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Abstract. Deep neural networks have demonstrated remarkable perfor-
mance across various domains. However, they are vulnerable to adversarial
examples, which can lead to erroneous predictions. Generative Adver-
sarial Networks (GANs) can leverage the generators and discriminators
model to quickly produce high-quality adversarial examples. Since both
modules train in a competitive and simultaneous manner, GAN-based
algorithms like AdvGAN can generate adversarial examples with better
transferability compared to traditional methods. However, the generation
of perturbations is usually limited to a single iteration, preventing these
examples from fully exploiting the potential of the methods. To tackle this
issue, we introduce a novel approach named Progressive Auto-Regression
AdvGAN (PAR-AdvGAN). It incorporates an auto-regressive iteration
mechanism within a progressive generation network to craft adversarial
examples with enhanced attack capability. We thoroughly evaluate our
PAR-AdvGAN method with a large-scale experiment, demonstrating its
superior performance over various state-of-the-art black-box adversarial
attacks, as well as the original AdvGAN.Moreover, PAR-AdvGAN signif-
icantly accelerates the adversarial example generation, i.e., achieving the
speeds of up to 335.5 frames per second on Inception-v3 model, outper-
forming the gradient-based transferable attack algorithms. Our code is
available at: https://github.com/LMBTough/PAR

1 Introduction

Deep neural networks (DNNs) are widely used in different real-world applications,
i.e., image classification [20], emotional analysis [29]|, and item recommenda-
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tions |27]. DNNs demonstrate human-surpassed performance when properly
trained. However, DNNs can be vulnerable to adversarial examples crafted by
attackers |51/24,32], which is a concern in safety-critical scenarios. Thus, a practical
approach is to develop effective attack algorithms that can assess the robustness
of DNNs against adversarial attacks at an early stage, ultimately enhancing
model safety.

Currently, both white-box and black-box attack algorithms, such as gradient-
based methods like FGSM [10], NAA [38], SSA [23|, and optimization-based
approaches such as PGD [25] and C&W [1], require continuous computation of
the model’s gradient information throughout the attack process. However, they
all require extensive running time. Generative Adversarial Networks (GANs) [9]
have demonstrated promising results for realistic sample generation by leveraging
both generator and discriminator for training |2,/4.[11}/17]. While the generator
constructs high-quality examples, a discriminator learn to distinguish the original
and generated examples. Furthermore, once the generator is trained, there will
be no additional gradient computation for input examples.

As an early GAN-based model, AdvGAN incorporates a perturbation, denoted
as G(z), into the original image instance z for attack [34]. AdvGAN aims to
obtain the manipulated image = + G(x) from the original instance = through
the discriminator. To achieve high attack success rates in both white-box and
black-box attacks, AdvGAN introduces an adversarial loss on top of GANs loss,
ensuring the adversarial image is generated in a direction more effective for
adversarial attacks. Additionally, it employs hinge loss to limit perturbation
range, thereby preventing significant deviations between the adversarial and
original images. Subsequently, AdvGAN++ [15] further enhances the attack
success rate by utilizing latent features instead of input image instances x. It
optimizes the latent features during adversarial examples generation.

However, GAN-based methods suffer from several challenges. Both AdvGAN
and AdvGAN++ generate perturbations in a single iteration, which limits their
control over these perturbations. We observe the reason may be the generator con-
tinuously increases the perturbations during the iterative process (as illustrated
in the Appendix 1.1). This may not be effective against adversarial defenses
and impacts the attack capability. It is critical since the goal is to maximize
attack effectiveness with minimal perturbation. Furthermore, the transferabil-
ity performance of such attacks is concerning, especially since internal model
information is typically unavailable in real-world scenarios.

Inspired by recent works that utilise auto-regressive properties to generate
realistic images or text [2,[26,[37], we propose a novel GAN-based algorithm,
Progressive Auto-Regression AdvGAN (PAR-AdvGAN) to generate adversarial
examples with enhanced transferability. PAR-AdvGAN employs a progressive,
auto-regressive iterative method to effectively capture the specific structures
of input examples. This process gradually generates more diverse and realistic
adversarial examples. Specifically, at time step ¢, we combine the input examples

a:flgi from time step t—1 with the initial examples xg to generate the perturbation
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G(m’;gi, xo) at time step ¢. Consequently, the manipulated examples shifts from

z + G(x) in the original AdvGAN to 27! + G (2"}, 29) in PAR-AdvGAN.

To achieve optimal performance with minimal perturbation, we propose L,
loss to limit the perturbation range during iteration, thereby ensuring that the ad-
versarial examples remain imperceptible to human. Furthermore, to enhance the
quality of adversarial examples and mitigate potential distortions and significant
noise during the generation process, we introduce L4 loss, imposing a stringent
constraint between the final adversarial examples x; and initial examples xg.
Finally, by independently optimising the generator and discriminator during
training, we fine-tune the parameters of PAR-AdvGAN for more effective adver-
sarial examples. Notably, owing to the high stealth and robust generalization
capabilities, non-targeted adversarial attacks subject models to more rigorous
evaluations and reveal more subtle vulnerabilities. Thus, we primarily focus on
non-targeted adversarial attacks. We summarise the contributions as follows:

- We empirically study the limited transferability of adversarial examples
generated by existing GAN-based algorithms. To address this, we explore the
use of progressive generator network to enhance transferability.

