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Abstract. Ensuring fairness in node classification with Graph Neural Networks
is fundamental to promoting trustworthy and socially responsible machine learn-
ing systems. In response, numerous fair graph learning methods have been pro-
posed in recent years. However, most of them assume full access to demographic
information, a requirement rarely met in practice due to privacy, legal, or reg-
ulatory restrictions. To this end, this paper introduces a novel fair graph learn-
ing framework that mitigates bias in graph learning under limited demographic
information. Specifically, we first propose a mechanism guided by available de-
mographic information to generate proxies for demographic information and then
design a strategy to ensure consistent node embeddings across demographic groups.
Additionally, we propose an adaptivity confidence strategy that dynamically ad-
justs each node’s contribution to fairness and utility based on prediction confi-
dence. Through extensive experiments on multiple datasets and fair graph learn-
ing frameworks, we demonstrate the framework’s effectiveness in both mitigating
bias and maintaining model utility.
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1 Introduction

Graph Neural Networks (GNNs) have become a prevalent approach for handling com-
plex real-world applications, such as healthcare [1], social network analysis [30], and
recommendation systems [16]. The success of GNNs relies on message-passing mecha-
nisms, which aggregate information from neighboring nodes, effectively capturing both
graph structural information and node attribute information [32,61]. However, despite
their successes, GNNs tend to inherit and even exacerbate existing biases from graph
data [34], propagating and amplifying unfair patterns embedded in network topology
and features. This inadvertent amplification of societal biases and the potential for dis-
criminatory outcomes have highlighted the urgent need to develop strategies that pro-
mote fairness within these systems. To this end, a number of approaches [40,64,37] have
been proposed in recent years, with most relying on complete demographic information
to guide fair graph learning.
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However, this requirement often does not align with realistic situations, as col-
lecting or explicitly utilizing demographic information (e.g., gender, race) can be re-
stricted or prohibited due to privacy concerns, legal constraints, ethical considerations,
or social sensitivity [17,18]. For example, in many real-world graph datasets such as
academic collaboration networks or online social platforms, demographic information
are often missing, incomplete, or intentionally withheld to protect user privacy, with
studies showing that less than 30% of users voluntarily disclose demographic informa-
tion [22]. Consequently, existing fairness-aware graph methods, which typically assume
full availability of demographic information, become impractical when only limited de-
mographic information is available. This gap between theoretical fairness requirements
and real-world constraints creates a critical gap that significantly limits the applicability
and practical deployment of current graph fairness solutions.

To fill this gap, a few works [48,18,26] have begun to explore achieving fairness
without full demographics. However, these pioneering approaches focus on i.i.d. data
settings and overlook the unique characteristics of graph-structured data. Consequently,
existing methods cannot be easily adapted to graph-structured data, which appears
widely in many real-world scenarios. This limitation has left fair graph learning with
limited demographic information as a highly open research area with several unique
challenges: i) Difficulty of identifying missing demographic information from lim-
ited demographic labels: In many real applications, only a small subset of nodes re-
veal their demographics. These disclosed labels can over-represent favored groups or
cluster in areas of the graph with different link patterns. The uneven coverage makes
it difficult to train reliable predictors for the missing demographic information; using
the limited labels without care can intensify bias instead of reducing it. ii) Complex-
ity of mitigating interconnected biases in graph data: Graph data presents unique
fairness challenges because biases exist in multiple interconnected forms between node
attributes and graph structure. These biases interact through message-passing mecha-
nisms, making them particularly difficult to identify and mitigate. Without full demo-
graphic labels, it is hard to distinguish whether patterns in the graph represent biases
or not. This makes achieving fair node representations exceptionally challenging, since
we cannot directly observe or measure the demographic disparities that need to be mit-
igated in the learned embeddings. iii) Balancing model utility and fairness: A major
challenge in fairness work is maintaining model utility while improving fairness. En-
hancing fairness typically requires the model to pay more attention to samples from
deprived groups, which can reduce performance for favored groups. This challenge is
further compounded by the absence of demographic information, which creates uncer-
tainty about subgroup membership.

