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Abstract. Multiple Kernel Clustering (MKC) aims to improve cluster-
ing performance by integrating complementary information from candi-
date kernels. Among existing MKC methods, late fusion MKC (LFMKC)
offers superior scalability by aggregating clustering partitions rather than
full kernel matrices. However, its reliance on fixed base partitions of-
ten leads to suboptimal representations and degraded clustering per-
formance. To address this, we propose Late Fusion MKC Refined via
Optimal Linear Graph Filtering (LFMKC-OLF), which enhances par-
tition quality while preserving linear computational complexity. Specif-
ically, bipartite graphs are constructed for each base partition, upon
which high-order low-pass filters based on heat kernel diffusion and com-
plementary high-pass filters are designed to capture both global con-
sistency and fine-grained structural details. A consensus filtering mech-
anism is introduced by optimally combining view-specific filters to re-
fine multi-scale representations. Furthermore, a joint clustering objec-
tive integrates both smoothed and detail-enhanced partitions to effec-
tively mitigate over-smoothing. Extensive experiments on eight bench-
mark datasets demonstrate that LFMKC-OLF consistently outperforms
12 state-of-the-art LFMKC methods, while maintaining high computa-
tional efficiency for large-scale clustering tasks. Our code is publicly avail-
able at: https://github.com/sxuHui/LFMKC-OLF.
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1 Introduction

Multiple Kernel Clustering (MKC) is a powerful machine learning technique
for handling complex, non-linearly separable data by mapping it into higher-
dimensional Hilbert spaces[19,20,32]. In the era of big data, where information
often collects from multiple views or sources, MKC integrates multi-source data
within the kernel space to assign samples to distinct clusters. By learning an
optimal combination from a predefined set of kernels, MKC effectively captures
complementary information across diverse feature representations, thereby im-
proving clustering robustness and adaptability in multi-view scenarios.

https://github.com/sxuHui/LFMKC-OLF
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According to the stage of information fusion, existing MKC methods can be
broadly divided into two categories: early kernel fusion and late partition fu-
sion methods [27]. The first convert kernel information into a set of predefined
kernel matrices, each of size n × n, with the primary goal of optimally com-
bining these matrices to learn the consensus clustering information. The other
category focus on enhancing clustering performance and mitigating the impact
of noise by applying fusion at the partition level [21]. By fusing the informa-
tion of individual partitions to obtain the underlying shared representation, late
fusion-based MKC (LFMKC) significantly reducing the computational burden,
demonstrating promising performance across various applications [21].

Despite recent progress, LFMKC still faces critical limitations. First, its re-
liance on fixed base partitions imposes a performance bottleneck, as these initial
representations often fail to capture the underlying data structure adequately.
Moreover, prevailing methods predominantly focus on optimizing kernel weights
to exploit inter-view consistency and complementarity, yet they largely neglect
the high-order correlations across views, thus restricting the integration of richer
multi-kernel information. Additionally, while low-pass graph filters have been
employed to enhance intra-cluster coherence by suppressing noise, excessive fil-
tering inevitably leads to over-smoothing, where crucial high-frequency details
are erased and cluster boundaries become indistinct, ultimately undermining
clustering performance.

To tackle these challenges while maintaining linear computational complexity,
we propose a novel method termed Late Fusion Multiple Kernel Clustering Re-
fined via Optimal Linear Graph Filtering (LFMKC-OLF). The approach begins
by constructing bipartite graphs for each kernel partition, from which we design
view-independent low-pass and high-pass graph filters to capture complementary
low- and high-frequency signals respectively. Specifically, these low-pass filters
derived from diffusion processes capture high-order relationships and smooth
partitions, revealing the underlying cluster structures; while high-pass filters
preserve critical high-frequency signals encoding fine-grained cluster boundaries.
To integrate multi-view information effectively, we introduce a consensus filter
learning strategy, where the final low-pass and high-pass filters are obtained as
optimal linear combinations of the individual per-view filters. To efficiently han-
dle large-scale datasets, we exploit the low-rank structure inherent in bipartite
graph-induced filters, enabling a linear-time algorithm for filtering. Crucially, we
propose a unified optimization framework that considers the joint clustering loss
under smoothed partitions and detail-enhanced partitions. By jointly modeling
low-pass and high-pass responses, our framework captures both smooth cluster
structures and fine-grained boundary details, effectively mitigating the cratical
information loss caused by over-smoothing. To solve the resulting problem, we
develop an iterative algorithm that updates all variables with linear complexity.
Our contributions are summarized as follows:

– We propose a novel LFMKC method that integrates bipartite graph-induced
high-order filters based on heat kernel diffusion. By optimizing the lin-
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ear combination of these filters, our approach promotes clustering friendly
smooth representation and effectively refines the base partitions.

– We propose a novel framework that jointly clustering both on smoothed and
detail-enhanced partitions by leveraging the multi-scale representation of
graph filtering. By integrating critical detail structural information into the
smoothed embedding, it effectively mitigates over-smoothing and achieves
optimal filtering refinement.

– Extensive evaluations on eight diverse datasets reveal that LFMKC-OLF not
only surpasses 12 cutting-edge LFMKC methods in clustering performance
but also features a linear-time iterative optimization algorithm that enables
efficient training and inference on large-scale data, showcasing its practicality
for applications.