- We propose an auto-regression iterative method and provide theoretical
analysis on formulating L, and Lg loss to ensure minimal distortions in the
adversarial samples.

- Extensive experiments demonstrate that our PAR-AdvGAN significantly
outperforms other methods, achieving highest attack success rates. Moreover,
it outperforms traditional gradient-based transferable attack algorithms in
both transferability and attack speed. We release the code of PAR-AdvGAN
for future research development.

2 Related Work

2.1 Adversarial Attacks

While numerous adversarial algorithms are dedicated to generating high-quality
and robust adversarial samples, gradient-based attack algorithms constitute a
main type. FGSM [10] was the first to utilise the model’s gradients, which adds
a small perturbation to the input data in the direction of the gradient, thereby
maximising the loss function through gradient ascent to achieve optimal attack
performance. MI-FGSM [6] incorporates a momentum factor in each iteration
to mitigate the impact of local optima on the attack success rate. TI-FGSM |7]
employs shifted images to calculate the input gradient, a process that involves
convolving the original image’s input gradient with a kernel matrix.

Other adversarial attack algorithms, such as PGD [25], project samples onto
suitable attack directions and limit the size of perturbations to generate robust
adversarial examples. C&W method minimises the attack’s objective function
to optimise the generation process [1]. AdvGAN [34] employs an adversarial
training process between the generator and discriminator. This process bolsters
the generator’s ability to produce adversarial samples, making them challenging
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for the discriminator to distinguish from genuine data. Besides attack purpose,
we also note some other iterative training methods for GANs, such as the
Progressive GAN [16] which divides the Generator into several layers, with each
layer undergoing individual training. In our approach, we consider an auto-
regression methods, where each subsequent generation is based on the results of
previous step. Although auto-regression GAN has been improved for continuous
generation tasks, all we need is the attack result of the last state, so we need to
redesign it for this situation.

2.2 Adversarial Defenses

Adversarial defense represents an effective approach to mitigate the impact
of attacks on DNNs. Commonly used adversarial defense techniques include
denoising and adversarial training. The denoising technique employs preprocessing
mechanisms to filter out adversarial examples, thereby preventing the poisoning
of training data and reducing the likelihood of subsequent attacks on the model.
Other notable works include HRGD [21], R&P [35] and so on [3}8].

Adversarial training enhances model robustness by incorporating adversarial
examples into the training process. Ensemble adversarial training [12] works
by decoupling the target model from adversarial examples generated by other
black-box models, thereby defending against transferable attacks. To enhance
the robustness of our algorithm against adversarial defenses, we validated the
attack effectiveness of PAR-AdvGAN on the target model subjected to ensemble
adversarial training.

3 Methodology

In this section, we first provide the problem definition of adversarial attacks.
Then, we discuss the issue of perturbation escalation in AdvGAN and propose
three strategies to optimise the generator, aiming to generate highly transfer-
able adversarial samples. Finally, we provide a detailed implementation for the
proposed PAR-AdvGAN method.

3.1 Problem Definition of Adversarial Attacks

Consider a clean data distribution pga¢, in which benign samples are represented
by X C pdatae- In an untargeted attack, the network f is misled by the manipulated
sample x,4,. For the original sample x € X, with the original label denoted as
m, the adversarial goal can be defined as:

f(xadv) #m (1)
Hxadv - an <e (2)

where |[-||,, represents the n-order norm (e.g., Ly norm), and € denotes the
maximum perturbation.
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3.2 Perturbation escalation in AAdvGAN

AdvGAN adopts a non-repetitive iterative approach to improve attack per-
formance. However, as iterations progress, the perturbation magnitude of the
adversarial example increases rapidly. This issue arises because it treats each
iterated example as an independent instance, neglecting its relation to the initial
sample zo. Additionally, AdvGAN fails to impose constraints on the distance
between the generated samples and the initial samples. This suggests that the
perturbations generated in each iteration will have significant magnitudes. To
address this issue, we introduce three propositions:

Proposition 1. The generator should obtain information about the original
sample xg.

Proposition 2. To train the generative model, the inputs to the generator
should include a significant number of non-initial samples, particularly those
encountered during the adversarial process.

Proposition 3. The generator should enforce constraints on the distance
between adversarial samples and the initial sample xy throughout the iterative
progress.

3.3 Progressive Auto-Regression AdvGAN

In this section, we first introduce the solutions for three propositions, namely
progressive generator network, auto-regression iterative method, and generator
constraints. Next, we explain the training processes for both the discriminator
and the generator. Finally, as shown in Algorithm. [I} we provided the pseudo-code
for the PAR-AdvGAN approach.

Progressive Generator Network For Proposition 1, we adjust the generator to
include initial example z( as an input, resulting in a revised generator G(x? ,, , o).
To do this, we expand the channel dimension of the generator’s first layer, and
employ a concat operator to merge z', and x along the channel dimension.
This design enables the generator to leverage information from both the current
adversarial example z! , and initial input z¢, thus facilitating the generation of
incremental adversarial perturbations during the iterative process (refer to line 5

in Alg. .

