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Abstract. Continual Knowledge Graph Embedding (CKGE) seeks to
integrate new knowledge while preserving past information. However,
existing methods struggle with efficiency and scalability due to two key
limitations: (1) suboptimal knowledge preservation between snapshots
caused by manually designed node/relation importance scores that ignore
graph dependencies relevant to the downstream task, and (2) computa-
tionally expensive graph traversal for node/relation importance calcu-
lation, leading to slow training and high memory overhead. To address
these limitations, we introduce ETT-CKGE (Efficient, Task-driven,
Tokens for Continual Knowledge Graph Embedding), a novel task-
guided CKGE method that leverages efficient task-driven tokens for ef-
ficient and effective knowledge transfer between snapshots. Our method
introduces a set of learnable tokens that directly capture task-relevant
signals, eliminating the need for explicit node scoring or traversal. These
tokens serve as consistent and reusable guidance across snapshots, en-
abling efficient token-masked embedding alignment between snapshots.
Importantly, knowledge transfer is achieved through simple matrix op-
erations, significantly reducing training time and memory usage. Exten-
sive experiments across six benchmark datasets demonstrate that ETT-
CKGE consistently achieves superior or competitive predictive perfor-
mance, while substantially improving training efficiency and scalability
compared to state-of-the-art CKGE methods. The code is available at
Github.

Keywords: Graph Representation Learning · Continual Knowledge
Graph Learning · Knowledge Graph · Graph Completion.

1 Introduction

Knowledge graph embedding (KGE) aims to project nodes and relations into a
continuous vector space to support downstream applications [10,7,5,24] such as

https://github.com/lijingzhu1/ETT-CKGE/tree/main
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node classification, knowledge graphs (KGs) completion, and graph classifica-
tion. While traditional KGE methods primarily focus on static KGs [23], real-
world KGs are inherently dynamic, continuously evolving with emerging nodes,
relations, and facts. In such settings, retraining KGE models from scratch be-
comes computationally expensive. To address this challenge, Continual Knowl-
edge Graph Embedding (CKGE) [4] has been proposed as a practical paradigm
that incrementally updates node and relation representations over a sequence
of knowledge graph (KG) snapshots while mitigating catastrophic forgetting of
previously learned knowledge.

Generally, previous research has explored approaches such as parameter iso-
lation [18,15], replay-based [18,15], and regularization strategies [12,11,4,29]. De-
spite their effectiveness in mitigating catastrophic forgetting, these approaches
still face fundamental limitations. Primarily, previous methods rely heavily on
human-designed heuristics to estimate the importance of nodes and relations
when transferring knowledge across evolving graph snapshots. Such handcrafted
weighting schemes often do not align accurately with the true optimization ob-
jective, leading to suboptimal preservation and adaptation of knowledge between
snapshots. Moreover, these methods typically require extensive computational
resources due to explicit graph traversals or iterative importance computations
for each node and relation. Consequently, they suffer from slow training times
and substantial memory usage, rendering them inefficient and difficult to scale
for large-scale KGs.

To address these limitations, we propose a novel Efficient Task-driven
Tokens for Continual Knowledge Graph Embedding (ETT-CKGE). Rather
than relying on predefined node/relation importance ranking rules, we introduce
task-driven tokens that learn to assess the importance of nodes and relations di-
rectly from the task loss. These tokens interact with the graph embeddings and
subsequently generate a token-masked embedding, which is optimized during
training. These learned tokens inherently capture the task-relevant components
of the graph and produce an importance mask that can be seamlessly transferred
to guide learning in future snapshots. This approach offers two key advantages:
it aligns importance estimation with task objectives instead of human-designed
importance heuristics, and it significantly reduces training time and memory
usage by replacing the graph traversal with a single matrix multiplication.