2 Related Work

2.1 Late Fusion Multiple Kernel Clustering

LFMKC has garnered significant attention for its efficiency and promising perfor-
mance. The LFMKC framework typically proceeds in two stages: generating base
partitions from each kernel—typically derived from the top eigenvectors—and
subsequently fusing these partitions into a consensus result. Recent efforts have
explored diverse strategies to enhance the fusion stage. For example, Wang et
al. [21] propose a strategy that maximizes the alignment between weighted base
partitions to learn a consensus partition. Liu et al. [16] propose to decompose the
consensus partition into cluster labels and centroids, without requiring further
post-processing. Li et al. [11] integrate the min-max optimization framework
from [15] into LFMKC to refine the fusion process. Yang et al. [27] reconstruct
kernel partitions using a self-expression strategy guided by refined similarity
graphs to capture more complex relationships among partitions. Wu et al. [23]
employ the Grassmann manifold for partitions fusion, maintaining topological
structure in high-dimensional space. Zhang et al. [31] incorporate sample weights
and introduce a prior-informed regularization term to enhance fusion stability.
However, these methods heavily rely on the quality of the original base partitions
and fail to fully exploit high-order information, which limits their effectiveness
in complex or noisy scenarios.

2.2 Graph Filters

Graph filters play a crucial role in graph signal processing by enabling the manip-
ulation of signals defined on graph structures, leveraging adjacency relationships
between nodes. These filters are employed for tasks such as signal smoothing,
noise reduction, and feature extraction [9]. Recent studies have explored inte-
grating low-pass graph filters to enhance data representations in multi-view clus-
tering (MVC). Lin and Kang [14], Chen et al. [2] and Kang et al. [10] adopt a
two-stage strategy: constructing low-pass filters to smooth the original features
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before applying MVC. Alternatively, Zhou et al. [33], and Zhou and Du [34]
propose learning similarity graphs in the node domain, adjusting graph filters
dynamically during clustering to improve adaptability. Yang et al. [26] examine
the convex combination of multiple graph filters, combining their strengths to
improve filtering effectiveness. Guo et al. [7] further build on this by using bipar-
tite graphs to construct filters and achieve linear-time filtering via the Woodbury
formula. Despite progress in the utilization of graph filtering, existing methods
predominantly focus on low-frequency components to capture smooth represen-
tations, often indiscriminately discarding high-frequency signals as noise. This
can inevitably result in over-smoothing and impair the ability to preserve dis-
criminative node features. Although some methods [14,10,33,34] attempt mitiga-
tion by heuristically constraining the filter order within an empirical range, such
strategies still restrict the exploitation of high-order information and hinder the
pursuit of optimal filtering.

3 Proposed Method

In this section, we present the proposed method, starting with the base parti-
tions {Hv}Vv=1 ∈ Rn×d, where V denotes the number of views, n the number of
samples, and d the embedding dimension. Each Hv consists of orthogonal vectors
obtained via eigenvalue decomposition of the corresponding kernel matrix.

3.1 View-independent Bipartite Graph Construction

To reduce computational overhead, we introduce bipartite graphs that capture
affinities between samples and a reduced set of representative anchors. Prior
work has shown that diversifying anchor graphs can significantly enhance clus-
tering performance [28]. Motivated by this, we adopt a view-independent an-
chor selection strategy. Specifically, we first perform Kmeans clustering indepen-
dently on each partition Hv to obtain mv centroids, forming the anchor matrix
Ov ∈ Rmv×d. The bipartite graph Zv ∈ Rn×mv is then learned by solving the
following optimization problem:

min
zv
i 1=1,zv

i ≥0

mv∑
j=1

dist(hv
i ,o

v
j )z

v
ij + τ

mv∑
j=1

(zvij)
2, (1)

where zvi is the i-th row of Zv, dist(hv
i ,o

v
j ) = ∥hv

i − ov
j∥22 denotes the squared

euclidean distance between the i-th sample and j-th anchor, and τ is a reg-
ularization hyperparameter controlling the smoothness of the assignment. To
further enhance scalability, we impose sparsity on Zv by restricting each sample
to connect only with its k nearest anchors, following the strategy in [18], with k
fixed to 5 throughout our experiments. For each sample i, assume that the dis-
tances dist(hv

i ,o
v
1),dist(hv

i ,o
v
2), . . . ,dist(hv

i ,o
v
mv

) are sorted in ascending order.
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Problem (1) admits a closed-form solution given by:

zvij =


dist(hv

i ,o
v
k+1)−dist(hv

i ,o
v
j )

kdist(hv
i ,o

v
k+1)−

∑k
k′=1

dist(hv
i ,o

v
k′ )

, if j ≤ k,

0, if j > k.

Subsequently, the similarity matrix Sv ∈ Rn×n is constructed from the bi-
partite graph Zv to capture indirect associations between samples. Specifically,
we normalize Zv by computing:

Pv = Zv∆
− 1

2
v , (2)

where ∆v is a diagonal matrix with entries ∆v
jj =

∑n
i=1 Z

v
ij . The final similarity

matrix is then obtained as:

Sv = PvP
⊤
v , (3)

By construction, Sv is a doubly stochastic matrix, i.e., each row and column
sums to one, enabling favorable properties for subsequent graph filtering and
clustering steps.