Auto-Regression Iterative Method In Proposition 2, during each training
iteration, we utilise a hyperparameter T' to regulate the number of interactions
for z!, instances (1refer to line 4). We iterlatively generate z!, by adding
perturbations G (:cflgv , o) to the preceding ngv (see line 6), then use the resulting
gradient progression to update and train the generator.

OLqdv Oz + G(z) 9G(x)

T 0r1G@) 0G0 3)
1

\Y
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Algorithm 1 Progressive Auto-Regression AdvGAN (PAR-AdvGAN)

Input: iteration number 7', batch size n, progressive generator GG, discriminator D, tar-
get network IV, corresponding label m, learning rate n:, 172, weight hyper-parameter
A1, A2, Az
Output: 0p, O
1: for i in (range) epoch do

2:  Sample a mini-batch of n examples
z={z(1),....,z(n)};
3 To =T
4: fort=1,...,T do
5: P, = G(2'7}, 20), here 20,4, = x0
6: xt gy = clip(zt,l + P)
7 for k=1,...,5; do
8 gop = VepLpD
9: Update the discriminator by descending its stochastic gradient Sy times:
10: 0D:0D*T]1'90D
11: end for
12: for k=1,...,5, do
13: Ladaw = —Cross Entropy(zl 4, m)
14: Ly = || Pill,
15: Ly = Hm’;dv — moH2
16: Lo = (1- D(atg,))?
17 90c¢ = Vg (Le + MLy + A2La 4 X3Ladv)
18: Update the generator by descending its stochastic gradient S, times:
19: O0c =0 —n2 - gos
20: end for
21:  end for
22: end for

23: return 0p, O¢

To better understand the auto-regression iterative progress, we decompose /g
in Eq. Here, 8"527%()1) equals 1, so it can be omitted (See Appendix 1.3

for detailed proof). Following this, we further explore the relationship between

8%§$) and 835-81&)' Thus, 8%(09:) represents the degree of change in G(x) with

respect to changing in 6. 63—&73&) can be interpreted as the degree of change in

Lugy when changing « + G(z). Therefore, we can interpret the gradient ascent
process of the parameter  as a modification of 6 to drive x 4+ G(x) able to obtain
a better adversarial effect. At this point, to enable G to iteratively generate
perturbations, we will replace = with z! , . This transforms the first part of Eq.
into W, indicating that G continues to generate perturbations based

t
adv*

Given a network N that accurately maps image x sampled from the distribu-
tion Pyqtq to its corresponding label m. The adversarial sample a:fldv at time ¢
can be expressed as:

onx

P, =Gzt x0) (4)

adv?
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hy, = clip(zl;! + P) (5)
such that
N(xgq,) # m (6)

Here, P, is the perturbation at time ¢, thus we have z!, = zo+ P;. And G(-, )
is the progressive generator network.

Training of the Discriminator We train the discriminator to accurately distinguish
adversarial samples generated by the progressive generator and actual samples
from the data distribution pgq:,. Specifically, we fix the parameters related to
the progressive generator and trained the discriminator Sy times (line 7). The
loss function Lp can be written as:

Lp = (1= D(x))* + D(zga)* (7)

It is worth noting that we did not choose to calculate Lp in the form of log(1 —
D(z)) as in AdvGAN. This is because we find that the gradient of log(1 — D(z))
for D will be very large and not smooth when D(x) is close to 1, and gradient
explosion will occur during iteration. We employ a squared form in the Eq. 10 to
help mitigate this issue.

Hence, the gradient of the discriminator with respect to the parameters 6p
can be expressed using Eq. [§] (line 8):

90» = Vo, Lp (8)

By updating 6p through gradient descent, we finally obtain the optimal parame-
ters for the discriminator (line 9-10):

Op =0p —m1- g0, 9)

Here 7, is the learning rate in discriminator training.

Constraints on the Generator We propose the use of L,4, to measure whether
the adversarial samples are generated in a direction more conducive to the attack
(refer to line 13).

Laay = —Cross Entropy (', m) (10)

It is worth noting that, in untargeted attacks, a larger value of cross entropy (. ,, ,m)
indicates a more effective adversarial example. Consequently, to enhance the
adversarial nature of 2%, during gradient descent on Ly, we prepend a negative
sign to cross entropy(at ,,,m). It is also feasible to replace cross entropy with
the loss function used in C&W |[1].

To prevent the issue of perturbation explosion in the auto-regression iterative
process, we introduce L, to constrain the magnitude of perturbation (refer to
line 14), where ||-||, stands for the I norm:

Ly = ||P]l, = ||G(xig, o), (11)

adv?
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To fulfill Proposition 3, we introduce an additional loss function Ly that enforces
the generated adversarial examples to remain close to the initial example. This
constraint ensures that the iterative progress of generating adversarial perturba-
tions does not deviate significantly from the original input, thus maintaining the
adversarial samples’ proximity to the initial data (see line 15).

