-Level Augmentation. At the graph structure level, we employ two
edge modification strategies.

Strategy 1: Edge Modification Based on Cosine Similarity. We utilize
the cosine similarity between node feature vectors to guide edge addition and
removal, ensuring that the modified edges blend naturally into the local struc-
ture. For any two unconnected nodes vi and vj , the cosine similarity between
their feature vectors is computed as follows:

Sim(vi, vj) =
xi · xj

∥xi∥∥xj∥
. (2)

Based on these similarity values, we rank all possible node pairs. The top-k
edges with the lowest similarity scores are removed if they exist, while the top-k
edges with the highest similarity scores are added if they do not exist in the
original graph.

Strategy 2: Edge Removal Based on Degree Centrality. To preserve
the core structural and semantic information of the graph, we identify and re-
move edges with lower importance, as proposed in [23]. Specifically, we assign
each existing edge an associated removal probability pvivj , reflecting its impor-
tance. We use the degree centrality of edges as the measure of their importance.
According to the definition proposed in [23], the edge centrality based on node
degree centrality is defined as the average of its two endpoints:

wvi,vj
=

c(vi) + c(vj)

2
, (3)

where c(vi) and c(vj) denote the degree centrality values of the endpoints vi and
vj , calculated as follows:

c(vj) =
deg(vj)

|N | − 1
, (4)

with N representing the total number of nodes in the graph.
We apply a logarithmic transformation to the edge centrality to mitigate the

dominant effect of high-degree nodes:

svi,vj
= log(wvi,vj

). (5)

Finally, the edge removal probability is normalized to:

pvivj =

(
smax − svi,vj
smax − smin

)
· pe, (6)

where pe controls the overall probability of edge removal, smax and smin denote
the maximum and minimum values of svi,vj respectively.
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Feature-Level Augmentation. At the feature level, we employ the feature
masking strategy.

Strategy 3:Feature Masking. For feature-level augmentation, we adopt
a selective feature masking strategy based on degree centrality and gradient
saliency masks, allowing us to protect critical features while perturbing less
important ones.

First, we leverage degree centrality to distinguish between critical and non-
critical nodes. High-centrality nodes retain all their features to preserve global
information, whereas non-critical nodes undergo selective feature masking. We
select the bottom ρ% of nodes with the lowest degree centrality for feature mask-
ing, ensuring that structurally less critical nodes undergo perturbation while
preserving key graph information.The importance of each feature is determined
using a gradient saliency mask, computed by backpropagating the gradients with
respect to the node feature vector xv:

gv =

∣∣∣∣ ∂L∂xv

∣∣∣∣ , (7)

where L represents the model’s loss function, and gv measures the contribution
of each feature dimension to the classification task. We then rank feature dimen-
sions based on their importance scores and retain the top (1 − q%) of features
while masking the remaining q% ones:

x̃v = xv ⊙m, (8)

where m ∈ {0, 1}F is the feature mask vector, defined as:

mi =

{
1, i ∈ Top-(1− q%)(gv),

0, otherwise.
(9)

This method ensures that key discriminative features remain intact while
introducing subtle noise by masking less significant features, making the attack
more difficult to detect.

4.2 Dynamic Poisoned Sample Selection by Forgetting Events

The quality of poisoned samples directly influences the success rate and stealth-
iness of backdoor attacks. Traditional random sample selection methods often
introduce redundant or low-impact samples, thereby reducing the ASR and in-
creasing the risk of detection. Our objective is to identify a subset of samples that
contribute significantly to the backdoor attack. Prior works [6,13] have indicated
that forgetting samples reveal intrinsic data properties and play a crucial role in
shaping the classifier’s decision boundary, whereas samples that are rarely for-
gotten have a limited impact on the final model performance. [16] explored the
influence of forgetting samples in image-based backdoor attacks and proposed
the Filtering-and-Updating Strategy (FUS) to refine sample selection. Building
upon this foundation, we investigate the effect of forgetting backdoor samples
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Fig. 2: Number of forgetting events
on the PROTEINS dataset.
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Fig. 3: Number of forgetting samples
under different poisoning rates.

in graph-based data and enhance the FUS strategy by introducing a dynamic
adjustment mechanism that adapts in real-time to sample performance, thereby
efficiently selecting the most impactful poisoned samples for the attack.
Definition of Forgetting Events. A forgetting event occurs when a model
correctly classifies a sample at the time step r but subsequently misclassifies it
in the time step r + 1. Formally, the forgetting count Fn of poisoned sample n
is defined as:

Fn =

R−1∑
r=1

I(ŷrn = yt and ŷr+1
n ̸= yt), (10)

where yt represents the target label, ŷrn denotes the model’s predicted label for
sample n at the r-th training epoch, R denotes the total number of training
epochs, and I(·) is the indicator function.