3.2 Smoothed Partition Fusion with Low-pass Filtering

Although similarity graphs {Sv}Vv=1 effectively capture local structure, they over-
look higher-order neighborhood relationships, missing global dependencies be-
tween distant samples. To address this, we adopt heat kernel diffusion [13] to
integrate similarity graphs across all orders. Formally, the diffusion process is
expressed as:

Gv = e−η
∞∑
t=0

ηt

t!
(Sv)

t = exp(−ηLv), (4)

where η ≥ 0 controls the decay rate [3] and Lv = I − Sv denotes the normal-
ized Laplacian. The resulting Gv acts as a low-pass filter that suppresses high-
frequency components, effectively reducing noise and enhancing global structural
patterns.

To fully explore the information across views and enhance global consistency,
we learn a consensus graph filter via linearly combining the view-specific filters:

Ĝ =

V∑
v=1

βv exp(−ηLv), (5)

where β are weights determined based on the downstream clustering task. This
consensus mechanism consolidates high-order topological structures across views,
enabling effective noise suppression and yielding more coherent cluster results.

In the LFMKC task, the base partition Hp can be regarded as a graph signal.
If Hp exhibits a clear clustering structure, it should adhere to the clustering and
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manifold assumptions, which state that data within the same class should be
close to each other. According to references [4,24], smooth graph signals often
follow the clustering and manifold assumptions. Building upon this observation,
we apply the above-mentioned consensus low-pass graph filter on the signals Hp

to obtain a more cluster-friendly embedding FL(Hp) as follows:

FL(Hp) = ĜHp =

(
V∑

v=1

βv exp(−ηLv)

)
Hp. (6)

The filtered embeddings {FL(Hp)}Vp=1 are expected to exhibit enhanced clus-
ter smoothness. To fuse these enhanced representations into the final clustering
result, we learn a discrete consensus indicator matrix Y ∈ {0, 1}n×c and an or-
thogonal centroid matrix Cp ∈ Rd×c with c disjoint clusters for each partition,
by solving the following prototype-based optimization objective function:

min

V∑
p=1

αp

∥∥∥( V∑
v=1

βv exp(−ηLv)
)
Hp −YC⊤

p

∥∥∥2
F
, (7)

s.t. C⊤
p Cp = I, Y ∈ Ind,

V∑
p=1

1

αp
= 1, β⊤1 = 1, αp ≥ 0, βv ≥ 0, ∀p, v,

where αp quantifies the contribution of each partition in guiding the consensus.
The orthogonality constraint C⊤

p Cp = I encourages well-separated clusters and
facilitates optimization.

3.3 Joint Clustering via Optimal Filtering with Dual-Frequency

While low-pass graph filters are commonly applied to enhance intra-cluster co-
herence by smoothing node features, they often treat all high-frequency compo-
nents as noise and arbitrarily remove them, which may obscure critical struc-
tural variations. Prior studies [1,12] reveal that high-frequency graph compo-
nents encode valuable structural discontinuities, which are essential for preserv-
ing local discriminability. Thus, over-reliance on low-pass filters may lead to
over-smoothing, blurring boundaries and hindering model generalization [25].
Motivated by this, we extend the objective in Eq. (7) by explicitly incorporating
high-frequency information to restore fine-grained local structure. To this end,
we similarly design a consensus high-pass graph filter by linearly combining the
Laplacian matrices from all views and apply it to the signal Hp as follows [22]:

FH(Hp) =

(
V∑

v=1

γvLv

)
Hp, (8)

where γv denotes the combination coefficients about each high-pass filter Lv.
Rather than discarding high-frequency signals as noise, our model utilizes

them to compensate for the information loss induced by over-smoothing. The
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joint clustering objective integrates both filtered representations:

min

V∑
p=1

αp(λ∥(
V∑

v=1

βvGv)Hp −YC⊤
p ∥2F + (1− λ)∥(

V∑
v=1

γvLv)Hp −YC⊤
p ∥2F ),

s.t.C⊤
p Cp = I, Y ∈ Ind,

V∑
p=1

1

αp
= 1, β⊤1 = 1, γ⊤1 = 1, (9)

αp ≥ 0, βv ≥ 0, γv ≥ 0, ∀p, v,

where λ ∈ [0, 1] controls the trade-off between global smoothness and local dis-
criminability. By jointly optimizing low- and high-frequency responses, FL(Hp)
and FH(Hp), the model effectively captures multi-scale structural cues. This
dual-frequency optimal filtering design enhances robustness to noise and over-
smoothing, enabling the consensus indicator matrix Y to encode a more expres-
sive and faithful clustering structure across views.

3.4 Optimization

To solve the optimization problem in Eq. (9), we propose a five-step alternating
optimization algorithm.