La = |24y — wol|, (12)

Training of the Progressive Generator We train the progressive generator to
generate adversarial samples with high transferability and low distortions from
original samples while attacking the target neural network N. Specifically, we
fixed the parameters related to the discriminator and trained the progressive
generator S, times (refer to line 12).

As shown in Eq. we computed the gradient of the progressive generator
with respect to the parameters ¢ (line 16):

Lg = (1 - D(x}4,))° (13)
9o = vf’c (LG + )\1Lp + oLy + /\3Ladv) (14)

Note that Lg is the loss function to deceive the discriminator and Aq, Ag, As
are the weight hyper-parameters that control the balance between loss functions.
By updating 65 through gradient descent, we ultimately obtain the optimal
parameters for the progressive generator (line 17-18):

O =0a —n2 - 9o (15)

Here 1, is the learning rate in discriminator training.

4 Experiments

In this section, we present the experiments conducted to evaluate the performance
of our method. To guide the analysis, we address the following research questions.

- What is the attack success rate of PAR-AdvGAN compared to the baseline
AdvGAN? (RQ1)

- How does PAR-AdvGAN’s performance in attack transferability and at-
tack speed compare to state-of-the-art methods in adversarial attacks? Is it
effective? (RQ2)

- Why does PAR-AdvGAN work effectively? (RQ3)

4.1 Experiment Setup

Dataset and Models We conducted the experiments on the ImageNet-compatible
dataset consisting of 1000 images with a resolution of 299x299x3 [28] ﬂ The
dataset generation process follows the literature [61[7]

" https://github.com/cleverhans-1lab/cleverhans/tree/master/cleverhans_v3.
1.0/examples/nips17_adversarial_competition/dataset
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Here we refer to the typical and state-of-the-art transferable adversarial
attack methods [6,(7},22}|34,[36},38]. To ensure experiment fairness, we selected
representative models from two types: normally-trained and defense-trained
models. The normally trained models include Inceptionv3 (Inc-v3) [31], Inception-
v4 (Inc-v4) [30], Inception-ResNet-v2 (IncRes-v2) [30], ResNet-v2-50 (Res-50) |13,
14], ResNet-v2-101 (Res-101) [13}/14], and ResNet-v2-152 (Res-152) [13l[14]. As
for the defense-trained models through ensemble adversarial training, we selected
Inc-v3ens3 [33], Inc-v3ens4 [33], and IncResv2ens [33].

Baseline Methods We employ the original AdvGAN [34] algorithm as our
baseline to validate the transferability performance by incorporating self-regressive
iteration in PAR-AdvGAN. Meanwhile, to evaluate our proposed PAR-AdvGAN,
we selected seven state-of-the-art black-box adversarial attack methods as our
competitive baselines, including FGSM [10], BIM [19], PGD |[25], DI-FGSM [36],
TI-FGSM [7], MI-FGSM [6], and SINI-FGSM [22].

Parameter Settings All experiments in this study are conducted using the
Nvidia RTX 6000 Ada 48GB. In all experiments, we set the following fixed
parameters for each algorithm according to the settings in [18]. For AdvGAN and
PAR-AdvGAN, the training epochs are set to 60. The initial learning rate for
both the Generator and Discriminator is set to 0.001, which is then reduced to
0.0001 at the 50th epoch. For DI-FGSM, we set the decay to 0, the resize rate to
0.9, and the diversity prob to 0.5. For TI-FGSM, decay is set to 0, kernel name
is set to "gaussian," len kernel is set to 15, resize rate is set to 0.9, and the
diversity prob is set to 0.5. For MI-FGSM, decay is set to 1. For SINI-FGSM,
decay is set to 1, and m is set to 5.

Metrics Attack success rate (ASR) is a metric to evaluate the transferability
of attacks. It quantifies the average proportion of mislabeled samples among all
generated samples after the attack. Thus, a higher attack success rate signifies
better transferability. Additionally, we use Frames Per Second (FPS) to assess
the attack speed. Another crucial measure, the perturbation rate, is utilised
to ensure that the adversarial images do not largely diverge from the original
images in visual perception. A low value of this rate suggests that the adversarial
examples maintain close visual fidelity to their originals. Detailed formulas are in
the Appendix 1.4.

4.2 RQ1: Attacking Performance

As shown in Table. [} we compare the attack success rates of the original AdvGAN
and our proposed PAR-AdvGAN at three different perturbation rates of 8, 9,
and 10. The comparisons are conducted using Inc-v3 and Inc-v4 as surrogate
models and attacks are lunched on IncRes-v2. The results indicate that in most
cases, our algorithm outperforms AdvGAN in terms of attack success rate.
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Model|  Attack IncRes-v2

AdvGAN 13.9/38.9/43.2
PAR-AdvGAN 27.1/35.2/41.4

AdvGAN 6.1/9.6/15.9
PAR-AdvGAN 21.4/30.8/34.7

Table 1: ASR (%) of AdvGAN and PAR-AdvGAN on IncRes-v2. The adversarial
examples are crafted on Inc-v3 and Inc-v4.