Table 1: Comparison of regularization-based methods for graph search space

Method Graph Traversal Weighting Metrics

LKGE Full Frequency
FMR Full Frequency & Gradient
IncDE Partial Centrality
FastKGE Partial Rank of centrality
ETT-CKGE (Ours) None Task-driven

Moreover, Table 1 summarizes a comparison of advanced regularization-based
methods. In particular, prior methods require either full or partial graph traver-
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Fig. 1: (Best view in color) Comparison of performance(MRR), training time(S), and
memory usage(MB) across CKGE methods on the RELATION data set. Our method
achieves the best balance, delivering high accuracy with significantly reduced training
time and memory consumption. The color scale indicates memory usage, with darker
colors representing lower memory overhead.

sal and depend on handcrafted metrics to guide learning. In contrast, our pro-
posed method removes the need for explicit graph traversal and human-designed
metrics by introducing task-driven tokens. These tokens learn to identify crit-
ical entities and relations based solely on task loss, producing a token-masked
embedding that adaptively highlights relevant knowledge.

As illustrated in Figure 1, our method consistently outperforms CKGE base-
lines while requiring significantly less training time and memory usage. This
improvement reflects not only computational efficiency but also enhanced scal-
ability and smoother adaptation to evolving knowledge graphs, making our ap-
proach more practical for real-world, large-scale continual learning scenarios.
The main contributions of this work are summarized as follows:

– We introduce a novel task-driven token module that learns to estimate
the importance of nodes and relations directly from task loss. These task-
guided tokens are then used to generate importance masks, enabling an
effective knowledge transfer method that selectively preserves and adapts
task-relevant information across growing KG snapshots without relying on
human-crafted heuristics or static graph metrics.

– ETT-CKGE eliminates the need for graph traversal or iterative importance
scoring by formulating importance estimation as a single matrix multipli-
cation. This design significantly reduces computational overhead, achieves
better scalability, and enables seamless integration with large-scale KGs, of-
fering a practical and resource-efficient solution for CKGE settings.

– We conduct comprehensive experiments on six datasets with different data
distributions, showing that ETT-CKGE consistently achieves competitive
or superior performance in predictive accuracy while reducing training time
and memory consumption compared to SOTA methods.
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2 Related Work

Unlike standard KGE methods [1,20,8,22], which assume a static graph struc-
ture, CKGE is designed for dynamically evolving KGs. A recent survey [27] cate-
gorizes CKGE methods into three main strategies: parameter isolation methods,
replay-based methods, and regularization-based methods.

Firstly, replay-based methods [16,28] replay past graph snapshots to retain
information while learning new facts. However, these methods suffer from scal-
ability issues as the memory required to store past knowledge increases signifi-
cantly over time, making them impractical for large-scale applications. Secondly,
parameter isolation methods, such as progressive neural networks (PNNs) [18]
and dynamically expandable networks (DEN) [26], allocate separate parame-
ter subsets to different tasks to prevent interference. While effective in avoiding
catastrophic forgetting, these models require continuous expansion, leading to
uncontrolled growth in model size. Lastly, regularization-based methods address
catastrophic forgetting by constraining updates to critical parameters. Early
approaches, such as elastic weight consolidation (EWC) [9], used parameter
importance-based constraints, while R-EWC [13] improved knowledge consolida-
tion through rotation-based constraints. More recent methods, such as FMR [29],
leverage rotational techniques to enhance stability in CKGE, and IncDE [11] ex-
plicitly preserve graph structure to improve retention. Moreover, FastKGE [12]
introduced low-rank adapters (LoRA) to CKGE, enabling efficient adaptation to
new knowledge while reducing training time. However, FastKGE relies heavily
on degree centrality within layers, requiring substantial memory to store layer
information.

As shown in Table 1, other SOTA regularization-based methods, such as
LKGE, FMR, IncDE, and FastKGE, also depend on graph traversal—some re-
quire full-graph traversal, while others operate on partitioned graphs. This re-
liance introduces considerable computational costs, particularly as the KG size
increases. Unlike previous methods that rely on heuristic metrics to measure the
informative knowledge to overcome the forgetting issues in CKGE, we propose a
set of efficient and task-driven tokens to adaptively locate essential graph com-
ponents without requiring exhaustive graph traversal. By leveraging pre-trained
tokens to capture global knowledge with minimal overhead, our method achieves
significantly better efficiency and scalability.