To address aforementioned challenges, this paper proposes Demographic-agnostic
Fair Graph Representation (DFGR), which is designed to reduce bias in graph learn-
ing algorithms when only limited demographic information is available. To the best of
our knowledge, this is the first work that designs to achieve fair graph learning with-
out full demographic information while preserving maximum task-related information.
Specifically, DFGR uses the limited demographic labels in the training set to guide
an encoder, built according to our causal analysis to generate proxies for demographic
information. Armed with these identified demographic proxies, DFGR then enforces
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three constraints aimed at ensuring learned node representations remain invariant to de-
mographic information while retaining as much task-related information as possible.
Additionally, by incorporating the proposed adaptivity confidence strategy, DFGR im-
poses fairness constraints only on samples with high confidence, reducing performance
loss while improving model fairness and helping the model to better learn from samples
with low confidence. The main contributions of our work can be summarized as:

— We address the largely unattended challenge of achieving fair graph learning with
incomplete demographic information. We propose a novel method to generate prox-
ies for demographic information and leverage these proxies as a foundation for our
fairness framework, ensuring consistent node embeddings across different demo-
graphic groups through three designed constraints.

— We introduce a novel adaptivity confidence strategy that improves fairness while
minimizing utility loss by dynamically adjusting the weight of each sample’s con-
tribution to the fairness loss based on the classification confidence level.

— We conduct extensive experiments on four real-world graph datasets that demon-
strate DFGR’s effectiveness in mitigating bias while maintaining comparable utility
to state-of-the-art methods.

2 Related Work

2.1 Fair Graph Learning

In recent years, extensive research has been conducted to improve the fairness of GNNs
by mitigating biases from training data [53,20,39] or training GNNs with fairness-aware
frameworks [8,53,64]. The core idea behind most of these approaches is the removal of
demographics-related information, thereby enforcing GNNs to make decisions inde-
pendent of the demographic information [54]. In other words, it aims to achieve algo-
rithmic decisions that do not discriminate against or favor certain groups defined by the
demographic information. Despite their great success, most existing fair GNNs assume
access to predefined demographic information during training, which is impractical in
most real-world socially sensitive applications due to privacy, legal, or regulatory re-
strictions [2]. In addition, a few works make initial explorations of fair graph learning
with missing demographics. Specifically, FairGNN [8] aims to learn fair GNNs with
limited demographics. To achieve this goal, FairGNN employs the demographic esti-
mator to predict the demographics while improving fairness via adversarial learning.
In addition, FairAC [12] embeds nodes with observed attributes, then employs an at-
tention mechanism to aggregate neighbor features for nodes with missing attributes.
However, both methods overlook that different groups may differ in their willingness
to share demographic information. Members of a favored group may be more willing
to disclose their data, while individuals from a deprived group may withhold it due to
fear of discrimination. As a result, these methods are less effective when demographic
information is highly limited or unevenly available.
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2.2 Fairness with Incomplete Demographic Information

The research community is paying growing attention to fair machine learning models
that do not rely on fully known demographic labels, because many socially sensitive
applications permit only limited or no direct access to demographic information [14].
Existing approaches can be divided into two main types: those employing proxy demo-
graphics [11,26,60] and those adhering to minimax fairness principles [3,21,28]. Specif-
ically, the core idea behind proxy-based methods is that proxy demographic information
can be obtained when certain features correlate with real demographic information or
when partial demographic information is available. In scenarios where direct access to
demographic information is impossible, proxy fairness notions rely on these correlated
or predicted features to approximate the real demographic information, while minimax
fairness is based on John Rawls’s difference principle [27], which is designed to mini-
mize the model loss for the least advantaged subgroup. However, existing fairness work
with incomplete demographic information is focused on independent and identically
distributed (i.i.d.) data, which is unable to mitigate the bias exhibited by the relational
information (i.e., graph structure information) and cannot be easily extended to graph
data.

Different from the above works, DFGR addresses a new fair graph learning re-
search problem where demographic information is incomplete, yet fairness and equity
in graph-based decision-making systems remain essential. In addition, we introduce an
adaptive confidence strategy that focuses on high-confidence prediction nodes, enabling
DFGR to enhance fairness while minimizing the fairness constraint’s effect on model
utility.

3 Preliminaries

3.1 Notations

For clarity in writing, we describe our method and accompanying proofs under the
setting of a node classification task with binary demographic information and binary
labels. We represent a graph as G = (V, €, X)), where |V| = n is the number of nodes
and || = r is the number of edges. The matrix X € R™*? contains d-dimensional
feature vectors, with the u** row corresponding to node u. The adjacency matrix A €
{0,1}™*™ has entries A, ;, = 1 if there is an edge e,, ,, € € between nodes v and k, and
A, . = 0 otherwise. We let S € {0,1}"*! denote the demographic information, and
write s,, for the value of u. We define Sq = {u | s, = 0} as the deprived group (for
example, female), and Sy = {u | s, = 1} as the favored group (for example, male).
Each node w also has a one-hot ground-truth label y,,, and g, is its predicted label. We
let ¥, = 1 indicate a granted label and y,, = 0 indicate a rejected label.