Figure 2 illustrates an experiment conducted on the PROTEINS dataset.
In this experiment, 61.8% of the data did not experience any forgetting events,
while 38.2% of the data underwent at least one forgetting event. We refer to
samples that have experienced at least one forgetting event as forgetting sam-
ples. [13] suggested that samples with frequent forgetting events contribute more
significantly to the learning of backdoor patterns.

We further measure the number of forgetting samples under different poi-
soning rates, with the results shown in Figure 3. It can be observed that as
the poisoning rate increases, the number of forgetting samples initially increases
and then decreases. Given a fixed poisoning rate, we aim to identify the most
valuable forgetting samples for poisoning. We can achieve this goal by greedily
retaining a large sample set of Fn, but it should be noted that only a small por-
tion of the poisoned samples are recorded each time, and the forgetting events
of the remaining clean training samples are not recorded. Therefore, this greedy
retention method is local. According to the trend of change shown in Figure 3,
it is also infeasible to achieve this by expanding the poisoning set.

[13] employed the FUS strategy for image data sample selection. The FUS
operates as follows: first, all training samples are poisoned to construct the poi-
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soned sample pool Dpoisoned. The attacker randomly selects U ′ ← p · Dpoisoned

samples from this poisoned sample pool based on a predefined poisoning rate p.
The training process then iterates for S rounds, where in each round, a fixed
proportion (α · |U ′|) of the lowest-impact samples, ranked by Fn, are removed.
Subsequently, an equal number (α · |U ′|) of new samples are randomly selected
from the Dpoisoned \ U ′. This iterative process continues until completion.

However, the FUS strategy has limitations: the filtering ratio α is fixed, and
sample selection relies solely on direct removal without dynamic adjustment
based on real-time sample performance. To address these issues, we propose a
Dynamically Adjusted Filtering-and-Updating Strategy (DAFUS). We observe
that the same poisoned sample may exhibit varying Fn when trained with dif-
ferent poisoned sample pools. Moreover, because we employ an early stopping
mechanism during training, the number of training epochs can further influence
the Fn value of a given poisoned sample. Therefore, instead of adjusting based
on the average number of forgetting samples, we dynamically adapt the selection
based on the attack success rate. We define the change in ASR as:

∆ASR = ASRs −ASRs−1. (11)

The update ratio α for poisoned samples is dynamically adjusted as follows:

αs =


αs−1 − η1 × (∆ASR), if ∆ASR > ∆th,

αs−1 + η2 × (|∆ASR|), if |∆ASR| ≤ ∆th,

αs−1, Us = Us−1, if ∆ASR < −∆th.

(12)

where ∆th represents a predefined threshold that distinguishes significant changes
in ASR, η1 and η2 are adjustment rates that determine the magnitude of adjust-
ments, and Us denotes the backdoor training set at iteration s.

– When the ASR increases significantly (∆ASR > ∆th), the update ratio α
is proportionally reduced based on the increase in ASR. This ensures that
high-contribution samples are retained, preventing excessive replacement.

– When the change in ASR is insignificant (|∆ASR| ≤ ∆th), the update ratio
α increases proportionally according to the magnitude of the variation in
ASR. This enhances exploration and mitigates the risk of being trapped in
a local optimum.

– When the ASR decreases significantly (∆ASR < −∆th), the poisoned sample
set is immediately reverted to the previous iteration (Us = Us−1). This
rollback mechanism helps restore attack effectiveness, which may have been
compromised due to the removal of high-contribution samples.

We maintain an index of the poisoned samples for each iteration and ul-
timately select the sample set corresponding to the highest ASR as the final
poisoning set. This strategy effectively balances exploration and exploitation by
adaptively adjusting the update ratio of poisoned samples, leading to improved
attack performance. We summarized the overall process of our attack framework
in Algorithm 1.
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Algorithm 1 Our backdoor attack framework
Input: Clean training set Dclean, Poisoning rate p, Initial filter ratio α0, Threshold

∆th, Adjustment rates η1, η2, Max iterations S, Target class yt
Output: Constructed poisoned training set U

# Data Augmentation-based Triggers
1: Generate poisoned sample pool Dpoisoned ← {(augmentation(Gi), yt) | Gi ∈ Dclean}

from topology-level or feature-level augmentation strategy
# Dynamic poisoned sample selection

