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Abstract. Learning continuous vector representations for knowledge
graphs has significantly improved state-of-the-art performances in many
challenging tasks. Yet, deep-learning-based models are only post-hoc and
locally explainable. In contrast, learning Web Ontology Language (OWL)
class expressions in Description Logics (DLs) is ante-hoc and globally
explainable. However, state-of-the-art learners have two well-known lim-
itations: scaling to large knowledge graphs and handling missing infor-
mation. Here, we present a decision-tree-based learner (TDL) to learn
Web Ontology Languages (OWLs) class expressions over large knowl-
edge graphs, while imputing missing triples. Given positive and negative
example individuals, TDL firstly constructs unique OWL expressions in
SHOIN from concise bounded descriptions of individuals. Each OWL
class expression is used as a feature in a binary classification problem to
represent input individuals. Thereafter, TDL fits a CART decision tree to
learn Boolean decision rules distinguishing positive examples from nega-
tive examples. A final OWL expression in SHOZN is built by traversing
the built CART decision tree from the root node to leaf nodes for each
positive example. By this, TDL can learn OWL class expressions without
exploration, i.e., the number of queries to a knowledge graph is bounded
by the number of input individuals. Our empirical results show that TDL
outperforms the current state-of-the-art models across datasets. Impor-
tantly, our experiments over a large knowledge graph (DBpedia with 1.1
billion triples) show that TDL can effectively learn accurate OWL class
expressions, while the state-of-the-art models fail to return any results.
Finally, expressions learned by TDL can be seamlessly translated into
natural language explanations using a pre-trained large language model
and a DL verbalizer.

Keywords: Decision Tree - OWL Class Expression Learning - Descrip-
tion Logic - Knowledge Graph - Large Language Model - Verbalizer
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1 Introduction

Explainability is quintessential to establish trust in Artificial Intelligence (AI)
decisions [32]. Its significance becomes particularly pronounced when Al algo-
rithms rely on large amounts of data, e.g., the Web — an extensive and widely
utilized information infrastructure that serves over 5 billion users worldwide. For
instance, the recent success of large language models is built upon a crawled Web
corpus comprising raw web page data, metadata extracts, and text extracts [30,
5,17,34]. A key development over the last decade has been the increasing avail-
ability of Web data in the form of large-scale Resource Description Framework
(RDF) Knowledge Graphs (KGs) [16]. According to the 2022 crawl of Web-
DataCommons, roughly 50% of the Web sites now contain (fragments of) RDF
KGs.! The giant joint Knowledge Graph (KG) that can be extracted from the
Web is known to contain at least 82 billion triples [4]. However, when analyzing
or processing such a large graph, explainability and scalability remain challeng-
ing. For example, while learning continuous vector representations for knowledge
graphs has significantly improved state-of-the-art performances in many chal-
lenging tasks [29, 10|, many deep-learning-based models that such solutions rely
on, are only post-hoc and locally explainable [25]. In contrast, OWL class ex-
pression learning is ante-hoc explainable and showed good performance in areas
like ontology engineering [21], bio-medicine [24], and Industry 4.0 [8]. However,
most symbolic class expression learners cannot operate well on large KGs having
millions of triples.

Our work contributes to a wider domain of designing scalable and explain-
able Machine Learning (ML) approaches for learning OWL class expressions over
large RDF knowledge graphs. An OWL class expression represents a set of in-
dividuals by formally specifying conditions on the properties of individuals [26].
Such class expressions? in description logic syntax are ante-hoc explainable and
intrinsically human-readable, e.g.,Jaward.{NobelPrizeInPhysics} represents a
set of individuals being awarded a Nobel prize in physics. At the same time, they
can be used by machines, e.g., the set of individuals satisfying this expression in
the DBpedia KG can be retrieved via the following SPARQL query [12]:

SELECT DISTINCT 7x WHERE

{
?x dbo:award ?s_1 .
FILTER (?s_1 IN
(dbr:Nobel_Prize_in_Physics))
}

11.51 billion of the 3.20 billion URLs crawled by the Web Data Commons con-
tained RDF, see http://webdatacommons.org/structureddata, accessed on April
25th, 2024.