3.2 Fair Causal analysis

Existing works have selected correlated non-demographic attributes as proxies for miss-
ing demographic information based on prior knowledge [14]. However, when dealing
with high-dimensional attributes, it becomes challenging to accurately determine the
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proxies for demographic information. At the same time, selecting appropriate proxies
is crucial for promoting fairness. To this end, we conduct a causal analysis of the under-
lying mechanisms in the observed graph to help identify missing demographic infor-
mation. Without loss of generality, in this work, we focus on the fair node classification
without full demographic information and construct a Structural Causal Model [24]
(SCM) as shown in Figure 1. It presents the causal relationships among six variables:
Demographic Information (5), Ground-Truth Label (Y), Graph Structure (A), Node
Features (X), Ego-graph (G), and Node Representation (h). Each connection in the
SCM represents a causal relation. Specifically, .S is typically determined at birth; it
does not have a parent variable in the causal graph and solely acts as a cause influenc-
ing other variables, including X and A. In addition, S, X and A will all affect the final
node representation through the GNN message passing mechanism, while it also should
contain important information for downstream node classification tasks and ego graph
reconstruction.
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(o 3
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Fig. 1: Structural Causal Model for DFGR.

4 The Proposed Framework - DFGR

4.1 DFGR: In a Nutshell

In this section, we propose a novel framework, DFGR, which aims to learn fair node
representations without full demographic information. As the illustration shown in Fig-
ure 2, DFGR mainly includes three key components: i) demographic information iden-
tification module; ii) fair node representation learning module; iii) adaptivity confi-
dence strategy module. In the demographic information identification module, DFGR
obtained the demographics proxy by incorporating node representations of both the
graph structure and non-sensitive attributes. By using the identity proxy of demographic
information in the fair node representation learning module, DFGR aims to learn fair
node representations to minimize the identifiability of demographic information in node
representation while preserving as much label-related information as feasible by estab-
lishing three constraints. Finally, DFGR adjusts the weight for each proxy to enhance
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model fairness stability while facilitating gradual learning from simpler to more com-
plex instances. Each of these modules will be elaborated upon in the subsequent discus-
sion.

Demographic Information Identification Module

Center

MLP Fair Node Representation Learning Module
. —
Classifier ?
Y ‘*OE
‘ Demographic [0} .
Adaptivity Confidence Strategy Module Fairness Constraint
Gr(?bﬂ.d Approve Masking Vector
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Information Constraint jo i o
Fair Node ]
Representation Graph Reconstruction
Constraint

Fig. 2: An illustration of the proposed framework DFGR.

4.2 Demographic Information Identification Module

In this subsection, we introduce a demographic information identification module, de-
signed to infer the missing demographic labels by using the observed graph data (i.e.,
X, A, and Y) together with the demographic labels that are available. As demographic
information is assumed to influence both graph connectivity and non-demographic at-
tributes, and to model this effect, we construct a proxy by integrating representations
of the graph structure with the non-demographic features. Specifically, a graph encoder
is employed to generate this proxy, as it is capable of capturing complex patterns in
high-dimensional data and combining signals from links and features, even when only
a limited number of demographic labels are available. Formally, the encoder is defined
as follows:

@) )

Y = ¢h{D+ 3l ReLU(WOR{V), ol = P (Cuk
U u u,k k ’ w,k )

kEN (u) Zke/\/(u) eXP(eu,k)

ey

where hq(f ) represents the embedding of node « at layer [, and hq(f D is the embedding

from the previous layer. The parameter £ is a learnable scalar that controls how much of
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the previous representation is retained at layer /. The matrix W) is a learnable weight
matrix, and ReLU(+) is the nonlinear activation function. The set A (u) denotes the
neighborhood of the center node u, representing all nodes directly connected to u in the
graph. The attention coefficient ag’)k reflects the relative importance of neighbor k to
node u in the aggregation process.

Based on the encoder architecture, the module is trained via a supervised classifi-
cation task aimed at predicting missing demographic information. The encoder param-
eters are learned by minimizing the cross-entropy loss between predicted and observed
demographic labels. This supervision encourages the encoder to map nodes with simi-
lar demographics to nearby points in the representation space, even under partial label
availability. Once training converges, the encoder parameters are fixed and subsequently
used as a feature extractor that transforms high-dimensional node features into compact,
informative embeddings. These low-dimensional representations function as proxies for
demographic information in later components of the framework. This approach enables
the model to indirectly capture and regulate the effects of missing demographic at-
tributes, despite the absence of complete ground-truth labels.