Inc-v3

Inc-v4

Table 2: The attack success rates (%) on four undefended models and three adver-
sarial trained models by various transferable adversarial attacks. The adversarial
examples are crafted on Inc-v3 with different perturbations. The best results are

in bold.
Model|  Attack | Perturbation |  Inc-vd Res-50 Res-101 Res-152 Inc-v3ens: Inc-v3ensd I mASR
AdvGAN | 8.41/9.88/10.26 | 32.9/61.9/65.9 42.6/77.7/82.8 AT.8/75.3/83.1 38.8/66.6/728 15.1/44.0/52.5 30.2/54.5/63.0 9.9/25.7/265 | 31.04/57.95/63.80
PAR-AdvGAN|8.29/9.27/9.95| 53.7/63.1 /86.2/89.5 68.2/78.0/82.5 39.4/53.5/63.8 45.7/60.8/69.4 28.0/39.0/46.5
FGSM | 8.79/9.74/10.69 5.8/27.6 22.8/24.1 14.0/143/143  6.0/6.1/6.1
BIM 8.46/9.50/9.96 . 6/42.9  35.6/39.2 14.1/146/145  8.5/8.1/8.4
Incv3|  PGD  |8.76/9.79/10.35 6.2/50.2  38.6/40. 124/133/13.1  6.8/74/77

.0/60.0/6
39.7/45.2/45.2 3
4399, 5.1

18.4/20.4/19.1  10.5/11.0/11.0 | 38.28/41.

34.1/37.7/39.2  21.4/25.9/25.8 | 35.48/39.68/40.88
.. 15.6/14.9/16.2 6.5/7.7/7.4 27.65/29.41/30.97
45.6/50.7/53.8  24.6/24.4/26.4  23.9/23.8/25.9 11.0/12.0/12.6 | 37.44/39.95/42.94

DI-FGSM | 8.51/9.56/10.02 |66.0/70.0/70.9
TI-FGSM | 8.60/9.65/10.10 5.3/56.

MI-FGSM | 8.98/9.77/10.5. 5/47.9,
SINI-FGSM | 8.99/9.77/10.55 | 56.0/59.7

5. 36.5/38.8/41.0
64.2  53.8/58.0/62.5 47.2/51.1/55.2

We can see that compared to the most representative AdvGAN algorithm,
PAR-AdvGAN has made significant improvements for attacking performance
at a low perturbation rate. Specifically, similar to AdvGAN, PAR-AdvGAN,
as a generative model, does not require additional gradient calculations based
on different input data after training the generator. Compared to traditional
gradient-based black-box transferable attack methods, it possesses faster attack
speed. Therefore, we consider the PAR-AdvGAN algorithm feasible and suitable
for attack scenarios that demand high transferability and fast generation of
adversarial samples.

4.3 Effectiveness Experiment for RQ2: Transferability and Attack
Speed

To validate the transferability and attack speed of PAR-AdvGAN compared to
other SOTA methods, we conduct the experiments using various attack methods
on Inc-v3, Inc-v4, and IncRes-v2 as source models to generate adversarial samples.
We then conduct transferable attacks on different target models and use ASR
and FPS as the main metrics, to validate the effectiveness of our algorithm.

Experiments on Inc-v3 As shown in Table. 2] we conduct attacks using Inc-v3
as the source model with three different perturbation rates on target models of
Inc-v4, Res-50, Res-101, Res-152, Inc-v3ens3, Inc-v3ens4, and IncRes-v2. We can
see that our PAR-AdvGAN algorithm has achieved an average increase of 30.3%
in attack success rate compared to other baselines. Moreover, despite DI-FGSM
achieving better performance than PAR-AdvGAN on Inc-v4, which may be
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Table 3: The attack success rates (%) on four undefended models and three adver-
sarial trained models by various transferable adversarial attacks. The adversarial
examples are crafted on Inc-v4 with different perturbations. The best results are
in bold.

Model|  Attack |  Perturbation Inc-v3 Res-50 Res-101 Res-152 Inc-

Inc-v3ensd IncResv2ens mASR

AdvGAN | 9.64/11.67/12.11 | 55.6/75.9/59.1 48.6/77.5/70.6 54.4/74.8/69.5 40.4/67.0/58.4 13.4/2 44 20.3/54.6/43.0  16.0/25.7/21.1 | 35.52/57.42/49.44
PAR-AdvGAN|9.55/11.05,/11.60|72.9/85.6,/87.8 66.1/79.6/85.0 73.7/86.4,/89.8 55.7/69.2/74.8 13.0/17.4/20.2 35.0/50.9/58.2 15.7/25.6/30.2 |47.44/59.24/63.71