2 An OWL class expression can also be called a Description Logic (DL) concept. We
will stick to the first term throughout this paper.
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Thus the given class expression can be seen as a human-readable, interpretable,
and binary descriptor, identifying a set of 163 individuals as positive within the
DBpedia KG.3

Learning class expressions relies on two sets of given examples: a set of posi-
tive examples (ET) that the target class expression should describe while differ-
entiating them from a set of negative examples (E~).* For example, given the
positive examples E+ = {Roger Penrose,Paul Dirac} and the negative ex-
amples F~ = {Barack Obama,George R. R. Martin}, a class expression learn-
ing algorithm using the DBpedia KG may return the class expression provided
above, since the expression’s entailment holds for Penrose and Dirac but not for
Obama and Martin. However, although state-of-the-art approaches effectively
tackle the class expression learning problem on benchmark datasets, their de-
ployment in large-scale applications remains unrealized. Early approaches refor-
mulate the learning problem as a search problem in an infinite, quasi-ordered
search space [23,21]. Therein, the search begins by applying a downward re-
finement operator to the root state (i.e., the most general class expression T).
Thereafter, the search is guided by a heuristic function. However, recent results
suggest that search-based symbolic learners do not scale well on large KGs [9].
This limitation arises from the fact that search-based symbolic learners must
explore the space of OWL class expressions to identify an accurate one. The
potentially vast search space introduces significant challenges, serving as the
principal barrier to learning class expressions over large KGs [3,9].

In this work, we present a solution to the search space exploration problem in
state-of-the-art models. Our proposal is a decision tree-based learner (TDL) that
can tackle the class expression learning problem over large KGs by performing
retrieval operations (i.e., retrieving qualifying individuals of a class expression)
only at most |[E™T U E~| times. More specifically, Ve € E* U E~, TDL first re-
trieves the first hop information about examples (elucidated in 4). From these
|ETUE™| sets of triples, TDL constructs unique class expressions using SHOZN
Description Logic (DL). These expressions are then treated as features in a bi-
nary classification problem to describe examples numerically (as detailed in 4).
Subsequently, TDL fits a CART decision tree to distinguish E* from E~ within
the created feature space. The final class expression is built by traversing the
built CART decision tree from the root node to leaf nodes for each positive exam-
ple. Overall, our experimental results over three benchmark datasets with four
state-of-the-art models indicate that TDL learns more accurate class expressions
under a time constraint and generalizes better than state-of-the-art models in-
cluding Drill [9] and EvoLearner [13]. Importantly, we show that TDL can learn
OWL class expressions over knowledge graphs involving more than 1.1 billion
triples in less than 2 minutes, while all other baselines lead to out-of-memory
errors. Finally, we further improve the explainability by integrating a large lan-
guage model and a verbalizer to translate potentially complex domain-specific
class expressions into natural language sentences.

3 https://dbpedia.org/sparql
4 We give a formal definition for class expression learning in Section 2.3.
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The main contributions of this paper are as follows:

1. We propose an explainable and scalable ML approach (TDL) to learn OWL
class expressions over large RDF KGs.

2. We conducted extensive experiments to benchmark the learning and gener-
alization performance of our proposal against state-of-the-art models.

3. To the best of our knowledge, TDL is the first OWL class expression learner
integrating a pre-trained language model and a verbalizer to translate domain
specific expressions into plain natural language sentences.

In the following Section, we introduce background knowledge about RDF,
DLs, and class expression learning. After that, we present related work in Sec-
tion 3 before explaining our approach in detail in Section 4. The evaluation and
its results are described in Section 5 and discussed in Section 6. We conclude
the paper in Section 7.

2 Background

2.1 RDF Knowledge Graphs and OWL

RDF is a formal language for describing structured information [15]. The goal of
RDF is to enable applications to exchange data on the Web while still preserving
their original meaning. OWL is designed to model the semantics of RDF KGs
that facilitates machine interpretability of Web content by providing additional
expressive power along with formal semantics [15]. OWL has three sublanguages:
OWL Full (the most expressive but undecidable), OWL DL (expressive and
decidable), and OWL Lite (decidable, less expressive). OWL Full contains OWL
DL and OWL Lite, while OWL DL contains OWL Lite. OWL DL coincides with
SHOZIN (D) DL [15]. Note that any RDF KG forms an OWL Full ontology [2].

2.2 Description Logics

Description Logics (DLs) are fragments of first-order predicate logic using only
unary and binary predicates [1,15,27]. A DL knowledge base corresponding to
an OWL ontology is often defined as a pair K = (T, .A), where T denotes the set
of terminological axioms describing the relationships between defined DL con-
cepts. Every terminological axiom is of the form of A C B or A = B where A
and B are DL concepts and A, B € N¢. N¢ denotes a set of atomic concepts
corresponding to OWL named classes. A denotes the set of assertions describ-
ing relationships among DL individuals a,b € Ny via roles r € Ng as well as
instantiation relationships. N; and Ng denote the set of individuals and the set
of DL roles corresponding to OWL properties, respectively. Thus A contains an
assertion of the form A(a) or r(a,b), where A € No,r € Ng, and a,b € Nj.
Within this work, we focus on SHOIN DL. Table 1 depicts the syntax and
semantics for SHOZN concepts.
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Table 1. Syntax and semantics for concepts in SHOZN following Lehmann et al [21].
I= (AI ,-T) is an interpretation where A7 is its domain and - is the interpretation
function.