3 Continual Knowledge Graph Embedding

Problem Definition: A growing knowledge graph is modeled as a sequence of
snapshots: G = {G1,G2, . . . ,GI}, where I is the total number of snapshots. Each
snapshot Gi represents a static KG at time step i, defined as Gi = {Ti, Ei,Ri},
where Ti, Ei, and Ri denote the sets of triplets, entities, and relations, respec-
tively. In this context, entities represent the nodes of the graph, while relations
define the semantic edges that connect them. The numbers of entities and re-
lations in each snapshot are denoted as NE and NR, respectively. A triplet
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Fig. 2: An overview of the ETT-CKGE framework. Stage I focuses on token pre-
training, where tokens interact with previous embeddings to capture and retain prior
knowledge. In Stage II, the learned tokens mask both old and new knowledge, aligning
them to facilitate knowledge distillation and ensure effective continual learning

(h, r, t) consists of a head entity h, a relation r, and a tail entity t, forming
a directed semantic connection. The set of triplets in snapshot Gi is given by
Ti = {(h, r, t) | (h, r, t) ∈ Ei×Ri×Ei}. Each snapshot Gi introduces incremental
knowledge in the form of newly added entities, relations, and triplets compared
to the previous snapshot Gi−1.

Inference: The primary task in this work is link prediction. We assess the
model’s accuracy within the dynamic context of evolving KGs. Specifically, for
each test fact (h, r, t) in a given snapshot Gi, we construct two types of queries:
(h, r, ?) and (?, r, t).

4 Our Approach: Efficient Task-diven Tokens

The overall architecture of ETT-CKGE is illustrated in Figure 2, consisting of
two stages: Stage I for token learning and Stage II for knowledge transfer, which
are detailed in Sections 4.1 and 4.2, respectively.

In Stage I, we introduce a set of learnable tokens that act as task-driven rep-
resentations, interacting with previously learned embeddings to capture task-
relevant knowledge. Stage II focuses on continual knowledge transfer. In this
stage, the previously learned embeddings and tokens are frozen to preserve his-
torical knowledge, while only the embeddings of the new snapshot are updated.
The learned tokens serve as task-driven guidance signals, promoting consistency
across evolving graph snapshots. A distillation loss is applied to guide the transfer
process and mitigate catastrophic forgetting. Importantly, our method achieves



6 L. Zhu at al

high computational efficiency by eliminating the need for graph traversal or iter-
ative importance scoring, knowledge transfer is achieved through simple matrix
multiplication and element-wise operations, enabling fast and scalable adapta-
tion. Although we present the two stages separately for clarity, the token learning
stage incurs negligible overhead, and the entire process can be seamlessly imple-
mented as a single unified training pipeline in practice.

4.1 Task-driven Token Learning

At snapshot i, we aim to extract and preserve critical structural knowledge
from previously learned embeddings to guide future learning. Let the embedding
matrix of entities or relations from snapshot i− 1 be denoted as Ei−1 ∈ RN×D,
where N corresponds to the number of entities (NE) or relations (NR), and D
is the embedding dimension.

To capture most task-relevant knowledge without relying on heuristic im-
portance metrics in prior works [4,11], we introduce a set of learnable tokens
Z ∈ RT×D, guided by the task objective, where T denotes the number of tokens.
These tokens serve as trainable attention mechanisms that interact with the old
embeddings to identify salient components in the graph. The interaction between
the tokens and the old embeddings is computed via inner product in the latent
space, followed by a sigmoid activation which produces a soft importance mask.
For matrix multiplication compatibility, we first transpose Ei−1 resulting in:

Mi−1 = σ(ZEi−1), (1)

where Mi−1 ∈ RT×N represents the soft mask matrix indicating the importance
of each entity (or relation) with respect to each token. σ(·) is the element-wise
sigmoid function. Our approach achieves importance estimation through a single
matrix multiplication, offering significantly improved computational efficiency
and scalability. To propagate the mask signal into the learning process, we gen-
erate masked embeddings Êi−1 by applying a token-wise weighted sum over the
original embeddings Ei−1:

Êi−1 =
T∑

t=1

Mi−1,t ⊙Ei−1, (2)

where t indexes the T token masks. The resulting Êi−1 ∈ RN×D serves as the
token-guided version of the embedding to replace Ei−1 ∈ RN×D for downstream
optimization. The quality of the learned mask is implicitly guided by the trans-
lational loss Ltrans, which measures the effectiveness of the masked embeddings
in modeling the knowledge graph structure. By freezing and optimizing only the
task-driven tokens Z, we encourage these tokens to emphasize the most informa-
tive elements in Ei−1 for task success. However, without explicit regularization,
all tokens may converge to attend to the same substructures, resulting in redun-
dant guidance. To address this, we introduce a diversity-promoting regularization
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based on the Dice coefficient which encourages the tokens to specialize in differ-
ent graph components. Given two mask vectors Mj ∈ RN and Mk ∈ RN , the
diversity loss is defined as:

Ldiv =
1

T (T − 1)

T∑
j=1

T∑
k=1

2
∑N

n=1 Mj,nMk,n∑N
n=1 M

2
j,n +

∑N
n=1 M

2
k,n

, (3)

where j ̸= k. The diversity loss Ldiv ∈ [0, 1] penalizes high similarity between
different tokens, encouraging each token to focus on distinct graph structures.
By minimizing Ldiv, we aim for the learned masks to distribute their attention
across different substructures in the KG. This formulation penalizes high overlap
between any two token masks, thereby enforcing diversity in their attention
distributions.

To align token training with the predictive task, we adopt the TransE [1]
as a translational model to learn the KGs in the current snapshot. The original
TransE loss is defined as:

Ltrans =
∑

(h,r,t)∈T

∑
(h′,r,t′)∈T ′

max(0, γ + f(h, r, t)− f(h′, r, t′)), (4)

where T represents the set of positive triplets, and T ′ denotes the set of negative
triplets generated for negative sampling. The parameter γ is a margin hyperpa-
rameter that controls the separation between positive and negative triplets. The
score function is defined as: f(h, r, t) = ||h + r − t||22. The final objective for
token learning in Stage I is defined as:

Ltoken = Ltrans + λLdiv, (5)

where λ is a hyperparameter balancing the loss terms. This formulation enables
tokens to capture both task-relevant and diverse structural patterns, serving as
a lightweight mechanism to guide continual learning without expensive traversal
or handcrafted rules.

4.2 Distillation via Learned Token Masks

Building on the effectiveness of the learned task-driven tokens in identifying key
graph substructures, we further leverage these tokens to facilitate efficient and
targeted knowledge distillation across growing knowledge graph snapshots. In
this stage, we freeze the learned task-driven tokens Z and the old embeddings
Ei−1, thus preserving the saliency patterns learned from prior snapshots. Only
the new embeddings Ei are updated during training, allowing it to align with
task-relevant structural components identified by the learned tokens. To cap-
ture informative knowledge from both the old and new snapshots, we compute
respective token-guided importance masks as:

Mi−1 = σ(ZEi−1), Mi = σ(ZEi), (6)
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where Mi−1,Mi ∈ RT×N represent the attention masks derived from previous
and current embeddings, respectively. It is important to note that knowledge
transfer is applied only to those transposed embeddings in Ei corresponding to
entities and relations that also existed in the previous snapshot Ei−1. In contrast,
new entities and relations introduced in snapshot i are learned purely through
the task loss Ltrans, without any distillation guidance. This design ensures that
distillation focuses solely on preserving previously acquired knowledge, while
allowing the model to flexibly accommodate new information.

Aligned token masks. Direct application of these independent masks may lead
to structural misalignment, where salient components differ across snapshots. To
address this, we introduce a token-level alignment mechanism, forming a joint
mask M = Mi−1 ⊙ Mi. This aligned mask is applied to both Ei−1 and Ei to
emphasize consistently critical entity and relation embeddings across snapshots,
ensuring that distillation focuses on components deemed important by both the
previous and current knowledge, rather than on noisy or transient elements.
Based on this, we formulate the knowledge distillation as:

Ldistill =
1

TN

T∑
t=1

Mt ⊙
∥∥∥Ei−1 −Ei

∥∥∥2
2
, (7)

where the L2 norm quantifies the divergence between matched embeddings, and
the aligned mask M selectively emphasizes structurally important graph compo-
nents during distillation. In contrast to prior methods that require explicit graph
traversal or iterative computations over all triples to estimate importance, our
approach performs this step through a single matrix operation, yielding substan-
tial improvements in computational efficiency.