2: Initialize backdoor training set U from Dclean and U ′ ← p · Dpoisoned

3: for s = 1 to S do
4: Train model on U , record forgetting count {F1, ..., Fn} via Eq. 10
5: Compute ASRs and then calculate ∆ASR via Eq. 11
6: update filter ratio αs via Eq. 12
7: Sort U ′ by descending Fn

8: Filter αs · |U ′| samples with lowest Fn

9: Randomly replenish same number from Dpoisoned \ U ′

10: update backdoor training set U
11: end for

5 Experiments

5.1 Experimental Setup

Datasets. We conduct experiments on four widely used graph classification
datasets: PROTEINS, NCI1, Mutagenicity and ENZYMES. We split each dataset
into 75% for training, 5% for validation, and 20% for testing. We summarize the
key statistics of the datasets used in our experiments in Table 2.
Evaluation Metrics. We assess the effectiveness and evasiveness of our attack
using the following two key metrics:

– ASR: The percentage of instances in the test set, originally belonging to
non-target classes, that are successfully misclassified into the target class
after embedding the backdoor trigger.

– CAD: The decrease in accuracy on clean test samples compared to a model
trained without poisoning.

Hyperparameter Settings. We utilize two GNNs (GCN and GIN), each con-
figured with a two-layers structure and ReLU activation function. The models
are trained using the Adam optimizer with a learning rate of 0.01 and a weight
decay of 5e-4. The maximum number of training epochs is set to 100, with an
early stopping mechanism (patience=10) to prevent overfitting. During training,
we use a batch size of 32 and apply a dropout rate of 0.1 for regularization. Table
3 shows the clean model accuracy of GCN and GIN on different datasets.

For the backdoor attack, we set the poisoning rate to 10%. In Data Augmen-
tation Strategy 1, we set k=2. In Strategy 2, the edge removal probability pe is
set to 0.8. In Strategy 3, we select the bottom 30% of nodes based on degree
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Table 2: Summary of benchmark datasets.

Dataset Graphs Avg.
Nodes

Avg.
Edges Classes

NCI1 4,110 29.8 32.3 2
PROTEINS 1,113 39.1 72.8 2
Mutagenicity 4,337 30.3 30.8 2
ENZYMES 600 32.6 62.1 6

Table 3: Clean model accuracy
of GCN and GIN

Dataset GCN GIN

PROTEINS 0.7130 0.7264
NCI1 0.7251 0.7615
Mutagenicity 0.7707 0.8099
ENZYMES 0.3583 0.3833

centrality, and 15% of their features are masked. For the poisoned sample selec-
tion mechanism, we set the initial α to 0.5, the number of iterations S to 40, the
ASR rollback threshold ∆th to 0.05, and the adjustment rates η1 and η2 to 1.

For the baseline methods we compared, we adopt the parameter configuration
specified in their original implementation.

Baseline Methods. Subgraph [21]: This method inserts a randomly gener-
ated fixed subgraph into a subset of training samples and assigns them to a tar-
get label. The trigger subgraph remains consistent across all poisoned samples.
Motif [22]: This method utilizes frequent subgraph motifs as triggers, mak-
ing them more naturally embedded in real-world datasets. TRAP [19]: TRAP
flips edges in poisoned samples based on meta-gradients to create imperceptible
perturbations that influence model predictions. GTA [15]: This method gener-
ates adversarial subgraphs using neural networks and injects them into poisoned
samples, enhancing the attack’s flexibility while maintaining stealthiness.

Our approach is named Ours-Cos when utilizing the first data augmentation
strategy, Ours-Deg for the second, and Ours-Mas for the third.

5.2 Overall performance of backdoor attacks

We use GCN as the backdoor model for trigger injection and sample selection.
To evaluate our method, we measure the ASR and CAD on GCN models with
the same architecture, representing a white-box attack scenario. Additionally,
we assess the transferability of our attack by testing it on GIN models, which
correspond to black-box attack settings.

Table 4 presents the experimental results. Among our three proposed strate-
gies, Ours-Cos and Ours-Deg consistently achieve the highest ASR, while main-
taining competitive or even lower CAD compared to baseline methods. This
indicates that our method achieves better attack performance with comparable
evasiveness to the baseline.

In comparison, Ours Cos has a slightly higher CAD, while Ours Deg achieves
a better balance between ASR and CAD. Ours-Mas, which perturbs features
rather than structure, shows the lowest ASR among our three strategies but still
surpasses some baselines like Subgraph Backdoor and TRAP. This result sug-
gests that structural perturbations are more effective than feature perturbations
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Table 4: Comparison of Attack Performance on GCN and GIN.