Construct Syntax Semantics

Atomic concept A AT Cc AT

Role r rT C AT x AT

Nominals {o} of C AT o =1

Inverse Role T {(b%,aT) € AT x AT | (aT,b%) € 1T}
Top concept T AT

Bottom Concept € 0

Negation -C AT\ ¢*

Disjunction cub ctuDp?

Conjunction cnbD ctn Dt

Exists Restriction Ir.C {a® € AT| 3 bT € CF, (a*, %) € 7T}

Universal Restriction V r.C'  {a® € AT| vV b%, (a®,b%) € T = bT € CF}
Atmost Restriction > n r.C {a” € A7| |{b € CT : (a*,b7) € rT}| > n}
Atleast Restriction < n r.C {a® € AT| |{b* € C* : (a,b") € r}| <n}

2.3 OWL Class Expression Learning

Definition 1 (OWL Classical Learning Problem). Given a DL knowledge
base K, a set of positive individuals ET C Np, and a set of negative OWL
individuals E= C Ny s.t. EYNE™ =), the learning problem is to find an OWL
class expression H s.t.

Vpe ET: K= H(p) and Vn€ E~: K [~ H(n). (1)

Traditionally, this learning problem is transformed into a search problem
within a quasi-ordered concept space (C, =) [21], where C denotes all valid
OWL class expressions in a DL. An OWL class expression learner (e.g. OCEL,
CELOE [22]) applies a downward refinement operator p : C — 2 to traverse in
C, e.g., Mother < p(Female). To steer the search starting from T to H satisfying
1, a fixed heuristic function is often applied. Most heuristic functions are based
on the quality of the traversed OWL class expressions. One of these metrics is
the F1 score, which is defined as

[EY O R(H)|
[EXNR(H)| + 3(|1E-NR(H)| + [ET\ R(H)|)’

Fi(H) = (2)
where R denotes a concept retrieval operation that maps a class expression to a
subset of N;. As the size of IC grows, computing the quality of a class expression
becomes a bottleneck due to this mapping process [3,20,9]. Recent state-of-
the-art models (e.g. Drill [9], EvoLearner [13]) apply reinforcement learning or
evolutionary algorithms to find H as elucidated in Section 3. In contrast, our
proposed approach only needs a refinement operator to generate its training data
and does not make use of the mapping process.
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3 Related Work

DL-Learner [21] is regarded as the most mature and recent system for class ex-
pression learning [6, 9]. DL-Learner comprises several state-of-the-art approaches,
including OCEL and CELOE [22]. Both consider the OWL class expression learn-
ing problem as a search problem in a quasi-ordered space of OWL class expres-
sions in DLs. To traverse the search space, OCEL and CELOE apply a downward
refinement operator while relying on different statistical heuristic functions. Dur-
ing the search, CELOE prioritizes syntactically shorter expressions. CELOE and
OCEL apply the redundancy elimination and the expression simplification rules
to decrease their runtimes. Although applying such fixed rules may reduce the
number of explored expressions, long runtimes and extensive memory require-
ments still prohibit large-scale applications of such refinement-operators-based
approaches [11,14,9]. Rizzo et al. [31] follow the general idea of a refinement-
operator-based approach but focus on a small number of class expressions, which
are used to create several decision trees that are combined similar to a random
forest. Recent works often focus on accelerating the learning process. DRILL [9]
uses a deep Q-network instead of a fixed heuristic function to steer the search
more efficiently towards accurate OWL class expressions. CLIP [18] prunes the
search space by introducing an upper bound on the length of the OWL class ex-
pressions. NCES [20, 19] uses deep neural networks to learn mappings between
sets of examples and class expressions without a search process. EvoLearner [13]
is based on evolutionary algorithms and initializes its population (i.e., class ex-
pressions) by random walks on the input RDF KG.