4.3 Fair Node Representation Learning Module

Building on the demographic information identified in the previous module, we now
introduce the fair node representation learning module, which aims to mitigate bias in
node embeddings and prevent demographic-related information from influencing down-
stream tasks. As discussed earlier, nodes sharing the same demographic characteris-
tics often tend to be more densely connected. The message-passing process can then
smooth the representations of such nodes, further separating them from nodes of dif-
ferent demographic subgroups and causing predictions to become overly dependent on
demographic information [62]. To address this issue, we propose mapping each node’s
embedding into a new representation space. This transformation conceals any cues that
might reveal membership in a deprived subgroup, while preserving as much of the task-
related information as possible. Specifically, we introduce three constraints: the fairness
constraint, the information constraint, and the graph reconstruction constraint.
Fairness Constraint. The fairness constraint is designed to remove any demographic-
related information (i.e., whether a node is in the favored or deprived subgroup) in node
representations that could introduce bias into downstream predictions. As illustrated in
Figure 2, the original node embedding h,, may clearly reflect demographic informa-
tion, such as whether u belongs to the male or female subgroup. After applying our
fairness constraint, this information becomes obscured in the new embedding h’,,. As
shown in Figure 2, node representations h that distinguish between male and female
are represented by red and blue colors, respectively. These distinct representations then
converge toward a more uniform representation in the fair node embedding space h’,
depicted in purple, thereby obscuring the demographic information. Specifically, we
transform each node representation h,, into a new space that makes it impossible to
deduce whether node u belongs to a specific demographic subgroup.

In this new space, each node’s information is represented using a set of prototyp-
ical probabilistic mappings. Let p be a multinomial random variable over prototypes
{h'1,h's,... ;1 }, each of which has the same dimensionality as h,, and m is the
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number of prototypical. A node representation does not retain demographic group in-
formation if it appears with the same probability in both the deprived subgroup (Sy)
and the favored subgroup (Sy). Formally, this condition can be written as:

P(p‘uESd):P(pMLESf) 2)

where P(p | u € S;) represents the probability distribution of the prototypical mapping
p for nodes in the deprived subgroup, and P(p | u € Sy) represents the same for nodes
in the favored subgroup. In addition, the probability of assigning a node representation
h,, to prototype j can be written as:

exp(—d(h, h';))
i1 exp(—d(h, ;)
where d(-) is a distance function (e.g., Euclidean distance).

Building on this, we measure the difference in the probability of each prototype

in different sensitive groups. Hence, the group probability disparity (GPD) is formally
defined as GPD = |G Ps,—G Ps, |, where group probability (GP) is defined as follows:

P(p=jh) = 3)

m

GPs, = 5 30 Do Plo=Hlh)

Sd| weS, j=1

1 m (4)
= e X Y P Wik

ueSy j=1

In addition, to prevent the fair embedding from discarding important information,
i.e., task-related information, identity information, along with demographic-related in-
formation, we introduce a reconstruction term that penalizes large deviations from the
original node representations. Therefore, we add a term to measure the squared dif-
ference between h and h’/, ensuring that each node’s transformed embedding remains
sufficiently close to the original. Finally, the fairness constraint is defined as follows:

n
Lp :GP1)+ZHhu—h’un2 (5)
u=1
where h’, is the fair node representations of h,,. This constraint encourages the model
to encode all information contained within the raw features except for any informa-
tion that could lead to biased learning. By enforcing this constraint, we ensure that the
node representations in the new space do not contain information that could be used to
discriminate between demographic subgroups.
Information Constraint. For each node u, the transformed representation h’,, should
preserve essential features and structural information, ensuring its usefulness for down-
stream tasks. In other words, the model should be able to make accurate label predic-
tions using node representations (i.e., h’,, — y,). As illustrated in Figure 2, the in-
formation constraint ensures the retention of the task-related information to accurately
predict the label in both the fair node embedding h’,, and the original node embedding
h,,. Hence, the objective of the information constraint is to minimize the loss of the
prediction model, as shown in Equation 6:



Fairness-Aware Graph Representation Learning with Limited Demographic Information 9

1

L= —
T

Z —(Yulog(yu) + (1 — yu) log(1 — yu)) (6)

vy, €VL

where y; is the one-hot encoding of the ground-truth label of node w.