Method PROTEINS NCI1 Mutagenicity ENZYMES
ASR CAD ASR CAD ASR CAD ASR CAD

Results on GCN
Subgraph Backdoor 0.7263 0.0035 0.7288 0.0011 0.7698 0.0046 0.5254 0.0083

Motif 0.8842 0.0538 0.9733 0.0213 0.8544 0.0196 0.7288 0.0167
TRAP 0.8421 0.0179 0.8305 0.0284 0.8148 0.0276 0.6779 0.0250
GTA 0.8211 -0.0069 0.9612 0.0314 0.8968 0.0104 0.6949 0.0167

Ours-Cos 0.9474 0.0483 0.9758 0.0257 0.9735 0.0419 0.8305 0.0416
Ours-Deg 0.9578 0.0046 0.9831 0.0049 0.9656 -0.0081 0.7966 0.0083
Ours-Mas 0.9263 0.0404 0.9346 0.0173 0.9497 0.0150 0.7457 0.0167

Results on GIN
Subgraph Backdoor 0.7215 -0.0011 0.7275 0.0018 0.7751 0.0042 0.5084 0.0083

Motif 0.8813 0.0571 0.9735 0.0199 0.8518 0.0191 0.7118 0.0167
TRAP 0.8401 0.0134 0.8306 0.0271 0.8201 0.0275 0.6613 0.0333
GTA 0.8184 0.0028 0.9686 0.0804 0.8941 0.0121 0.8779 0.0250

Ours-Cos 0.9443 0.0458 0.9782 0.0346 0.9682 0.0562 0.8805 0.0416
Ours-Deg 0.9539 0.0092 0.9806 0.0064 0.9682 0.0099 0.7796 0.0083
Ours-Mas 0.9225 0.0377 0.9370 0.0157 0.9523 0.0162 0.7288 0.0167

in attacking graph models, likely due to the greater impact of structural changes
on model behavior.

Among the baseline methods, Motif and GTA perform well in ASR, while
TRAP and Subgraph Backdoor exhibit moderate performance, indicating that
the model does not effectively learn strong trigger patterns from these methods.
However, due to its relatively moderate attack performance, its CAD is also
correspondingly lower.

An interesting observation is that some methods, such as GTA, Subgraph
Backdoor, and Ours-Deg, achieve negative CAD values on certain datasets. This
indicates that, in some cases, the poisoned model slightly improves rather than
degrades the clean accuracy. This phenomenon may be due to the way poisoned
samples shift the decision boundary, inadvertently leading to a regularization
effect that enhances model generalization.

5.3 Impact of poisoning rate

To analyze the impact of varying poisoning rates on the ASR, we evaluate three
attack strategies of the GCN model on the NCI1 dataset under seven different
poisoning rates: 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, and 0.14. The experimental
results are presented in Figure 4.

As expected, increasing the poisoning rate consistently improves the ASR
for all attack strategies. This is because a higher poisoning rate introduces more
backdoored samples into the training process, allowing the model to learn the
trigger pattern more effectively.
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Among the three strategies, Ours-Deg demonstrates the best overall perfor-
mance. Even at a low poisoning rate of 0.02, it maintains a high attack success
rate, and as the poisoning rate increases, its ASR stabilizes, indicating its ro-
bustness in embedding backdoor triggers efficiently.

Ours-Cos performs slightly worse than Ours-Deg at lower poisoning rates
but exhibits a rapid improvement as the poisoning rate increases. At 0.14, its
ASR surpasses Ours-Deg, suggesting that cosine similarity-based modifications
provide a more scalable and consistent impact across different contamination
levels. Ours-Mas consistently shows the lowest ASR across all poisoning rates
but follows an upward trend, indicating that feature-masking-based backdoors
are effective, albeit requiring a higher poisoning rate to achieve performance
comparable to structure-based triggers.

Notably, even at lower poisoning rates, our three attack strategies outperform
some baseline methods at a 0.10 poisoning rate in Table 4, particularly TRAP
and Subgraph Backdoor. This is attributed to our sample selection mechanism,
which ensures that even with a low poisoning rate, only the most impactful
samples are chosen for poisoning, thereby maintaining high ASR. This selective
approach enables our method to achieve effective backdoor attacks with fewer
poisoned samples, improving stealthiness while preserving attack performance.