Compared to the state-of-the-art models, TDL uses multi-hop information
about ET and E~ to detect relevant OWL class expressions. Such expressions
are then used as binary features for a supervised binary classification problem.
TDL builds a decision tree algorithm (e.g. CART) to tackle this supervised bi-
nary classification problem, where a node corresponds to OWL class expression.
Therefore, TDL learns Boolean rules to distinguish positive and negative exam-
ples. Instead of using a fixed handcrafted heuristic, TDL can use the Shannon
information gain to recursively partition the feature space (i.e., the extracted
class expression space) such that the positive examples are grouped together.

4 Methodology

Supervised Binary Classification. Given two ordered sets ET, E~ C N;
with ET N E~ = () and a knowledge base K, we firstly extract the first hop

information as
F= i@ p.0 | (z.,0) €K}, (3)

el

where E = ET U E~. Given F, a set of relevant atomic concepts can be defined
as
Fe= |J {oloeNc}. (4)

(s,p,0)€F
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Similarly, relevant restrictions over N; and N¢ can be defined as

FRO = U  Gr{au{vp{o}} (5)

(s,p,0)€EF N 0ENT

and

FRC = U Bptype(o)} U {¥p.type(o)}, (6)
(s,p,0)EF N 0ENT

where type : Ny — N¢ returns a subset of N¢ that a given OWL individual
belongs to. Since an individual can belong to multiple atomic concepts, a complex
conjunctive concept can be constructed and included in FRC. Similarly, since
an individual can appear with other nominals with same property, a complex
restriction involving multiple nominals can also be included in FRO. Multi-
hop expression can be extracted by extending the fillers in FRO and FRC. By
introducing counting over FRO and FRC, Atmost and Atleast restrictions can
be obtained.

Through these extractions over first-hop information about F, we enable a de-
cision tree to leverage multi-hop information for the learning problem. Through
FC, FRO and FRC, we firstly build the training data X e RIZIX(FI+IFRO|+|FRC])
and y € {0, 1}/Z! where the j-th feature corresponds to a Boolean feature (e.g.
JhasChild.{Julia}) of X, ; € {1.0,0.0} for the i-th individual in E. After X,y
are constructed, we fit a decision tree to learn binary decision rules to distinguish
the positive individuals E* from the negative individuals E~.

Running Example. Figure 1 visualizes an example tree built on X and y for
the Aunt benchmark learning problem. The rationale of using a decision tree
is that it can be seen as a piece-wise constant approximation, where each de-
cision is ante-hoc explainable [32]. For instance, being a Female and having a
sibling being Mother can be important to distinguish £+ from E~. The en-
tropy decreases from 1.0 to 0.0 when classifying 25 positive individuals x € E+
as positive class, each of them fulfilling the following: (i) (x, type,Female) A
(x,hasSibling,y) A and (i) (y,hasChild,z) A (z,type,Person), where
Y,z € Ny and hasSibling, hasChild, type € Ng. Importantly, with a decision
tree, we can rank class expressions in descending order w.r.t. their normalized
total reduction of entropy.

From a Decision Tree to a DL Concept. After creating a decision tree
T(-) using X and y, we construct a class expression. Let N be the set of decision
nodes of T'(-) and let the elements of N have two types: leaf nodes L and decision
nodes D with LUD = N. A leaf node [ € L contains a class label ¢ € {—1,+1}.
We describe a decision node d; € D as triple d; = (Ji7ni+7n;), where o, is a
condition based on a feature in F, while nj and n; are child nodes of d; in the
tree.
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Building Conjunctive DL Concepts. When classifying a given individual,
the decision tree algorithm starts at the root node and traverses the tree. The
traversal depends on whether the current node is a leaf node or a decision node. If
it is a leaf node, the node’s class is assigned to the example. If it is a decision node,
the example is tested against the node’s condition. If the example fulfills the
condition, the algorithm traverses to the n; child node. Otherwise, the traversal
continues with the n; child node. We consider each node as a class expression;
hence, for a given positive individual, we construct a conjunctive class expression
from all nodes seen along the respective traversal. For a given e € ET, let m =
{n1,...;nzInz € L,Vi < |r| : n; € D} denote a sequence of qualifying nodes
starting from the root node and ending with a leaf node. From m, a conjunctive
class expression can be obtained as

Cﬂ-z I_lai, (7)

where C(e) is the observed explainable features of e at inference by the decision
tree classifier. Let IT denote a set of conjunctive class expressions constructed
for E*. For the running example shown in Figure 2, IT contains the following
three class expressions:

Female 1 (3 hasSibling.Father) ()
Female N (—(3 hasSibling.Father) I (3 married.Brother) 9)
Female 1 (—(3 hasSibling.Father)) M (—(3 married.Brother)) Il

(10)

(3 hasSibling.Mother)

Note that since IT is a set, only distinct sequences of decision tree nodes are

transformed into class expressions. By this, we aim to reduce redundancy, i.e.,
the length of generated concepts.