Overall loss function. The overall training loss in this stage combines the
task-specific translational loss with the distillation loss:

L = Ltrans + αLdistill, (8)

where α is a hyperparameter controlling the strength of the distillation.

5 Experiment and Analysis

5.1 Datasets

We evaluate the proposed ETT-CKGE framework on six benchmark datasets:
ENTITY, RELATION, FACT, HYBRID, FB-CKGE, and WN-CKGE. The first
four datasets, introduced in [4], represent different types of knowledge growth
in CKGE: ENTITY tracks increasing entities, RELATION focuses on evolving
relations, FACT captures growing knowledge triples, and HYBRID combines all
three. FB-CKGE and WN-CKGE were introduced by [12] as continual extensions
of FB15K and WN18 [1]. We set the number of snapshots for all datasets to 5,
with the train/validation/test split ratio fixed at 3:1:1. Dataset statistics are
provided in Table 2.
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Table 2: The statistics of datasets.

Dataset Snapshot 0 Snapshot 1 Snapshot 2 Snapshot 3 Snapshot 4

NE NR NT NE NR NT NE NR NT NE NR NT NE NR NT

ENTITY 2909 233 46388 5817 236 72111 8275 236 73785 11633 237 70506 14541 237 47326
RELATION 11560 48 98819 13343 96 93535 13754 143 66136 14387 190 30032 14541 237 21594
FACT 10513 237 62024 12779 237 62023 13586 237 62023 13894 237 62023 14541 237 62023
HYBRID 8628 86 57561 10040 102 20873 12779 151 88017 14393 209 103339 14541 237 40326
FB-CKGE 7505 237 186070 11258 237 31012 13134 237 31012 14072 237 31012 14541 237 31010
WN-CKGE 24567 11 55801 28660 11 9300 32754 11 9300 36848 11 9300 40943 11 9302
NE , NR and NT denote the number of cumulative entities and relations, and current triples in each snapshot i.

5.2 Baselines

We compare ETT-CKGE with a range of continual learning baselines, including
fine-tune, parameter-isolation, replay-based, and regularization-based
methods. Notably, the Fine-Tune baseline simply continues training the KGE
model on new incoming data without any explicit mechanism to preserve pre-
viously learned knowledge. As a result, it is efficient in terms of training time
but suffers from severe forgetting. The remaining baselines implement different
strategies to mitigate catastrophic forgetting and preserve prior knowledge. To-
gether, they provide a comprehensive framework to evaluate the effectiveness
and efficiency of ETT-CKGE in continual knowledge graph embedding.

5.3 Experimental Setup

All experiments were conducted using PyTorch on a single NVIDIA A6000 GPU.
Experiments were conducted using a batch size selected from {1024, 2048, 3072},
and a learning rate chosen from {0.01, 0.001, 0.0001, 0.00001}. The Adam opti-
mizer is used for all experiments. The hyperparameter α varies across different
datasets, ranging from 1,000 to 100,000, while λ is selected from the range [0,
1]. The margin γ is set to 9, and D for all experiments is set to 200. In all ex-
periments, the token number T is set to different integer values within the range
(0,10]. For fairness, we run all baseline models on each benchmark dataset five
times to take their average performance and fine-tune their hyperparameters to
report the best performance. The code and hyperparameter settings are available
at Github.

5.4 Evaluation Metrics

We evaluate ETT-CKGE using three metrics: Mean Reciprocal Rank
(MRR), Hits@k, and Training Time. MRR measures the average inverse
rank of the correct entity, while Hits@k indicates the proportion of correct en-
tities ranked in the top k predictions. Training Time reflects the total time
required to train the model across all snapshots. We report MRR, Hits@k (with
k ∈ {1, 10}), and training time to assess both performance and efficiency.