5.4 Ablation experiment

Impact of Poisoned Sample Selection Strategy. To evaluate the impact
of different sample selection strategies on attack performance, we conducted
experiments using three approaches: DAFUS, FUS, and Random Selection. Co-
sine similarity-based edge modifications from Strategy 1 were employed as the
backdoor trigger. We measured their ASR performance on both GCN and GIN
models, with the results summarized in Table 5. DAFUS consistently outper-
forms both FUS and RANDOM. Compared to RANDOM, DAFUS improves
ASR by 3.4%–9.7%, while FUS achieves an ASR improvement of 1.4%–5.3%.
This demonstrates that forgetting-event-based poisoned sample selection effec-
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Table 5: Comparison of ASR under different sample selection strategies
Sample Selection Strategy PROTEINS NCI1 Mutagenicity ENZYMES

GCN GIN GCN GIN GCN GIN GCN GIN

DAFUS 0.9474 0.9443 0.9758 0.9782 0.9735 0.9682 0.8305 0.8805
FUS 0.9023 0.8910 0.9104 0.9507 0.9456 0.9332 0.8105 0.8223

RANDOM 0.8761 0.8654 0.8886 0.9065 0.8924 0.8801 0.7967 0.7839

Table 6: Comparison of ASR under different Trigger
Augmentation Strategy PROTEINS NCI1 Mutagenicity ENZYMES

GCN GIN GCN GIN GCN GIN GCN GIN

Ours-Cos 0.9474 0.9443 0.9758 0.9782 0.9735 0.9682 0.8305 0.8805
Ours-Deg 0.9578 0.9539 0.9831 0.9806 0.9656 0.9682 0.7966 0.7796
Ours-Mas 0.9263 0.9225 0.9346 0.9370 0.9497 0.9523 0.7457 0.7288

Random-Edge 0.7676 0.7701 0.7789 0.7251 0.7265 0.6853 0.5103 0.5397
Random-Mask 0.6135 0.5846 0.5122 0.5346 0.6154 0.6452 0.4922 0.4135

tively identifies more impactful poisoned samples for backdoor attacks. Further-
more, DAFUS outperforms FUS by an additional 2.0%–6.5%, highlighting that
our dynamic adjustment mechanism enhances the efficiency and effectiveness of
selecting critical samples.

Figure. 5 illustrates the differences between FUS and DAFUS during itera-
tions. As observed, FUS exhibits irregular fluctuations, with ASR varying un-
predictably. In contrast, DAFUS employs a dynamic update rate and effectively
rolls back samples when the attack success rate declines. This adaptive mecha-
nism enables DAFUS to efficiently select the most relevant poisoned sample set
based on real-time sample performance.

Impact of Data Augmentation Methods. To evaluate the effectiveness of
our proposed data augmentation-based backdoor trigger, we compare it with two
baseline augmentation strategies: Random-Edge (randomly modifying edges)
and Random Feature Masking (randomly selecting nodes and applying random
feature masks). The hyperparameter settings for these two baselines match those
of Ours-Cos and Ours-Mas, respectively. All methods adopt the DAFUS strat-
egy.

From the results in Table 6, we observe that our proposed backdoor attacks,
based on three different data augmentation strategies, consistently outperform
all baseline methods. This demonstrates that our data augmentation-based trig-
gers effectively embed the trigger pattern into the model.
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Fig. 6: Comparison of Different trigger parameters.

5.5 Impact of trigger parameters.

In this section, we analyze the impact of trigger parameters (i.e., the amplitude
of perturbation on a single sample) on experimental results. We conducted this
experiment on the NCI1 dataset.

In Figure 6, it can be observed that the ASR of the three methods exhibits a
relatively consistent trend. Specifically, when the perturbation magnitude on the
graph structure is small, the ASR remains relatively low. As the perturbation
increases, the ASR rises rapidly in the initial stage and then gradually stabi-
lizes. In contrast, the CAD does not follow a uniform pattern between the three
methods. In most experimental settings, the CAD remains below 0.05, suggest-
ing that these methods achieve high attack success rates while exerting minimal
impact on the classification performance of clean samples.

6 Conclusion

This paper proposes a novel backdoor attack framework for graph classification.
Our method introduces three alternative augmentation strategies and designs a
sample selection mechanism to enhance attack efficiency and stealthiness.

Comprehensive experiments on four benchmark datasets demonstrate that
our method outperforms existing backdoor attacks. Our approach achieves a
higher ASR while maintaining a relatively low CAD. Among our three trigger
strategies, Ours-Deg consistently balances ASR and CAD.

Overall, our study highlights the vulnerability of graph classification models
to data augmentation-based backdoor attacks. Future work will focus on refining
augmentation strategies and exploring more effective sample selection techniques
to further improve attack efficiency and stealthiness.
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