Disjunction of conjunctive DL Concepts. A final prediction for a given
class expression learning problem is then computed as

H= || ¢ (11)

Crell

For the running example, H corresponds to the disjunction of Equations (8)
to (10). Hence, TDL can tackle a class expression learning problem without
a single retrieval operation. Recall that as the size of the input knowledge
base grows, performing retrieval operations to compute the quality of a class
expression becomes a computational bottleneck.

From DL Concepts to Natural Language Sentences. We investigate tech-
niques to translate a predicted class expression into natural language sentences.
Therewith, we aim to enable non-domain experts to interpret predictions. To
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Female <= 0.5
entropy = 1.0
samples = 82

value = [41, 41]

class = Negative

True False

3 hassibling.Father <= 0.5
entropy = 0.913
samples = 61
value = [20, 41]
class = Positive
class = Negative

3 married.Brother <= 0.5 -

entropy = 1.0

samples = 41
value = [20, 21]
3 hassibling.Mother <= 0.5
entropy = 0.773
Fig. 1. The built decision tree for the Aunt benchmark learning problem. Outgoing
arrows mark the path of examples that either fulfill or neglect the originating node’s

class = Positive

samples = 22
value = [17, 5]

condition, and value array shows counts of observed negative and positive examples

Feature Importance

0.354
0.30 4
0.25 4
0.20 4
0.15 4

0.10 4

Normalized total reduction

§

0.05 4

0.00

Female

3 hasSibling.{F6F84}
3 married.Person

3 hasParent. {F5M64}
3 hasSibling.{F2F26}
3 hasChild.{F5M66}
3 married.Brother

3 hasSibling.Father

3 hasSibling.Mother

3 hasParent.Granddaughter

Fig. 2. Normalized total entropy reduction of important features for the Aunt
benchmark learning problem with generated goal concept as: Aunt = Female 1
(JhasSibling.MotherllJhasSibling.Father Ll (3married.Brother(JhasChild.T))).
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this end, we applied a large language model with or without an OWL verbalizer.
We explored several system prompts and used the following one:

You are an expert. Be concise in your answers and translate this
description logic concept into English sentences.

Provide no explanations: $

where $ is replaced with a class expression.

5 Experiments

5.1 Datasets

We use three benchmark datasets—Family, Carcinogenesis, and Mutagenesis—
obtained from [9]. In addition, we use the English DBpedia as example of a
large KG together with three example learning problems created manually using
prominent politicians.® Table 2 gives an overview of datasets.

Table 2. Overview of benchmark datasets and total learning problems. |K|, |N¢|, | N¢/|,
|Nr| and LP denote the number of triples, individuals, concepts, roles, and learning
problems, respectively.

Dataset |K] |N1| |N¢| |Nr| LP
Family 2,032 202 18 4 18
Mutagenesis 62,067 14,145 86 11 1
Carcinogenesis 96,939 22,372 142 21 1
DBpedia 1,151,575,981 42,042,875 1,568 1,194 3

5.2 Experimental Setup

We base our experimental setup on [9] and use all learning problems provided
by the datasets. We compare approaches based on their F1l-scores for predicted
class expression and their runtimes. On each dataset, each model is initialized
once. For each learning problem, the time needed for the inference of the class
expression is measured as runtime. We use two standard stopping criteria for all
approaches. (i) We set the maximum runtime to 30 seconds (60 minutes for the
DBpedia). (ii) Approaches were configured to terminate as soon as they find a
goal state (i.e., a state with Fl-score = 1.0). Note that (i) is a soft constraint
as the runtime criterion is not checked during all the steps of some of the eval-
uated approaches. If models do not find a goal state, the most accurate state is
retrieved.