Beyond performance, we assess efficiency and scalability using three metrics:
Cumulative Training time, which reflects knowledge adaptation smoothness;
Peak Allocated memory, which measures the maximum memory usage per

https://github.com/lijingzhu1/ETT-CKGE
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Table 3: Main experimental results
Model ENTITY RELATION FACT

MRR H@1 H@10 Training Time (s) MRR H@1 H@10 Training Time (s) MRR H@1 H@10 Training Time (s)

Fine-Tune 0.171 0.093 0.319 464 0.085 0.036 0.170 419 0.169 0.092 0.323 305

PNN [18] 0.229 0.130 0.425 2145 0.167 0.096 0.305 2134 0.157 0.084 0.290 1613
CWR [15] 0.087 0.028 0.200 2350 0.021 0.010 0.043 1768 0.082 0.028 0.194 2753

GEM [16] 0.165 0.085 0.321 1993 0.091 0.039 0.191 1417 0.174 0.091 0.344 1139
EMR [21] 0.173 0.065 0.333 4177 0.112 0.053 0.226 2740 0.170 0.090 0.335 1722

LKGE [4] 0.240 0.141 0.434 2374 0.172 0.093 0.343 1722 0.210 0.122 0.389 1090
FMR [29] 0.253 0.138 0.450 3094 0.194 0.107 0.367 2742 0.215 0.128 0.392 1661
IncDE [11] 0.253 0.151 0.448 1587 0.199 0.110 0.368 1392 0.216 0.128 0.391 1752
FastKGE [12] 0.230 0.140 0.404 821 0.169 0.101 0.296 610 0.171 0.105 0.291 583
ETT-CKGE 0.260 0.158 0.456 784 0.200 0.112 0.369 502 0.217 0.129 0.396 506

Model HYBRID FB-CKGE WN-CKGE

MRR H@1 H@10 Training Time (s) MRR H@1 H@10 Training Time (s) MRR H@1 H@10 Training Time (s)

Fine-Tune 0.137 0.074 0.256 559 0.182 0.098 0.344 277 0.1 0.004 0.259 392

PNN [18] 0.185 0.101 0.350 2039 0.215 0.122 0.402 1351 0.133 0.002 0.343 1429
CWR [15] 0.037 0.015 0.078 1986 0.072 0.011 0.187 2039 0.005 0.000 0.012 1265

GEM [16] 0.135 0.070 0.261 1804 0.183 0.098 0.352 1069 0.114 0.001 0.290 1049
EMR [21] 0.140 0.074 0.268 3154 0.181 0.097 0.347 1474 0.114 0.002 0.287 1160

LKGE [4] 0.179 0.111 0.372 1612 0.220 0.125 0.412 1197 0.139 0.070 0.333 1136
FMR [29] 0.206 0.121 0.375 3258 0.220 0.125 0.413 2086 0.132 0.003 0.324 1850
IncDE [11] 0.223 0.130 0.401 1675 0.232 0.133 0.425 1447 0.150 0.004 0.362 1087
FastKGE [12] 0.198 0.120 0.345 841 0.220 0.128 0.400 390 0.160 0.011 0.368 448
ETT-CKGE 0.224 0.131 0.402 535 0.236 0.137 0.428 413 0.153 0.080 0.385 369

snapshot; and Updated Parameters, which indicates the number of parame-
ters updated during training and serves as an indicator of computational cost.

5.5 Experimental Results & Discussion

Table 3 presents the experimental results across six benchmark datasets. The
results demonstrate that ETT-CKGE achieves competitive performance rela-
tive to state-of-the-art continual KGE methods, without overclaiming superior-
ity. Compared to the Fine-Tune model, ETT-CKGE yields MRR improvements
ranging from 30.1% to 135.3%, highlighting the severity of knowledge degrada-
tion in Fine-Tune as new snapshots are introduced. Notably, despite employing a
more sophisticated architecture, ETT-CKGE achieves faster training time than
Fine-Tune on the HYBRID dataset. This efficiency stems from the task-driven
token design, which allows our model to selectively encode and transfer essential
knowledge without relying on time-consuming graph traversal, thereby reducing
computational overhead while maintaining strong performance.