Update {Cp}V
p=1 with fixed Y, α, β, and γ. Optimizing each Cp is equiv-

alent to solving the following equation:

max
Cp

tr(C⊤
p Ap) s.t. C⊤

p Cp = I, (10)

where Ap = H⊤
p

(
λ
∑V

v=1 βvGv + (1− λ)
∑V

v=1 γvLv

)
Y. The SVD of Ap is

expressed as Ap = UpΛpV
⊤
p . It is obtained that Cp is updated by:

Cp = UpV
⊤
p . (11)

For the detailed proof, see [8].

Update Y with fixed {Cp}V
p=1, α, β, and γ. Optimizing Y is equivalent

to solving the following equation:

max
Y

tr(Y⊤F) s.t. Y ∈ Ind, (12)

where F =
∑V

p=1 αp

(
λ
∑V

v=1 βvGv + (1− λ)
∑V

v=1 γvLv

)
HpCp. The optimal

solution for Eq. (12) is given by:

yij =

{
1, if j = argmaxj′ [F]ij′ ,

0, otherwise.
(13)
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Update α with fixed Y, {Cp}V
p=1, β, and γ. Optimizing {αp}Vp=1 is equiv-

alent to solving the following equation:

min
αp

V∑
p=1

αpζp, s.t.
V∑

p=1

1

αp
= 1, αp ≥ 0, ∀p, (14)

where ζp = λ∥(
∑V

v=1 βvGvHp − YC⊤
p ∥2F + (1 − λ)∥

∑V
v=1 γvLvHp − YC⊤

p ∥2F .
Based on Cauchy-Schwarz inequality, αp is updated by:

αp =

∑V
p=1

√
ζp√

ζp
. (15)

Update β with fixed Y, {Cp}V
p=1, α, and γ. Optimizing β is equivalent to

solving the following equation:

min
β

β⊤Mβ − 2β⊤b, s.t. β⊤1 = 1, βv ≥ 0, ∀v, (16)

where M ∈ RV×V with entries Mij =
∑V

p=1 αp tr
(
H⊤

p GiGjHp

)
, and b ∈ RV

with entries bi =
∑V

p=1 αp tr
(
Y⊤GiHpCp

)
. The resulting quadratic program-

ming problem can be efficiently solved using standard optimization solvers.

Update γ with fixed Y, {Cp}V
p=1, α, and β. Optimizing γ is equivalent to

solving the following equation:

min
γ

γ⊤Bγ − 2γ⊤a, s.t. γ⊤1 = 1, γv ≥ 0, ∀v, (17)

where B ∈ RV×V with entries Bij =
∑V

p=1 αp tr
(
H⊤

p LiLjHp

)
, and a ∈ RV with

entries ai =
∑V

p=1 αp tr
(
Y⊤LiHpCp

)
. The solution can be efficiently computed

via standard solvers.

Acceleration for Linear Filtering. The primary computational bottleneck
during above updates stems from the O(n2) cost of directly computing GvHp

and LvHp, which becomes prohibitive for large n. To address this, we exploit
the inherent low-rank structure of the bipartite graph Pv, where its thin SVD
decomposition Pv = QvΣvN

⊤
v enables efficient spectral filtering:

GvHp = Qv exp
(
−η(I−Σ2

v)
)
Q⊤

v Hp, (18)

LvHp = Qv(I−Σ2
v)Q

⊤
v Hp (19)

where Qv ∈ Rn×mv , Σv ∈ Rmv×mv , and Nv ∈ Rmv×mv with n ≫ mv. By
reordering the matrix products from right to left, the filtering complexity reduces
from O(n2d) to O(nmvd), ensuring linear scalability with respect to the sample
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Algorithm 1 Late Fusion Multiple Kernel Clustering Refined via Optimal Lin-
ear Graph Filtering (LFMKC-OLF)

Input: Base partitions {Hp}Vp=1, number of clusters c, number of anchors {mv}Vv=1,
number of nearest neighbors k, the parameter η and λ.

1: Construct sample-anchor similarity graphs {Zv}Vv=1 for each partition then com-
pute the column-normalized bipartite graphs {Pv}Vv=1 using Eq. (2).

2: Precompute filtered tensor banks in Eq. (20) using Eq. (18) and Eq. (19).
3: Initialize Y and {Cp}Vp=1.
4: Initialize αp ⇐ V , βv ⇐ 1/V and γv ⇐ 1/V , ∀p, v.
5: while not converged do
6: Calculate the filtered embeddings FL(Hp) and FH(Hp) for all p via weighted

aggregation over the precomputed tensor banks with current β and γ.
7: Update {Cp}Vp=1 according to Eq. (11).
8: Update Y according to Eq. (13).
9: Update α according to Eq. (15).

10: Update β by solving Eq. (16).
11: Update γ by solving Eq. (17).
12: end while
Output: Final clustering assignment Y.

size. Furthermore, all filtered outputs GvHp and LvHp are precomputed and
cached prior to optimization, forming two filtered tensor banks:G1H1 · · · GV H1

...
. . .

...
G1HV · · · GV HV

 and

L1H1 · · · LV H1

...
. . .

...
L1HV · · · LV HV

 . (20)

During iterative updates, the consensus filtered embeddings FL(Hp) and FH(Hp)
are efficiently obtained by weighted aggregation of the precomputed tensors us-
ing the current β and γ.

We summarize the procedures of LFMKC-OLF algorithm in Algorithm 1.