FGSM 9.74/11.64/12.58 | 28.4/31.9/32.9 23.7/26.3/28.4 21.1/24.2/25.4 20.6/24.3/25.6 13.1/13.2/13.4 10.9/11.7/12.3 5.9/6.6/6.8 17.67/19.74/20.68
BIM 9.98/11.46/11.91 | 60.1/62.5/62.4 38.9/41 41.0 34 39.8 13.9/15.7/16.1 13.5/15.7/14.8 9.3/10.9/9.6 30.41
Inc-vd PGD 9.78/11.35/11.88 | 49.8/55.6/58.8 2 1 124/14.9/145 12.7/13.8/141  7.8/7.8/8.3 | 25.02
DI-FGSM | 10.01/11.49/11.94 | 75.4/80.4/80.3 51.2/57.5/56.5 49 .0/55.7 18.5/19.6/20.6  16.4/18.5/18.7 10.7/13.5/12.4 | 39.95
TI-FGSM 9.61/11.08/12.00 | 61.5/67.5/68.4 37.0/44.0/48.0 38, 7/49.3 33.6/38.5/39.7 34.8/39.3/40.3 24.1/28.5/32.0| 38.7 64/47.15

M M 9.81/11.42/12.22 | 53.2/61.2/61.7 40.2/43.2/47.0 36.7/41.6/43.9 34.0/39.8/41.3 15.0/15.6/16.4 14.6/15.3/15.0 6.2/7.9/7.6 28.55/32.08/33.27
SINI-FGSM | 9.79/11.39/12.18 | 75.1/78.2/80.1 63.1/69.0/70.6 58.3/65.9/66.7 56.9/62.6/64.8 27.8/31.1/32.1 26.4/28.8/29.9 14.3/16.6/17.4 | 45.98/50.31/51.65

Perturbation Rate € [11.5, 12] Perturbation Rate € [12,12.5] Perturbation Rate € [12.5, 13]
100 A=05 100 100

40

Attack Success Rate

Attack

Fig. 1: The performance of PAR-AdvGAN at different high perturbation rate
intervals

attributed to the randomness in model training, a comprehensive comparison
across all models reveals that the attack success rate of PAR-AdvGAN is elevated
by 24.6% compared to the best-performing competing baseline, DI-FGSM.

Experiments on Inc-v4 As shown in Table. 3] we conduct attacks using Inc-v4
as the source model with three different perturbation rates on target models of
Inc-v3, Res-50, Res-101, Res-152, Inc-v3ens3, Inc-v3ens4, and IncRes-v2. We can
see that our PAR-AdvGAN algorithm has achieved an average increase of 20.13%
in attack success rate compared to other baselines. Furthermore, compared to
the best performing SINI-FGSM among competitive baselines, PAR-AdvGAN
achieved an increase of 7.48% in ASR.

Experiments on IncRes-v2 In this section, we conduct transferability tests
on Inc-v3, Inc-v4, Res-50, Res-101, Res-152, Inc-v3ens3, Inc-v3ens4, and IncRes-
v2 as target models with three different perturbation rates using IncRes-v2 as
the source model. We have included the results in the Table @l The results
demonstrate that PAR-AdvGAN achieves an average increase of 14.96% in ASR
compared to other baselines. We can see that although PAR-AdvGAN achieves a
lower ASR of 0.02% than the best performing SINI-FGSM among competitive
baselines, it outperforms AdvGAN by 6.31%.
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Perturbation Rate € [9, 10] Perturbation Rate € [10, 11] Perturbation Rate € [11, 12]

>

Atack Success Rate
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Fig.2: The performance of PAR-AdvGAN at different low perturbation rate
intervals

Table 4: The attack success rates (%) on four undefended models and three adver-
sarial trained models by various transferable adversarial attacks. The adversarial
examples are crafted on IncRes-v2. The best results are in bold.

Model Attack Inc-v3 Inc-v4 Res-50 Res-101 Res-152 Inc-v3ens3 Inc-v3ensd IncResv2ens mASR

55.6/66.6/88.3 48.9/55.7/87.4 48.8/57.8/93.4 42.2/49.8/91.9 35.8/45.2/90.8 12.0/17.4/52.5 14.0/15.4/45.2 5.6/7.4/40.3
N| 66.8/70.3/71.9 71.2/75. 1/764776/803/820 63.2/67.4/69.5 66.0/70.8/73.0 31.1 7/35.8 25.3/27.8/29.9 16.5/18.7/19.2
: 17.5/18.6/19.4 185/19.7/20.1 10.4/10.9/111  6.1/6.3/6.1
7/41.8 12.8/13.8/14.6  9.9/10.8/11.2
31.8 12.2/13.1/14.2  7.7/8.4/9.3 | 27.82/29.65/30.26
. 57.2/56.9/59.9  20.9/20.5/22.2 18.9/20.3/20.9 14.8/15.1/14.7 | 47.63/48.13/50.18
53.1/55.7/57.7  50.5/50.3/53.4 47.6/51.7/51.6 43.3/45.2/46.5 44.0/44.8/48.8 39.5/41.1/40.9| 51.02/52.90/54.13
43.7/46.1/48.4  39.2/44.7/43.3 37.6/39.5/42.6 15.0/16.1/17.4 14.8/15.4/15.3 8.9/9.4/9.8 33.40/35.13/36.77
66.1/70.4/73.0 63.8/66.7/71.0 60.9/63.9/66.6 34.7/35.2/37.0 29.5/29.9/31.4 20.6/20.7/22.4 |52.80/54.98/57.21

\ 47.1/51.8/40.7 4

IncRes-v2| PGD 44.9  35.4/38. 31
DI-FGSM 795/790/793 69.7/72.0/74.8 I)lh 61.7/67.2
TI-FGSM 66.6/69.3/69.1  63.6/65.1
MI-FGSM 58.2/59.8/61.7  49.8/50.1/55.