Compared to the second-best performing models, ETT-CKGE achieves a 50%
to 96% reduction in training time while maintaining comparable or superior
MRR. This improvement stems from ETT-CKGE’s token-guided, task-driven
framework, which not only eliminates the need for expensive graph traversal and
handcrafted heuristics, as seen in models like IncDE and FMR, but also enables
the model to identify the most informative nodes and relations directly from
task signals. This selective focus facilitates more efficient knowledge transfer and
model adaptation, resulting in a highly effective and scalable continual learning
approach.
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Fig. 3: Entity embedding visualization on the ENTITY dataset. The Silhouette Score,
shown in the lower-left corner of each plot, quantitatively reflects the clustering qual-
ity of the entity embeddings; higher scores indicate more well-separated and compact
clusters.

Compared to FastKGE, the second fastest model, ETT-CKGE consistently
achieves 7.2% to 13% higher MRR across most datasets, demonstrating its su-
perior accuracy in CKGE. While FastKGE relies on rank-based adapters and
human-designed heuristics to integrate new knowledge, its optimization is not
directly aligned with the task objective. In contrast, ETT-CKGE leverages task-
driven tokens that are optimized adaptively through the training loss, enabling
more effective and targeted knowledge transfer. Although FastKGE performs
competitively on the WN-CKGE dataset, ETT-CKGE still achieves a shorter
training time, offering a better balance between performance and efficiency.

While FastKGE sacrifices model expressiveness to speed up continual learn-
ing, our method maintains both efficiency and predictive quality, making it a
more well-rounded choice. Furthermore, Figure-3 presents entity embedding vi-
sualizations via three methods, t-SNE, UMAP, and ISOMAP. It is clear that
the entity embeddings learned by ETT-CKGE have more separable patterns
compared to embeddings learned by FastKGE.

Generally, ETT-CKGE achieves superior or comparable performance to com-
plex, resource-intensive SOTA models while significantly reducing training time
and memory consumption, as explained in Section 5.6. Compared to efficiency-
focused approaches, ETT-CKGE demonstrates notable improvements in both
accuracy and computational efficiency. Overall, ETT-CKGE offers an excellent
balance between performance and efficiency, making it a practical and scalable
solution for evolving knowledge graphs.

5.6 Catastrophic Forgetting Analysis in Continual Learning

Since catastrophic forgetting is the main concern in CKGE, Figure 4 illustrates
how our model addresses catastrophic forgetting, showcasing its performance
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Fig. 4: MRR Changes

across six datasets during sequential learning. Each heatmap displays the MRR
achieved by our model on each dataset over snapshots S1 to S5. Model stages are
denoted as Mi, where i represents the snapshot number. Warmer colors indicate
higher MRR, while cooler colors suggest performance degradation and forgetting
on that dataset.

In summary, it demonstrates our model’s effective mitigation of catastrophic
forgetting via robust knowledge preservation. Although some dataset-specific
MRR variations appear, especially on the relation-centric RELATION dataset,
ETT-CKGE generally maintains stable MRR across sequential snapshots. No-
tably, on FB-CKGE and WN-CKGE datasets, ETT-CKGE exhibits remarkable
resilience to forgetting, indicating a strong capability to learn and adapt to
evolving KGs without significantly compromising prior knowledge. This balance
of knowledge preservation and sequential learning highlights the effectiveness of
ETT-CKGE in addressing catastrophic forgetting in dynamic KG scenarios.

5.7 Efficiency and Scalability Analysis in Continual Learning

Figure 5 provides experimental validation of the efficiency and scalability on the
RELATION dataset. For a model to scale well with evolving KGs, it must adapt
to new information efficiently, meaning without a large increase in computational
work. We analyze efficiency and stability metrics from snapshot 2 onward to focus
on model behavior in dynamic scenarios.

• Cumulative Training Time: As shown in Figure 5a, ETT-CKGE con-
sistently achieves the lowest cumulative training time across all snapshots,
outperforming even the second-fastest model, FastKGE, by 1.6 to 2.3x from
S2 to S5. Beyond the raw efficiency gain, training curves show smoother
adaptation to evolving knowledge graphs, with stable incremental increases
in training time. This indicates that ETT-CKGE facilitates more efficient
knowledge transfer between snapshots, minimizing disruption and avoiding
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(a) Cumulative Training Time (b) Peak Allocated Memory (c) Update Parameters

Fig. 5: Model Scalability Analysis Over Time

the sharp cost spikes observed in other models. Such smooth transitions sug-
gest that the task-driven token mechanism effectively captures and reuses
informative components without requiring heavy computational overhead.
While training speed is a clear advantage, this stability in knowledge adap-
tation underscores the broader benefit of our design, ensuring efficient, con-
sistent, and scalable continual learning.