3.5 Complexity Analysis

The overall computational complexity of the proposed LFMKC-OLF can be
decomposed as follows. Anchor generation and bipartite graph construction incur
costs of O(nd

∑V
v=1 mv) and O(nk

∑V
v=1 mv), respectively. The precomputation

of filtered tensor banks in Eq. (20) requires O(
∑V

v=1(nmvd+mvd+mv)). During
iterative optimization, updating Cp, Y, α, β, and γ involves complexities of
O(ndc + dc3), O(ndcV ), O(ndcV ), O(n(dV 3 + dcV )), and O(n(dV 3 + dcV )),
respectively. Given that mv, c, d, V ≪ n, the overall complexity scales linearly
as O(n), ensuring scalability to large-scale datasets.
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Table 1: Dataset Summary.

ID Dataset Samples Features Classes Kernels

D1 Caltech 2386 48, 40, 254, 1984, 512, 928 20 6
D2 MouseBladder 2746 11829 16 12
D3 Wiki 2866 128, 10 10 2
D4 Zeisel 3005 4401 48 12
D5 Macosko 6418 8608 39 12
D6 One-Year-Testic 7688 9667 10 12
D7 CITECBMC 8617 1703 15 12
D8 TDT2 9394 36771 30 12
D9 Fetal-Pancreas 11983 11673 18 12
D10 MouseRetina 27499 13166 19 12

4 Experiments

4.1 Experimental Setup

We briefly introduce the experimental setup here, including the used datasets,
settings, and implementation details.

Datasets. We evaluate our method on 10 benchmark datasets: Caltech, Mouse-
Bladder, Wiki, Zeisel, Macosko, One-Year-Testic, CITECBMC, TDT2, Fetal-
Pancreas, and MouseRetina. Detailed information about these datasets is pro-
vided in Table 1.

Compared Methods. We compare the proposed LFMKC-OLF with twelve
state-of-the-art late fusion MKC methods, including AWP [17], LFMVC [21],
OPLFMVC [16], ALMVC [30], LFLKA [29], MMLMVC [11], ERMKC [27],
sLGm [23], HKLMVC [26], RIWLF [31], GMLKM [5], and CFGFLF [7]. Among
these, HKLMVC, GMLKM, and CFGFLF incorporate graph filtering techniques
to enhance clustering performance. Moreover, the average Kmeans result on base
partitions (AvgH) is reported as a baseline.

Experimental Setting. All kernel matrices used in our experiments are pre-
computed using carefully designed similarity functions, and each base kernel is
centered and normalized. Specifically, for the Caltech and Wiki datasets, a lin-
ear kernel matrix is constructed for each view. For the remaining datasets, we
construct a diverse set of 12 kernel matrices per dataset, comprising 7 Gaussian
kernels, 1 linear kernel, and 4 polynomial kernels, as detailed in [6]. To assess the
performance of all methods under varying structural conditions, we further gen-
erate local kernels that capture local structural information based on the original
kernels described above, following the strategy outlined in [29]. Throughout our
experiments, the base partitions are obtained by performing kernel Kmeans on
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the constructed kernels and extracting their top-c eigenvectors, which serve as
inputs for subsequent late fusion processes.

Implementation Details. All baseline methods are implemented with their
recommended hyperparameter settings as reported in the respective original pa-
pers. To reduce random bias, all methods are executed 10 times and the average
results are taken. The number of clusters for each dataset is set to the ground-
truth class count. We evaluate clustering performance using three common met-
rics: Accuracy (ACC), Adjusted Rand Index (ARI), and Fscore. All experiments
are conducted on a desktop equipped with an AMD Ryzen 7 5700G CPU (3.8
GHz) and 64 GB RAM, using MATLAB R2022b. For the proposed LFMKC-
OLF, the neighborhood size k is fixed at 5, and the diffusion parameter η is set
to 9 across all experiments without tuning. The balance parameter λ is tuned
within the range {0.1, 0.2, . . . , 1.0} with a step size of 0.1. For simplicity, the
number of anchors across all views is set as m1 = m2 = · · · = mV = m, where
m is searched in {4c, 6c, 8c, 10c}.

4.2 Experimental Results

Tables 2 and 3 present the clustering results under two distinct base parti-
tion settings, with best results highlighted in red and second-best in blue. The
proposed LFMKC-OLF consistently outperforms all baseline methods across
most datasets in terms of ACC, ARI, and Fscore. In particular, on dataset
D6, LFMKC-OLF exceeds the second-best method by substantial margins, with
70.43% under the original kernel partition and 25.65% under the local kernel
partition in terms of ACC, underscoring its strength in LFMKC scenarios.

Although methods such as AWP, LFMVC, and OPLFMVC are specifically
designed for efficient partition fusion, their performance remains limited, primar-
ily due to reliance on static, low-quality base partitions and a lack of capacity to
exploit higher-order structural information. In contrast, graph filter-based meth-
ods like HKLMVC, GMLKM, and CFGFLF enhance clustering through low-pass
filtering, showing competitive performance on several datasets. However, these
methods appear to converge toward a performance ceiling, likely attributable
to the over-smoothing effect inherent in their filtering strategies. LFMKC-OLF
consistently delivers superior performance improvement over other graph filter-
based methods and achieves optimal filtering through dual-frequency joint clus-
tering, effectively avoiding over-smoothing. These results confirm the effective-
ness and strong applicability of the proposed method in diverse contexts.