In a second experiment, we quantify the generalization performance of all
approaches using a 10-fold cross-validation on the provided learning problems of

5 We use the English DBpedia version 2022-12.
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the first three datasets. All experiments have been executed on a DELL Precision
3591 with an Intel Core Ultra 7 166H CPU, 64GB RAM, and Ubuntu 22.05. We
provide an open-source implementation of TDL, including scripts for training
and evaluation to ensure the reproducibility of our results using the ONTOLEARN
framework [7].6

5.3 Experimental Results

Learning Class Expressions under Time Restriction. Table 3 reports
the concept learning results on the three benchmark datasets with benchmark
learning problems as previously done in [9]. Overall, TDL outperforms OCEL,
CELOE, Evolearner, and Drill w.r.t. Fl-score and runtimes. On all 18 learn-
ing problems of the Family dataset, TDL reaches the goal state while requiring
less runtime. Compared to OCEL, CELOE, and Drill, EvoLearner underper-
forms considerably. After these results, we delved into the implementation of
EvoLearner and analyzed the learning problems on each datasets. We made the
following two observations: (i) If the input knowledge base is not reloaded from
the disk into memory for each learning problem, the performance of EvoLearner
degenerates. (ii) Goal concepts for some of the benchmark learning problems
(e.g. Brother, Daughter, Father, Sister) on the Family benchmark dataset can
be found via a linear search over the set of defined class expressions, i.e., a
class expression satisfying 1 is already defined in K. In some of these cases, Ev-
oLearner fails in identifying these existing concepts as solutions. To address (1),
we reran our experiments on the Family dataset for EvoLearner and we reload
the knowledge base for each learning problem. Although this setting increases
the runtimes by 1.3 seconds on average, EvoLearner finds a goal concept having
F1-score of 1.0 for all 18 learning problems on the Family benchmark dataset.

The learning problems created for the DBpedia KG and the evaluation results
are listed in Table 4. TDL is the only algorithm that is able to solve the learning
problems. All other approaches terminate with an out-of-memory error due to
the size of the graph and the intermediate results they retrieve from it.

K-fold Cross Validation. Table 5 and 6 report the 10-fold cross-validation
results on the benchmark datasets. Overall, results indicate that TDL outper-
forms OCEL, CELOE, Drill, and Evolearner in nearly all metrics. Only for the
Mutagenesis dataset, TDL achieves a slightly lower Fl-score than OCEL and
CELOE. The results also show that the generalization performance of OCEL,
CELOE, Drill and TDL do not fluctuate, whereas the generalization performance
of Evolearner differs extremely (up to 50% F1-score differences between learning
problems).

Translation into Natural Language. We used Qwen2.5 32B Instruct-AWQ [35,
33Jand a verbalizer LD2NL [28] to translate the complex, learned class expres-
sions into plain text. The LLM only gets the class expression while LD2NL needs

S https://github.com/dice-group/Ontolearn /tree/tdl
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Table 3. Class expression learning results on the benchmark datasets with benchmark
learning problems. F1 and RT denote the Fl-score of learned concept w.r.t. ET and
E~ and runtime in seconds, respectively. Maximum runtime is set to 30 seconds. Goal
concepts with T denote that the respective concept is defined in IC, i.e., a goal concept
can be found via a linear search over K. Bold and underlined results indicate the best
results and second best results.

Dataset Goal Concept OCEL CELOE EvoLearner Drill NCES TDL
F1 RT Fl1 RT F1 R F1I RT F1 RT Fl1 RT
Family Aunt 0.837 15.008 0.911 8.101 1.000 1.523 0.863 30.036 0.804 1.622 1.000 0.061
Uncle 0.905 19.639 0.905 7.339 0.483 0.254 0.927 30.038 0.884 1.853 1.000 0.043
Cousin 0.721 12.067 0.793 8.972 0.348 0.335 0.826 30.047 0.686 1.870 1.000 0.060

Grandgranddaughter 1.000 0.003 1.000 0.001 1.000 0.299 1.000 0.003 1.000 1.902 1.000 0.024
Grandgrandfather 1.000 0.846 1.000 0.182 0.829 0.295 1.000 0.408 0.944 1.726 1.000 0.032
Grandgrandmother  1.000 2.506 1.000 0.259 1.000 0.272 1.000 0.400 0.944 1.790 1.000 0.037