SINI-FGSM | 76.7/79.3/80.6  70.1/73.8/75.7

31

Experiments on ResNet-50 As shown in Table [5] we conduct attacks using
ResNet-50 as the source model with three different perturbation rates on target
models of Inc-v3, Inc-v4, Res-101, Res-152, Inc-v3ens3, Inc-v3ens4, and IncRes-v2.
The experimental results demonstrate that PAR-AdvGAN consistently achieves
superior performance across all target models compared to other baseline methods.
Specifically, PAR-AdvGAN achieves the highest mASR of 48.2%, 55.64%, and
63.81% for the three perturbation rates, outperforming the best-performing
baseline DI-FGSM by 5.21%, 10.43%, and 15.45%, respectively. Furthermore,
PAR-AdvGAN shows significant improvements over AdvGAN, with an average
increase in attack success rate of 25.37%. Although DI-FGSM achieves competitive

Table 5: The attack success rates (%) on four undefended models and three adver-
sarial trained models by various transferable adversarial attacks. The adversarial
examples are crafted on ResNet-50 with different perturbations. The best results
are in bold.

Model |  Attack | Perturbation |  Inc-v3 Inc-vd Res-101 Res-152 Inc-v3ens3 Inc-v3ensd  IncResv2ens | mASR

AdvGAN 8.32/9.15/10.40 | 28.2/38.5/27.5 31.7/33.5/21.6 30.3/34.5/26.9 29.4/32.4/19.7 14/2: 7.3 16.7/19.9/12.8  9.5/10.9/5.3 | 2
PAR-AdvGAN|8.24/9.10/10.37|67.. 2/72 5/79 3 -137 48.8/55.1 69.8/76.1/82.4 52.7/61.9/69.6 36.3/46.6/57.3 42.3/51.6/60.1 25.4/32/42.9|48.
316

3/27.66/17.3
55.64/63.81

FGSM 8.79/9.74/10.69 | 27, 24.9/27.3/29.4 211 27/28.6  11.9/12.9/13.6  12.3/12/12.2 5.7/5.9/6.3 | 18.41/19.89/21.1
BIM 8.50/9.54/10.42 5 6/49.9 35, 37/39.5/41.6 34/37.9/40.9 13.5/14/14.5 12/13.1/13.2 8.1/8/8.6 25.97/28.1/30.14
4.5, 2‘9310 11.6/11.6, 131 10.4/11.8/12.6 6/6/7.5 19.51 217424)1

ResNet-50 PGD 8.34/9.37/10.46 | 30. 8 35.6/39.2  26.4/30.3/33.1  26.9/29/32.5
DI-FGSM 8.59/9.17/10.52 | 67.2/71.1/74.8 65.5/68.8/73. g
8.45/9.46/10.38 | 51/5

15/15/16.9  10.4/10.6/11.7| 42.99/45.21
35.4/39.1/41.2 24.7/28.1/31.3 40.29/43.76,
13.6/12.4/12.8 7.2/7.9/8 26.39/27.94/29.43
1-18 1"4 l(\ 6 14.6/14/15.1 6.2/7.1/7.8 | 26.31/31.34/33.96

9/60.1  48.9/5 8.2
C 8.87/9.65/10.43 | 41.5/43.7/48.1  36.5/40/41.2  35.6/38.9/40.8 36.1
SINI-FG: S\I 8.26/9.85/10.63 | 41.4/49.4/53.3 35.7/43.9/48.7 38.1/46.1/48.9 33.4/43.5/47.3
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Table 6: The attack success rates (%) on four undefended models and three adver-
sarial trained models by various transferable adversarial attacks. The adversarial
examples are crafted on ViT-B/16 with different perturbations. The best results
are in bold.

Model Attack Perturbation

Inc-v3 Inc-vd Res-152 Inc-v3ens3 Inc-v3ensd IncResv2ens mASR

AdVGAN | 10.59/11.30/12.25
PAR-AdvGAN|10.21/11.1
FGSM 10.76/11.71/12.65
BIM 10.90/11.47/12.37
ViT-B/16| PGD 10.73/11.23/12.24
DI-FGSM | 10.59/11.58/12.04 | 75

TIFGSM | 10.77/11.21/12.23
MIFGSM | 10.75/11.58/12.36 | 5
SINLFGS 10.83/11.66,/12.45

8/50/60.5

66.86,/68.7/77.46
6

.6
1 9 729 315
5/51.4/56.8 46.6/47.6/54.4 39.2, 39 12.8
40.3/42.7/45.7 37.9/39.6/42.4 28.2/29. 7 31.8/31.5/33.9 21.8/22.9/25.2
61.2/67.7/67.4  61.8/65.8/67.5 53.8/58.
56.4/58.6/61.2 59.4/62.4/63.6  52.1/5
50.9 38.6/40.5/43.7 40.5/42.6/43.9 19.75
57.9 44.5/47.5/49.4 44.1/46.7/50.4  37.9/39.7/43.9 | 49.25/52.93/56.54

/36

9/34/36

1
1

performance on certain models such as Inc-v4 and Res-101, the overall effectiveness
of PAR-AdvGAN across all models underscores its robustness and transferability.