Graph Reconstruction Constraint. For each node u, another objective is to ensure
that its node representations accurately represent the node itself. This requirement is
fulfilled by accurately reconstructing the ego-graph G,, from the new node embedding
h',,. Formally, we define the graph reconstruction constraint as a graph structure recon-
struction loss, Lq:

1

Lo= —
|55d‘ + |Esf‘

L(ewk: k) 7
eu,kég

where Eg, and &g, are sets of sampled edges connecting nodes from deprived and fa-
vored subgroups, respectively, and L(-) is the cross-entropy loss. The term e,, j, denotes
the actual connection status between nodes v and k, whereas é,, ;, = o(h’,h’ [) is the
predicted probability of a link, with o(-) representing the sigmoid function. Because
positive edges are relatively sparse, we randomly sample one negative edge for each
positive edge to balance the training data.

In essence, the introduction of the graph reconstruction constraint serves as a pre-
caution against noise infiltration into node representations. This ensures that the recon-
structed ego-graph G,, remains faithful to the original graph structure, thereby preserv-
ing important structural information while removing demographic bias.

4.4 Adaptivity Confidence Strategy Module

Following our Fair Node Representation Learning Module, this section introduces an
Adaptivity Confidence Strategy Module that adjusts the weight for each node based on
the model’s confidence. The key insight is that if the model is highly confident about a
node’s prediction, it is more important to ensure that demographic information is fully
masked in the node’s representation. On the other hand, for low-confidence nodes, the
model is essentially guessing the node label, so a strict fairness penalty is less impor-
tant. Intuitively, if the classifier already has low confidence in determining a node’s
label prediction, the risk of embedding leaked demographic information that drives bi-
ased outcomes is smaller. Conversely, for nodes with high classification confidence, we
need to ensure that this confidence does not derive from demographic information. For
example, preventing the model from predicting that someone will get an interview at a
software company simply because the person is male.

To address this, we propose the Adaptivity Confidence Strategy Module, which dy-
namically weights the fairness loss of each node based on classification confidence. Let
conf(u) be the confidence score for node u’s predicted label, and let 7 be a threshold
that separates high-confidence from low-confidence samples. If conf(u) > 7, we con-
sider the node’s classification to be reliable, and thus apply a larger penalty whenever
its demographic information is not sufficiently “masked.” Conversely, if conf(u) < 7,
the node’s classification is already uncertain (close to random guessing), so the urgency
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of masking its demographic information is reduced. Formally, the group probability can
be updated as:

Zuesd W, Z;n=1 P(p="h'; | hy,)

GPS = ’
! Euesd Wy
N ®)
GPe — Zuesf Wy Zj:l P(p="1;|hy)
o ZUESf Wy .
conf(u)

where w,, = ST conf(z) is the weight of node u.

In this way, nodes with high-confidence predictions receive more stringent fairness
treatment, ensuring that their label prediction does not induce bias. Meanwhile, nodes
with low-confidence predictions incur a smaller fairness penalty, acknowledging that
the classifier’s uncertainty already diminishes the likelihood of discrimination arising
from their representations while also helping the model increase the confidence of its
predictions.

To sum up, the adaptivity confidence strategy module helps the model concentrate
on fully masking demographic information for nodes where the proxy of demographic
information is more reliably recognized, thereby efficiently allocating fairness con-
straints where they are most needed and promoting both fairness and prediction ac-
curacy.

4.5 Opverall Learning Object

To jointly optimize utility and fairness, we define a unified loss function for training
our demographic-agnostic fair graph representation (DFGR) framework. Specifically,
we combine four terms: i) information loss for preserving task-related information, ii)
graph reconstruction loss to reconstruct the graph topology, and iii) fairness loss for
removing demographics-related information. The final objective function is:

min = Liotat =L1 + aLlae + bLF
1 . N
=1 Z [_ (?/u IOg(yu) + (1 - yu) lOg(l - yu))}

|VL| vy €V,
=GPD + > by — b, |? ©)

u=1
1

=0 L(ewk, €uk
[Esq] + |Es] o€t (us €ur)

where a and b are tunable hyperparameters to balance the contributions of the various
elements in the overall objective function. The terms £}, L, and L correspond to the
utility loss, the graph reconstruction loss, and the fairness loss, respectively.
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S Experiment

In this section, we describe the experimental design used to comprehensively evaluate
our proposed framework, DFGR. We first introduce the datasets utilized in the exper-
iments, followed by a description of the baselines selected for comparison. Next, we
outline the evaluation metrics adopted to assess prediction and fairness performance.
Finally, we present and analyze the results of the experiments.