Grandgrandson 1.000 2.082 1.000 0.198 0.486 0.365 1.000 0.224 0.923 1.707 1.000 0.030
Brothert 1.000 0.033 1.000 0.007 1.000 0.394 1.000 0.051 1.000 1.699 1.000 0.036
Daughtert 1.000 0.026 1.000 0.009 1.000 0.366 1.000 0.048 1.000 1.752 1.000 0.052
Fathert 1.000 0.004 1.000 0.002 1.000 0.340 1.000 0.008 1.000 1.946 1.000 0.178
Granddaughtert 1.000 0.003 1.000 0.001 1.000 0.301 1.000 0.005 1.000 1.879 1.000 0.043
Grandfathert 1.000 0.003 1.000 0.001 1.000 0.277 1.000 0.005 1.000 1.915 1.000 0.037
Grandmothert 1.000 0.008 1.000 0.002 1.000 0.290 1.000 0.008 0.921 1.648 1.000 0.041
Grandsonf 1.000 0.004 1.000 0.002 1.000 0.336 1.000 0.007 1.000 1.783 1.000 0.043
Motherf 1.000 0.004 1.000 0.002 0.000 0.277 1.000 0.007 1.000 1.843 1.000 0.055
PersonWithASiblingt 1.000 0.003 1.000 0.001 0.700 0.331 0.737 30.031 1.000 1.985 1.000 0.073
Sisterf 1.000 0.003 1.000 0.001 0.955 0.291 1.000 0.033 1.000 1.939 1.000 0.046
Sont 1.000 0.005 1.000 0.002 0.905 0.293 1.000 0.008 0.905 1.843 1.000 0.052
Avg. Results 0.970 2.903 0.978 1.393 0.817 0.380 0.964 6.743 0.945 1.817 1.000 0.052
Mutagenesis ~ Unknown 0.916 32.30 0.916 30.04 0.980 31.31 0.704 30.17 0.704 8.324 0.919 4.050
Carcinogenesis Unknown 0.734 30.42 0.734 30.13 0.807 30.98 0.705 30.19 0.705 8.528 0.973 3.370

K as additional input. The outputs of the verbalization given by Qwen2.5 32B
Instruct-AWQ and LD2NL for the class expression prediction from TDL for the
Aunt learning problem as an example.

Quwen2.5 32B Instruct-AWQ

— Female who either has a sibling who is a Father and is married to a Brother
or has a sibling who is a Mother and is not married to a Brother.’

— Female who has a sibling who is a Father, is married to a Brother or has a
child who is F5M66, and Female who does not have a Father sibling, does
not marry a Brother, and has a Mother sibling.

Table 4. Learning OWL class expression over 1.1 billion triples. F1 and RT denote the
Fl-score of learned concept w.r.t. ET and E~ and runtime in seconds, respectively. —
denotes no results provided due to the out-of-memory error.

Learning Problem OCEL CELOE Evo Drill TDL
F1 RT F1 RT F1RTF1RT F1 RT

E* = {B. Obama}, E~ = {A. Merkel} - - - - - - - - 1.00062.18

ET = {B. Obama,A. Merkel}, E~ = {E. Macron} - - - - - - - - 1.00067.33

E* = {B. Obama,A. Merkel,E. Macron}, E~ = {P. Sanchez} -~ - - - - - - — 1.00071.41
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Table 5. 10-fold cross-validated class expression learning results for the learning prob-
lems of the Family dataset. F1 and RT denote the average F1-scores of learned concepts
on the 10-test folds and runtime in seconds, respectively. Maximum runtime is set to
30 seconds. Goal concepts with t denote that the respective concept is defined in I,
i.e., a goal concept can be found via a linear search over K. Bold and underlined results
indicate the best results and second best results.

Dataset Goal Concept OCEL CELOE EvoLearner Drill NCES TDL
F1 RT F1 RT F1 RT F1 RT F1 RT Fl1 RT
Family Aunt 0.631 16.190 0.855 16.190 1.000 2.723 0.791 30.106 0.812 3.696 1.000 0.107
Cousin 0.708 12.520 0.789 12.520 0.344 0.279 0.784 30.105 0.557 4.090 0.956 0.153
Uncle 0.891 20.731 0.891 20.731 0.642 0.276 0.899 30.161 0.877 4.551 0.986 0.103

Grandgranddaughter 1.000 0.010 1.000 0.010 0.800 0.236 1.000 0.003 1.000 4.202 1.000 0.077
Grandgrandfather 1.000 0.657 1.000 0.657 0.860 0.195 1.000 0.795 0.947 4.118 0.913 0.079
Grandgrandmother  1.000 5.060 1.000 5.060 1.000 0.233 1.000 0.816 0.947 4.314 0.880 0.076