4.3 Running Time Comparison and Convergence

We assess the time efficiency of the proposed LFMKC-OLF algorithm in Fig. 1.
Experimental results reveal that LFMKC-OLF consistently outperforms most
baseline methods in runtime, validating its computational efficiency. Notably,
compared with graph filtering-based approaches such as HKLMVC, GMLKM,
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Table 2: Clustering results (in %) on original kernel partitions.
Methods D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

ACC (%)

AvgH 32.99 40.02 36.37 29.16 42.85 28.90 35.76 35.06 34.01 34.12
AWP 57.54 51.86 50.70 39.33 64.77 30.15 41.50 53.84 41.76 41.97

LFMVC 42.44 51.63 51.10 37.51 60.30 36.20 39.79 46.51 38.68 42.24
OPLFMVC 52.51 52.13 54.46 39.07 65.37 32.71 41.46 49.95 41.94 41.54

ALMVC 41.41 51.51 50.23 36.87 59.26 35.78 39.77 46.28 38.62 41.97
LFLKA 42.13 52.19 51.10 37.39 60.36 36.20 39.74 47.34 38.30 42.59

MMLMVC 40.23 48.92 50.23 37.13 57.62 34.85 38.67 48.30 37.86 39.71
ERMKC 41.78 58.92 54.82 37.70 59.88 42.20 42.62 49.13 43.52 42.63
sLGm 43.30 51.51 51.08 37.14 58.74 36.12 39.43 46.16 39.24 42.58

HKLMVC 60.55 55.87 55.64 45.42 70.67 35.90 42.68 54.72 46.43 46.42
RIWLF 42.73 51.88 51.55 37.75 59.93 36.44 39.60 46.70 39.21 42.32
GMLKM 47.11 50.78 55.34 39.95 59.04 34.78 45.14 40.40 40.88 46.32
CFGFLF 54.17 54.97 55.34 43.12 64.09 33.98 48.26 49.08 48.76 45.09

LFMKC-OLF 73.26 76.47 55.79 51.41 77.45 71.92 65.85 78.90 64.78 75.06

ARI (%)

AvgH 20.23 26.28 22.38 14.59 34.16 9.51 20.47 16.88 15.30 16.64
AWP 51.47 38.44 34.11 22.39 54.16 13.38 30.43 35.71 23.46 24.79

LFMVC 30.96 39.35 35.57 21.77 49.35 18.89 29.24 31.55 22.63 26.32
OPLFMVC 42.16 38.68 42.97 22.26 55.67 15.15 30.11 33.37 23.38 25.00

ALMVC 30.46 39.38 34.71 21.54 49.09 18.53 29.24 31.38 22.60 26.30
LFLKA 31.24 39.74 35.57 21.34 50.16 18.90 29.07 32.14 22.46 26.82

MMLMVC 29.64 36.21 34.71 20.91 45.68 16.91 29.01 32.53 22.33 23.45
ERMKC 30.39 45.01 42.35 21.89 49.39 21.09 32.58 37.74 27.61 26.59
sLGm 31.21 39.50 35.55 21.64 48.00 18.96 29.14 30.94 22.87 26.33

HKLMVC 50.74 42.38 44.04 30.81 62.94 18.53 31.47 40.57 27.94 30.22
RIWLF 30.35 39.79 36.55 21.83 49.41 19.30 29.16 31.29 22.76 26.24
GMLKM 33.88 38.01 43.38 24.88 47.76 17.54 33.41 20.43 25.48 31.31
CFGFLF 45.50 40.24 43.54 27.12 53.95 17.47 36.06 32.61 30.29 32.10

LFMKC-OLF 73.05 65.70 40.34 45.46 75.79 63.51 51.90 72.82 39.03 82.56

Fscore (%)

AvgH 26.63 35.07 30.52 18.82 36.67 27.04 34.07 26.12 27.78 27.71
AWP 57.01 44.11 41.09 25.13 56.14 27.63 37.46 39.57 31.06 31.49

LFMVC 36.64 44.91 42.33 24.40 51.28 31.96 36.26 35.40 29.55 32.60
OPLFMVC 48.00 44.34 49.04 24.95 57.60 28.67 37.13 37.16 31.14 31.63

ALMVC 36.17 44.93 41.55 24.17 51.02 31.64 36.26 35.22 29.52 32.59
LFLKA 36.97 45.30 42.33 23.97 52.08 31.96 36.09 35.96 29.37 33.14

MMLMVC 35.36 41.98 41.55 23.56 47.72 30.15 35.95 36.35 29.25 29.92
ERMKC 36.10 50.35 48.47 24.59 51.53 33.92 40.39 41.51 34.34 32.89
sLGm 36.85 45.05 42.31 24.28 49.97 32.02 36.17 34.80 29.79 32.74

HKLMVC 57.83 47.94 50.07 34.00 64.70 32.62 38.51 44.44 35.72 36.80
RIWLF 36.07 45.33 43.20 24.46 51.33 32.35 36.15 35.14 29.69 32.52
GMLKM 40.23 43.94 49.42 27.58 49.86 31.16 40.72 27.04 32.81 37.96
CFGFLF 51.59 46.23 49.61 30.02 55.98 31.65 43.01 38.42 38.51 38.78

LFMKC-OLF 78.16 70.51 47.71 49.59 77.26 77.33 61.25 75.65 52.39 85.94

and CFGFLF, LFMKC-OLF exhibits superior scalability and efficiency on large-
scale datasets. Although CFGFLF also achieves linear filtering, its high per-
iteration complexity leads to substantially longer overall runtime. In contrast, the
lightweight design of LFMKC-OLF ensures low per-iteration overhead, achieving
a favorable trade-off between computational cost and clustering quality.