5.1 Experimental Settings

Datasets. We evaluate DFGR on four widely used real-world datasets, i.e., the Credit
dataset [50], Pokec-z and Pokec-n datasets [31], and the NBA dataset [8]. The Credit
dataset consists of credit card holders represented as nodes, connected by edges based
on similarities in spending and payment behaviors. Each node includes transaction-
related features. The Pokec-z and Pokec-n datasets originate from a popular social net-
work in Slovakia, corresponding to two distinct provincial sub-networks. Nodes repre-
sent users characterized by attributes such as gender, age, and interests, while edges rep-
resent friendships. The prediction task involves classifying users’ occupational fields.
The NBA dataset models professional basketball players as nodes, connected based
on similarity in performance metrics. The prediction task is to determine if a player’s
salary exceeds the league average. The detailed statistics of these datasets are shown
in Table 1. In all datasets, isolated nodes are removed before experiments. The data is
partitioned into training (50%), validation (20%), and testing (30%) sets. To evaluate
the effectiveness of our method under scenarios with incomplete demographic informa-
tion, we mask 40% demographic information in the training and validation sets while
maintaining complete labeling of demographic information in the test set.

Table 1: Summary of the datasets in the experiments.
Dataset Credit Pokec-z Pokec-n NBA

Vertices 30,000 67,797 66,569 403

Edges 137,377 882,765 729,129 16,570
Feature 13 65 65 97
Dimension

Demographics ~ Age Region Region Country

Baselines. We compare the proposed framework with several state-of-the-art methods,
categorized into two groups: i) Vanilla Graph Model: GCN [15], which utilizes spec-
tral graph convolutions without explicit fairness constraints; ii) Fairness-aware Meth-
ods: FairKD [3] addresses fairness by first overfitting a teacher model to generate soft
labels, which then guide a student model via knowledge distillation. KSMOTE [48]
leverages clustering to assign proxy demographic labels, balancing subgroup repre-
sentation through synthetic oversampling. FairRF [60] promotes fairness by explicitly
exploring and mitigating feature-related biases, eliminating reliance on demographic
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information. FairAC [12] extends fairness considerations beyond i.i.d. data to graph
data; it generates node embeddings based on observed attributes and employs an atten-
tion mechanism to aggregate neighbor information for nodes with missing attributes.
FairGKD [63] enhances fairness in graph scenarios through graph-based knowledge
distillation, transferring fair representations learned by a teacher GNN to a student
model, and knowledge sharing. Finally, FairGNN [8] aims to learn fair GNNs with lim-
ited demographic information by employing a demographic information estimator to
predict the demographics while improving fairness via adversarial learning. For meth-
ods not originally designed for graph data (FairKD, KSMOTE, and FairRF), we adapt
them to work with our method backbone using the authors’ original implementations.
Evaluation Metrics. We evaluated the proposed framework with respect to two key as-
pects: prediction performance and fairness performance. To evaluate prediction perfor-
mance, we chose two metrics for node classification, i.e., accuracy and F1-Score [29],
where higher scores indicate better prediction results. For fairness assessment, we uti-
lize two commonly used metrics: Demographic parity (App) [19] and Equal Opportu-
nity (Ago) [13]. These fairness metrics measure the disparity in predictions between
different demographic groups, where values closer to zero indicate higher fairness.

5.2 Experimental Results

RQ1: How does DFGR perform in balancing utility and fairness across real-world
graph datasets? To answer this question, Table 2 summarizes the comparisons be-
tween our proposed method, DFGR, and the baseline methods. Specifically, two key
observations emerge: i) DFGR achieves superior fairness when demographic informa-
tion is missing. Across all evaluated datasets, DFGR consistently demonstrates bet-
ter fairness performance than baseline methods. This advantage stems from DFGR’s
ability to effectively leverage node features and graph structure to accurately gener-
ate proxy of demographic information, establishing a solid foundation for bias miti-
gation. Furthermore, DFGR mitigates multiple forms of bias in graph data, better pre-
venting demographic information from leaking into downstream classification tasks.
ii) DFGR demonstrates comparable predictive performance compared with existing
fairness methods. Unlike existing approaches that impose uniform fairness constraints
on all nodes, DFGR dynamically adjusts each node’s contribution to the fairness loss
through the adaptivity confidence strategy, enabling better learning for nodes with low
confidence. Overall, these results highlight DFGR’s advantage in effectively balancing
predictive performance and fairness.