• Peak Allocated Memory: Figure 5b shows that ETT-CKGE achieves the
lowest peak memory consumption among all baselines, reducing memory
usage by 150MB to 2GB compared to memory-intensive models like FMR
and LKGE. This efficiency comes from ETT-CKGE’s fixed-size token design
and lightweight architecture, which avoids storing additional structures like
entity layers or replay buffers required in other methods.
Updated Parameters: As shown in Figure 5c, ETT-CKGE consistently
maintains a low number of updated parameters, around 2,000 across all snap-
shots. These parameters come from the fixed-size task-driven tokens, which
are used solely to retain old knowledge and are not expanded when learning
new snapshots. In contrast, models like IncDE introduce new parameters to
learn additional knowledge at each snapshot, leading to significantly higher
computational cost. This lightweight design allows ETT-CKGE to achieve
faster training while still maintaining strong performance.

5.8 Ablation Study

Table 4 presents the ablation results of ETT-CKGE, evaluating the contribution
of three key components: the distillation loss (Ldistill), Stage I training (SIT),
and the diversity loss (Ldiv), across various datasets.

Effect of Distillation Loss: The results clearly highlight that Ldistill is
the core driver of ETT-CKGE’s effectiveness. Removing it leads to a significant
performance drop across all datasets, underscoring its essential role in enabling
task-relevant knowledge transfer. This task-driven loss directly optimizes the
token-guided embedding space to capture critical information from both old
and new knowledge without relying on handcrafted heuristics or traversal-based
processing.

Effect of Stage I Training: SIT plays an important supporting role. Elim-
inating Stage I training slightly reduces performance, especially in FB-CKGE,
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Table 4: Ablation results

Ldistill
Token Training ENTITY RELATION FACT HYBRID FB-CKGE WN-CKGE

SIT Ldiv MRR T(s) MRR T(s) MRR T(s) MRR T(s) MRR T(s) MRR T(s)

✓ ✓ ✓ 0.260 784 0.200 502 0.217 506 0.222 559 0.236 413 0.153 369
✓ ✓ ✗ 0.258 722 0.194 496 0.215 461 0.220 567 0.233 405 0.152 343
✓ ✗ ✗ 0.257 612 0.193 448 0.215 335 0.220 497 0.221 316 0.150 341
✗ ✗ ✗ 0.170 528 0.085 417 0.161 287 0.138 406 0.178 275 0.102 410

while reducing training time. This shows that although SIT introduces extra
computation, it strengthens the quality of token learning and improves overall
performance when paired with Ldistill.

Effect of Diversity Loss: Diversity loss helps ensure varied and effective
token learning. Removing Ldiv causes a minor drop in MRR, indicating that it
contributes to performance improvements but is not as crucial as Ldist. Addi-
tionally, removing Ldiv reduces training time, confirming that its computation
introduces extra overhead.

6 Conclusion Remarks and Future Work

This paper introduces a novel regularization-based CKGE model with a self-
guided token mechanism for better efficiency and performance. The proposed
model significantly reduces the adaptation time between snapshots and memory
costs, thus opening the door to real-world applications with large data volumes.
As evidenced by extensive comparative experiments and an ablation study, the
proposed model outperforms the SOTA models in both predictive accuracy and
model efficiency. In addition, our model can be adapted to downstream tasks at
all levels, including link prediction, node classification, and graph classification.

In the future, while improving efficiency is critical for practical applications,
enhancing robustness to noise and high sparsity in graphs is another challenge to
be solved. With current advances in Large Language Models (LLMs) [2,3,19] and
Multi-Modal Learning (MML) [17,6], leveraging knowledge foundations of built
LLMs via MML has become a promising approach [25,14] to handle noisy and
sparse graphs. Moreover, CKGE plays a vital role in graph foundation models
in continually evolving domains, such as recommender systems, social networks,
and biomedical knowledge reasoning.
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