Experiments on ViT-B/16 In Table @ we present the results of attacks
using ViT-B/16 as the source model with three different perturbation rates
on several target models, including Inc-v3, Inc-v4, Res-50, Res-101, Res-152,
Inc-v3ens3, Inc-v3ens4, and IncRes-v2. Unlike traditional convolutional neural
networks (CNNs), Vision Transformers (ViTs) adopt a fundamentally different
architecture for image classification tasks. Our experimental findings show that the
proposed PAR-AdvGAN algorithm performs exceptionally well when transferred
to ViT-based models, achieving an average increase of 6.85% in attack success
rate (ASR) compared to AdvGAN across all target models. Specifically, PAR-
AdvGAN consistently delivers the highest mean ASR values of 73.38%, 78.56%,
and 81.63% across the three perturbation rates, surpassing all baseline methods,
including DI-FGSM, which was the best performer in certain cases. These results
underscore the robustness and transferability of PAR-AdvGAN, demonstrating
its ability to maintain high effectiveness not only with traditional CNNs but also
with more recent transformer-based models like ViT, thus proving its versatility
and reliability across different model architectures.

Attack Transferability Result Analysis With the results from Tables [2} [6]
it can be observed that in most cases, our adversarial attack algorithm shows
significantly improved transferability compared to the original AdvGAN, espe-
cially at lower perturbation rates. Additionally, compared to other competitive
baselines, PAR-AdvGAN exhibits the best transferability. Notably, to ensure the
fairness of the experiments, our algorithm was consistently compared with other
methods for a lowest perturbation rate. In instances where the perturbation rates
were higher, some algorithms did not exhibit a proportional increase in attack
transferability. However, the transferability is overall improved.

Attack Speed Analysis As shown in Table. [7] we evaluated the computational
efficiency of PAR-AdvGAN and seven competitive baselines using Inc-v3, Inc-
v4, and IncRes-v2 as source models. We use FPS as the metric for measuring
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Table 7: FPS comparison of PAR-AdvGAN with seven competitive baselines
Method ‘IIIC—VS Inc-v4 IncRes-v2

FGSM 176.5 116.7  76.1
BIM 10.6 6.5 4.1
PGD 55 33 2.1

DI-FGSM 10.8 6.6 4.1
TI-FGSM 10.6 6.5 4.2
MI-FGSM | 42.7 26 16.4
SINI-FGSM | 86 5.3 3.3
PAR-AdvGAN|335.5 291.3 332.8

attack speed, representing the number of images that can be processed by the
attack per second. It can be observed that across Inc-v3, Inc-v4, and IncRes-v2,
PAR-AdvGAN exhibits speed improvements of 61, 88.3, and 158.5 times over the
slowest-performing PGD algorithm among the competitive baselines. Furthermore,
in comparison to the fastest-performing FGSM algorithm among the competitive
baselines, PAR-AdvGAN achieves speed enhancements of 1.9, 2.5, and 4.4 times,
respectively. We assert that PAR-AdvGAN demonstrates significantly higher
attack speed in comparison to traditional gradient-based transferable methods,
while simultaneously achieving state-of-the-art transferability performance.

4.4 Ablation Experiment for RQ3

We investigate the effects of parameter A on the attack transferability as it is
an important parameter to control the perturbation range. Fig. [I] shows the
performance of PAR-AdvGAN with Inc-v3 as the source model, with a fixed €
of 20, and A set to 0.5, 0.8, and 1 for different target models. At A of 0.5, the
specific perturbation rates are 11.75, 12.56, and 12.89. At X of 0.8, the specific
perturbation rates are 11.55, 12.59, and 12.90. At X of 1, the specific perturbation
rates are 11.66, 12.45, and 12.81. We can see that at higher perturbation rate
intervals, setting A to 0.8 achieves best transferability performance.

Fig. [2| compares the results with fixed € of 16 and A set to 0.8 and 1. At
A of 0.8, the specific perturbation rates are 9.40, 10.60, and 11.20. At X\ of
1, the corresponding perturbation rates are 8.95, 10.88, and 11.40. For lower
perturbation rates, setting A to 1 achieves the best transferability.

5 Conclusion

In this paper, we present a novel PAR-AdvGAN algorithm to boost adversarial
attack capability through iterative perturbations. Specifically, to address the
perturbation escalation issue in AdvGAN, we first adopt a progressive generator
network to incorporate the initial sample xy in the perturbation generation
process. An auto-regression iterative method is then proposed to include non-
initial sample information in generator training. Furthermore, we constrain
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the distance between initial samples and subsequent samples. Our extensive
experimental results exhibit the superior attack transferability of our method.
Moreover, compared with the state-of-the-art gradient-based transferable attacks,
our method achieves an accelerated attack efficiency.
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