Convergence behavior on Caltech, MouseBladder, Wiki, and Macosko datasets
is illustrated in Fig. 2, with similar trends on other datasets omitted for brevity.
The objective value decreases monotonically and converges within 15 iterations,
accompanied by steady improvements in clustering performance until stabiliza-
tion. These results underscore the algorithm’s fast convergence and effectiveness.
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Table 3: Clustering results (in %) on local kernel partitions.
Methods D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

ACC (%)

AvgH 33.68 49.21 36.21 30.23 34.79 32.43 57.67 60.55 29.87 32.47
AWP 47.90 58.78 45.43 36.14 35.87 44.25 65.70 78.77 40.44 41.27

LFMVC 43.98 50.29 51.34 30.53 34.82 32.18 58.05 58.69 30.48 31.93
OPLFMVC 50.44 59.13 55.22 34.03 37.22 44.18 65.63 79.21 40.40 41.41

ALMVC 42.28 49.03 50.64 30.43 34.49 31.89 56.92 58.69 30.15 31.76
LFLKA 43.37 50.24 51.35 30.52 35.26 32.09 57.77 59.55 30.48 31.92

MMLMVC 41.92 49.09 50.63 30.80 34.73 32.63 57.28 58.42 30.60 31.87
ERMKC 50.39 53.47 53.33 31.89 35.69 35.16 61.80 64.40 32.87 36.24
sLGm 43.32 49.66 51.10 30.74 34.46 32.11 57.91 58.84 30.62 31.96

HKLMVC 52.42 56.31 55.25 34.91 37.84 44.36 65.97 78.29 40.73 41.48
RIWLF 44.20 50.17 51.12 30.60 34.81 47.20 65.83 60.79 36.84 45.22
GMLKM 45.54 49.25 54.62 34.18 35.60 41.47 58.82 61.63 31.87 35.92
CFGFLF 43.40 54.88 55.20 39.58 39.79 52.40 67.09 84.48 43.54 53.38

LFMKC-OLF 63.24 73.71 63.08 45.99 46.32 65.84 69.59 85.05 52.92 61.35

ARI (%)

AvgH 20.84 37.69 22.63 20.37 28.38 17.88 47.51 49.88 16.05 21.04
AWP 32.54 42.37 26.39 27.30 30.55 31.03 54.53 70.16 21.61 40.08

LFMVC 30.06 38.78 35.41 20.29 28.26 18.04 47.62 47.30 16.31 22.57
OPLFMVC 36.28 43.41 43.54 25.04 31.05 30.96 54.57 68.13 21.60 40.01

ALMVC 29.58 37.99 34.99 20.37 28.13 18.11 47.07 47.30 16.13 22.02
LFLKA 29.78 38.83 35.49 20.50 28.82 18.21 47.63 48.20 16.31 22.56

MMLMVC 27.65 37.42 34.97 20.42 28.24 18.16 47.32 47.89 16.39 22.52
ERMKC 38.89 41.71 38.87 21.73 29.61 19.10 50.60 51.16 17.61 25.03
sLGm 30.56 38.67 35.09 20.37 27.90 18.11 47.64 47.17 16.47 22.70

HKLMVC 38.74 41.75 43.20 25.74 30.91 30.74 54.53 68.52 21.70 40.15
RIWLF 29.37 38.41 34.98 20.51 28.90 15.49 54.47 49.54 21.83 28.08
GMLKM 27.34 37.34 39.57 24.44 26.70 24.62 46.03 43.21 16.47 25.72
CFGFLF 25.22 38.99 42.81 29.92 30.27 3.23 54.62 66.54 22.58 52.20

LFMKC-OLF 49.65 60.23 49.96 42.66 37.15 51.00 58.65 78.31 31.14 66.83

Fscore (%)

AvgH 27.91 43.57 30.97 23.31 31.24 32.03 56.67 53.83 23.51 29.93
AWP 40.03 48.99 34.21 30.70 34.02 49.29 63.03 72.92 31.65 48.25

LFMVC 36.22 44.58 42.26 23.25 31.07 31.95 56.75 50.88 23.79 29.61
OPLFMVC 43.32 49.80 49.67 28.19 34.48 49.25 63.06 70.97 31.64 48.19

ALMVC 35.76 43.81 41.84 23.31 30.98 32.16 56.23 50.88 23.58 29.09
LFLKA 36.03 44.61 42.32 23.42 31.64 32.18 56.72 51.76 23.80 29.60