Grandgrandson 1.000 1.826 1.000 1.826 0.463 0.199 1.000 0.722 0.931 4.108 0.862 0.083
Brotherf 1.000 0.006 1.000 0.006 1.000 0.314 1.000 0.008 1.000 4.022 1.000 0.091
Daughterf 1.000 0.006 1.000 0.006 0.900 0.323 1.000 0.015 0.967 3.966 1.000 0.113
Father 1.000 0.004 1.000 0.004 1.000 0.280 1.000 0.007 1.000 4.225 1.000 0.109
Granddaughtert 1.000 0.003 1.000 0.003 0.700 0.244 1.000 0.005 1.000 4.140 1.000 0.103
Grandfatherf 1.000 0.003 1.000 0.003 0.780 0.256 1.000 0.005 0.980 4.088 1.000 0.088
Grandmothert 1.000 0.003 1.000 0.003 0.556 0.240 1.000 0.005 0.964 4.563 1.000 0.088
Grandsont 1.000 0.004 1.000 0.004 0.666 0.240 1.000 0.007 1.000 4.377 1.000 0.107
Motherf 1.000 0.004 1.000 0.004 0.625 0.219 1.000 0.007 0.929 4.441 1.000 0.113
PersonWithASiblingt 1.000 0.004 1.000 0.004 0.564 0.244 0.725 30.072 0.976 4.680 1.000 0.145
Sisterf 1.000 0.003 1.000 0.003 0.731 0.247 1.000 0.008 1.000 4.361 1.000 0.103
Sont 1.000 0.004 1.000 0.004 0.710 0.212 1.000 0.007 0.943 4.363 1.000 0.106
Avg. Results 0.957 3.170 0.974 3.170 0.741 0.387 0.955 6.820 0.935 4.239 0.978 0.102

Table 6. 10-fold cross-validated class expression learning results on the Mutagenesis
and Carcinogenesis datasets. F1 and RT denote the average F1-scores of learned con-
cepts on the 10-test folds and runtime in seconds, respectively. Maximum runtime is
set to 30 seconds.

Dataset Goal Concept OCEL CELOE Evo Drill NCES TDL

F1 RT F1 RT F1 RT F1 RT Fl1 RT F1 RT
Mutagenesis ~ Unknown 0.918 31.551 0.918 31.551 0.742 32.317 0.704 30.046 0.704 10.062 0.855 11.467
Carcinogenesis Unknown 0.706 30.899 0.701 30.899 0.707 33.059 0.704 30.280 0.714 9.844 0.747 10.670

— A female who either has a sibling who is a father, is married to a brother
but has no children, or has a sibling who is a mother but is not married to
a brother and has no children.

LD2NL Every predicted individual is that something that a female that has not
as sibling has as child a person and that marries something that has as sibling a
mother or that a female that has as sibling something that has as child a person
or that something that a female that has not as sibling has as child a person and
that does not marry has as sibling a mother and that marries something that
has as sibling a son. Although the translation via Qwen2.5 32B Instruct-AWQ
arguably is more fluent than the translation of LD2NL, LD2NL verbalizes the
input at least 10 times faster and requires less memory.
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6 Discussion

Although TDL finds more accurate concepts in less time in most of cases, the
length of the extracted class expressions created from the decision tree can grow
quite large in comparison to the results of the other approaches. A large, com-
plex class expression may require more domain expert knowledge for the inter-
pretation. Moreover, TDL currently does not support datatype properties, data
values, or data types. Consequently, we expect that TDL may perform poorly if
a goal concept is based on the usage of one of these features, e.g., the class of
persons that are taller than 1.80 meters.

We conjecture that the performance of TDL can be further improved in an
iterative fashion. More specifically, after F is constructed and a decision tree is
built, the most important features can be refined through a refinement operator
and the refinements can be added into F. Consider married.Brother.hasChild
as shown in Figure 2, many possible feature candidates can be inferred de-
pending on schema design of K, e.g. (Jmarried.Brother(JhasChild.Male))) or
(Imarried.Brother(JhasChild.Person))) provided Male C Person. Although
this iterative process may allow the creation of a decision tree to find more
compact rules to distinguish ET from E~, it may require more careful hyperpa-
rameter optimization to alleviate possible overfitting.

7 Conclusion

In this work, we proposed TDL—a decision-tree-based learner for OWL class
expressions. We explained how we use the decision tree to learn Boolean rules
from a feature space comprising class expressions. Furthermore, we illustrated
that the Boolean rules learned by said tree can be adeptly converted into class
expressions. Additionally, we showed that domain-specific class expressions can
be seamlessly translated into natural language sentences by employing a so-
phisticated language model enhanced with a verbalizer. Our evaluation showed
that our approach TDL outperforms previous state-of-the-art approaches on all
benchmarking datasets except one case. We also were able to show that TDL
is the only approach that is able to provide results for learning problems on
a large KG comprising 1.1 billion triples. In future work, we want to improve
TDL further to cover its shortcomings discussed in Section 6. For example, we
plan to extend the feature generation to be able to learn class expression in the

SHOIN (D) DL.
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