RQ2: How Do the Hyper-parameters o and b Impact the Trade-off Between Util-
ity and Fairness in DFGR? We investigate the sensitivity of DFGR to two key hyper-
parameters, i.e., a and b. As shown in Figure 3, as a increases, the model achieves
better prediction performance and fairness. However, if it passes a certain threshold,
both prediction performance and fairness stabilize. For parameter b, as shown in Fig-
ure 3, we observe three distinct phases: when b is very small, the fairness constraints
have minimal impact. As b increases, fairness steadily improves, though prediction ac-
curacy gradually declines due to stronger regularization. Beyond a threshold (e.g., e* for
Credit/NBA, e3 for Pokec-z/Pokec-n), fairness performance stabilizes or slightly dete-
riorates because excessive regularization restricts the model’s representational capacity.
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Table 2: Comparison of DFGR with baseline methods on real-world datasets. The best-

performing result in each row is highlighted in bold, and the second-best result is underlined.

Methods

Dataset ||| = GCN KSMOTE | FairKD FairRF FairAC FairGKD | FairGNN DFGR
Accuracy (1) [|0-781 £ 0.016]0.736 = 0.009]0.711 = 0.012[0.735 % 0.017|0.748 & 0.026| 0.743 = 0.028 |0.687 =+ 0.012|[0.743 = 0.032

Credit || F1-Score (1) ||0.868 = 0.023(0.817 & 0.012(0.796 & 0.023[0.809  0.022[0.831 = 0.018( 0.834 & 0.013 |0.783 = 0.043|0.825  0.018
App(l) 0.117 + 0.013[0.071 + 0.003[0.094 + 0.036[0.067 + 0.017(0.047 + 0.015| 0.038 £ 0.011 | 0.123++ 0.036 ||0.034 + 0.015

Aro(l) 0.096 + 0.017[0.055 + 0.013[0.075 + 0.042[0.057 + 0.018/0.041 + 0.014 0.037 £ 0.021 0.115 + 0.042{|0.030 + 0.013

Accuracy (1) ||0-699 =+ 0.024]0.697 + 0.024]0.673 = 0.021[0.690 £ 0.014|0.655 % 0.031] 0.660 + 0.025 |0.689 = 0.071||0.671 £ 0.041

Pokeeog||  F1-Score (1) []0.622 £ 0.024|0.611 = 0.0180.592 = 0.013(0.617 = 0.0190.603 = 0.013| 0.618 = 0.009 [0.603 £ 0.0210.620 £ 0.032
App(l) 0.075 + 0.025[0.037 + 0.017[0.045 + 0.014[0.032 + 0.012[0.032 + 0.018] 0.029 + 0.021|0.038 + 0.022{|0.031 = 0.013

Aro(l) 0.062 + 0.013[0.039 + 0.010[0.048 + 0.009[0.034 + 0.012[0.029 + 0.014] 0.030 + 0.0180.033 + 0.029{|0.027 = 0.015

Accuracy (1) ||0.689 £ 0.015]0.669 + 0.013]0.663 + 0.016]0.673 + 0.013]0.675 + 0.028] 0.681 & 0.021 |0.675 =+ 0.028|[0.689 = 0.024

Pokecn||  Fl-Score (1) (0631 0.022[0.611 + 0.018]0.603 + 0.023]0.616 £ 0.032{0.621 £ 0.026| 0628 + 0.029 [0.619 + 003210630  0.029
App(d) 0.084  0.013[0.061 = 0.010[0.067 % 0.015[0.056 % 0.009[0.026 = 0.013|0.025 = 0.015[0.036 = 0.012(0.021 = 0.018

Apo(l) 0.078 + 0.019[0.066 + 0.013[0.064 + 0.013[0.061 + 0.016[0.025 + 0.0270.027 £ 0.030 |0.044 + 0.020{|0.023 + 0.010

Accuracy (1) [|0-668 = 0.025]0.654 =+ 0.023]0.671 = 0.036]0.664 = 0.033|0.673 = 0.028] 0.670 = 0.024 |0.658 =+ 0.027][0.723 = 0.024

NBA Fl-Score (1) |[0.703 4 0.022]0.685 + 0.038[0.681 = 0.023[0.687 + 0.0120.699 + 0.038] 0.706 + 0.033 [0.694 + 0.032|[0.711 = 0.029
App(l) 0.063 = 0.043[0.057 % 0.033[0.042 % 0.025[0.044 & 0.038(0.034 = 0.004 0.040 = 0.067 |0.036 = 0.021|0.032 + 0.036

Aro(l) 0.074 + 0.043[0.065 + 0.033[0.055 + 0.014[0.042 + 0.026[0.037 = 0.0170.032 £ 0.010 |0.034 = 0.0250.028 + 0.005

To sum up, these results highlight the trade-off between fairness and task performance.
Thus, careful tuning of a and b is essential for optimal model performance.
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Fig. 3: Study on Hyper-parameters sensitivity analysis.