MMLMVC 33.94 43.35 41.83 23.38 31.07 32.06 56.47 51.45 23.91 29.63
ERMKC 45.32 47.48 45.41 24.71 32.52 33.06 59.44 54.73 25.11 32.09
sLGm 36.75 44.42 41.98 23.30 30.70 32.04 56.77 50.79 23.99 29.72

HKLMVC 46.23 48.16 49.45 29.07 34.43 49.13 63.05 71.41 31.80 48.34
RIWLF 35.51 44.19 41.86 23.43 31.70 44.57 62.86 52.98 29.90 45.71
GMLKM 36.65 43.56 46.58 28.05 30.19 41.79 55.39 48.56 25.51 34.82
CFGFLF 34.75 46.50 49.14 34.16 34.64 47.74 63.21 70.88 34.97 61.34

LFMKC-OLF 58.87 65.92 56.17 47.19 41.57 68.44 66.64 80.54 43.06 72.93

4.4 Parameter Analysis

We evaluate the sensitivity of LFMKC-OLF to two key parameters: the num-
ber of anchors m ∈ {4c, 6c, 8c, 10c}, where c is the number of clusters, and
the trade-off parameter λ ∈ {0.1, 0.2, . . . , 1.0}. The performance trends under
different parameter combinations are illustrated in Fig. 3. We observe that per-
formance remains relatively stable as the number of anchors m varies. Regard-
ing the trade-off parameter λ, optimal performance is typically achieved within
the range [0.6, 0.8], while larger values tend to over-smoothing and performance
degradation, suggesting that the smoothing component plays a dominant role.
Notably, on datasets such as Caltech and Wiki, better performance is observed
with smaller λ values in the range [0.2, 0.5], highlighting the effectiveness of high-
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Fig. 1: Comparison of LFMKC-OLF and baseline methods in terms of relative base-10
logarithmic runtime on ten benchmark datasets under the original kernel partitions.
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Fig. 2: The objective value and clustering performance of LFMKC-OLF vary with in-
creasing iterations on Caltech, MouseBladder, Wiki, and Macosko datasets.

pass filtering in preserving fine-grained details, alleviating over-smoothing and
further enhancing representations to improve clustering performance.

4.5 Ablation Study

To assess the contribution of each component in the LFMKC-OLF objective,
we perform an ablation study comparing the full model against two simplified
variants: (1) a baseline defined by Eq. (7) without the consensus low-pass filter
Ĝ, denoted as Eq. (7) w/o Ĝ; (2) the low-pass-only model given by Eq. (7).

The results, summarized in Table 4 with the best values highlighted in red,
demonstrate that LFMKC-OLF consistently outperforms both variants across
all datasets. This clearly verifies the effectiveness of both low-pass filtering and
high-frequency enhancement in improving clustering performance. Notably, the
performance gap between Eq. (7) w/o Ĝ and Eq. (7) highlights the importance
of incorporating the low-pass filter, which enhances global structural consistency
and suppresses noise in base partitions. Furthermore, the superiority of LFMKC-
OLF over Eq. (7) confirms the necessity of integrating high-frequency signals to
mitigate over-smoothing and retain essential local discriminative information.

5 Conclusion

In this work, we propose a novel late fusion multiple kernel clustering frame-
work refined via optimal linear graph filtering (LFMKC-OLF), which effectively
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(a) Caltech (b) MouseBladder (c) Wiki (d) Macosko

Fig. 3: The parameter sensitivity experiments on Caltech, MouseBladder, Wiki, and
Macosko datasets under the original kernel partitions.

Table 4: Ablation study: ACC (in %) on different datasets.

Methods D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Original Kernel Partitions

Eq. (7) w/o Ĝ 57.46 52.55 49.93 37.34 64.82 31.22 45.00 53.23 43.97 39.47
Eq. (7) 33.45 75.56 37.89 49.05 74.21 71.49 56.37 78.06 64.75 74.64

LFMKC-OLF 73.26 76.47 55.79 51.41 77.45 71.92 65.85 78.90 64.78 75.06

Local Kernel Partitions

Eq. (7) w/o Ĝ 51.05 59.18 45.43 32.95 34.76 44.35 65.70 80.75 45.48 41.07
Eq. (7) 62.78 68.90 53.80 38.87 43.02 65.83 66.65 82.90 48.92 53.74

LFMKC-OLF 63.24 73.71 63.08 45.99 46.32 65.84 69.59 85.05 52.92 61.35

addresses the limitations of low-quality base partitions while maintaining linear
computational complexity. By constructing bipartite graphs and deriving high-
order low-pass and high-pass filters through heat kernel diffusion and Laplacian
operators, the proposed method captures both global and fine-grained struc-
tural information. A consensus filtering mechanism is further introduced by op-
timally combining view-specific filters, enabling robust multi-scale representation
learning. The joint clustering formulation, which integrates both smoothed and
detail-enhanced partitions, effectively mitigates over-smoothing and improves
clustering fidelity. Extensive experiments across multiple datasets and diverse
base partition settings consistently demonstrate the superiority and robustness of
LFMKC-OLF. Future work will explore more advanced graph filtering paradigms
and extend the framework to broader real-world applications.
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