RQ3: What is the Impact of Each Component on the DFGR on its utility and fair-
ness? We conducted ablation studies to assess the contributions of each module within
the DFGR framework. DFGR consists of three key modules: the Demographic Infor-
mation Identification Module, the Fair Node Representation Learning Module, and the
Adaptivity Confidence Strategy Module. Notable, we did not create a variant without
the Demographic Information Identification Module because this module is founda-
tional to DFGR’s operation. Without it, the framework cannot identify proxies for the
missing demographic information, which are essential inputs for the subsequent mod-
ules. Therefore, removing this component would render the entire framework inopera-
ble, making such an ablation study impractical.

For the Fair Node Representation Learning Module, we created two variants:
DFGR-NF (without the Fairness Constraint) and DFGR-NG (without the Graph Recon-



14 Zichong Wang et al.

10 Credit 10 Pokec-z
0.8 0.8
06 06
0.4 0.4
02 0.2
00 NN S\ 0.0 NN
\ § NN % §

Accuracy F1-Score AD AEO Accuracy F1-Score
10 Pokec-n 10
08 08
06 06
0.4 0.4
0.2 0.2

Accuracy F1-Score AEO Accuracy F1-Score AEO
W DFGR Performance mmm DFGR-NF Performance mwm DFGR-NG Performance mmm DFGR-NA Performance
DFGR Fairness i) ! DFGR-NF Fairness DFGR-NG Fairness 539 DFGR-NA Fairness

Fig. 4: Ablation study results for DFGR, DFGR-NF, DFGR-NG and DFGR-NA.

struction Constraint). As shown in Figure 4, the fairness metrics of DFGR-NF dropped
significantly. This occurs because without the Fairness Constraint, demographic infor-
mation in node representations directly passes to downstream classification tasks, lead-
ing to discriminatory decisions. The DFGR-NG variant shows better fairness metrics
than DFGR-NF but still demonstrates a slight decrease compared to the full DFGR
model, along with reduced performance metrics. This degradation occurs because with-
out the Graph Reconstruction Constraint, node representations fail to capture important
structural information, resulting in decreased graph representational power.

We also examined the impact of the Adaptivity Confidence Strategy Module by

creating the DFGR-NA variant (without adaptive confidence). As shown in Figure 4,
DFGR-NA shows reduced performance compared to the complete DFGR model. This
is because applying fairness constraints with equal strength to all nodes makes it more
difficult for the model to learn from samples with low confidence, thereby reducing the
overall accuracy.
RQ4: What Effect of Different Number of Prototypes m Values on DFGR’s Fair-
ness and Utility? Similar to the previous RQs, we conducted experiments with a variety
of values for m in {5, 10, 15, 20, 25}, keeping all other training factors the same. We
compare DFGR’s utility and fairness under different settings. As shown in Figure 5, as
m increases, the model exhibits enhanced fairness with an increasing number of pro-
totypes; however, this improvement plateaus beyond a certain threshold (e.g., smaller
than 10 for Credit, 10 for Pokec-z, 15 for Pokec-n, and 20 for NBA). Conversely, pre-
dictive performance diminishes as the number of prototypes rises. Overall, the optimal
balance between performance and fairness seems to be achieved when the number of
prototypes is within the 10 to 15 range.
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Fig. 5: Study the choice of the number of prototypes.

6 Conclusion

In this paper, we tackled the limitation of existing fairness-aware graph learning meth-
ods, which require complete demographic information. Recognizing that real-world
scenarios frequently involve missing or restricted access to demographic information
due to privacy, ethical, or regulatory concerns, we proposed a novel framework to
achieve fairness in graph learning without relying on fully available demographics.
Moreover, by integrating adaptive confidence strategies, our method effectively bal-
ances fairness and utility, mitigating bias while minimizing degradation in predictive
performance. The proposed modules are readily extensible to existing fairness-aware
graph learning frameworks. Experiments on four real-world datasets demonstrate that
DFGR outperforms all baseline methods in terms of both fairness and utility metrics.
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