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Abstract. The field of Abstract Visual Reasoning (AVR) encompasses a
wide range of problems, many of which are inspired by human IQ tests.
The variety of AVR tasks has resulted in state-of-the-art AVR meth-
ods being task-specific approaches. Furthermore, contemporary methods
consider each AVR problem instance not as a whole, but in the form of
a set of individual panels with particular locations and roles (context vs.
answer panels) pre-assigned according to the task-specific arrangements.
While these highly specialized approaches have recently led to significant
progress in solving particular AVR tasks, considering each task in iso-
lation hinders the development of universal learning systems in this do-
main. In this paper, we introduce a unified view of AVR tasks, where each
problem instance is rendered as a single image, with no a priori assump-
tions about the number of panels, their location, or role. The main advan-
tage of the proposed unified view is the ability to develop universal learn-
ing models applicable to various AVR tasks. What is more, the proposed
approach inherently facilitates transfer learning in the AVR domain, as
various types of problems share a common representation. The exper-
iments conducted on four AVR datasets with Raven’s Progressive Ma-
trices and Visual Analogy Problems, and one real-world visual analogy
dataset show that the proposed unified representation of AVR tasks poses
a challenge to state-of-the-art Deep Learning (DL) AVR models and,
more broadly, contemporary DL image recognition methods. In order to
address this challenge, we introduce the Unified Model for Abstract Vi-
sual Reasoning (UMAVR) capable of dealing with various types of AVR
problems in a unified manner. UMAVR outperforms existing AVR meth-
ods in selected single-task learning experiments, and demonstrates effec-
tive knowledge reuse in transfer learning and curriculum learning setups.
Code is available at: https://github.com/mikomel/avr-unified-view

Keywords: Abstract Visual Reasoning · Deep Learning · Transfer Learn-
ing · Curriculum Learning
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ŷ

Unified Model

ŷ
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Fig. 1: Disjoint vs. unified perspective. Contemporary literature considers
each AVR problem instance as a set of separate images (a), which leads to
task-specific methods with limited applicability to other, even similar, tasks.
In contrast, we propose the unified view (b), in which the problem instance is
rendered as a single image (Fig. 2). This viewpoint facilitates the development of
general AVR models inherently capable of incorporating advances from a broader
CV field.

1 Introduction

Recent years have brought dynamic progress in the application of neural net-
works to computer vision (CV) problems. This increasing interest has led to the
development of a broad family of effective vision models based on convolutional
networks [6, 11], transformers [5, 10], and multi-layer perceptrons (MLPs) [23, 8],
that often generalize well to other vision tasks. The universality of these models
should be primarily attributed to the simplicity and wide applicability of the
typical problem representation in the CV domain, in the form of a single image.

Abstract Visual Reasoning (AVR) is one of the CV subdomains gaining mo-
mentum in recent years. AVR encompasses problems that resemble tests used
for measuring human abstract intelligence (IQ). A classical example are Raven’s
Progressive Matrices (RPMs) [21] that consist of simple 2D shapes (e.g., circles,
hexagons, triangles) characterized by several attributes (e.g., rotation, colour,
size). In most cases, an RPM problem instance is in the form of a 3× 3 grid of
panels, with the bottom-right panel missing (see Appendix D for typical exam-
ples). The test-taker has to complete the matrix by selecting one of the provided
answer panels. In RPM datasets, there are usually up to 8 answer panels to
choose from. In order to select the correct one, the subject has to identify var-
ious underlying abstract rules (e.g., progression, constancy, conjunction) that
govern the location and attributes of RPM shapes. The selected answer has to
conform to all these rules after being placed in the bottom-right corner of the
matrix.
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Fig. 2: Rendering algorithm. In the unified view a problem instance is ren-
dered as a single image and without explicit division into context and answer
panels.

RPMs are considered to be highly indicative for human intelligence [4], as
they allow evaluating relational and abstract reasoning skills [22], and test one’s
ability to apply previously gained knowledge in new settings (new problem in-
stances). Inspired by this crucial role of RPMs in designing IQ tests, recent
streams of research have focused on evaluating the capacity of modern learning
systems in solving RPM instances [17]. Motivated by the early successes [19],
many approaches have been subsequently proposed that gradually improved the
state-of-the-art (SOTA).

Despite impressive results, contemporary methods are built on a strict as-
sumption that RPMs (or AVR tasks in general) are split beforehand into a set of
individual matrix panels. In stark contrast, vision datasets typically render each
problem instance as a single image. In this work, we coin these two perspectives
as disjoint and unified representations, respectively (see Fig. 1). Due to inherent
differences, models developed for one representation are not directly applicable
to the other one. This, in turn, limits applicability of methods developed for
solving AVR tasks to other vision problems and, vice versa, prevents evaluation
of modern vision models on AVR tasks.

In addition to RPMs, other kinds of AVR benchmarks have recently been
proposed [12], that specifically focus on conceptual abstraction, extrapolation,
or arithmetic reasoning. This variety of AVR problems further exacerbates the
issues arising from the disjoint perspective, as AVR tasks often differ w.r.t. the
number and arrangement of panels the matrix is composed of. Consequently, a
model constructed to handle tasks with a fixed number of panels arranged in a
fixed configuration isn’t directly capable of handling novel problem configura-
tions, or problems with different numbers of panels. In effect, SOTA solutions in
the AVR literature are task-specific, which limits progress towards general AVR
solvers.

Contribution. In this work we pose and address the challenge of building AVR
models capable of solving diverse AVR problems. To this end, we:
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– Formulate a unified view of AVR tasks where a problem instance is repre-
sented as a single image (as opposed to a set of pre-defined panels), thus
constituting a challenge for modern AVR/CV methods;

– Evaluate different CV models: convolutional networks, transformers, and
MLPs on four AVR datasets with RPMs and Visual Analogy Problems
(VAPs), and one real-world visual analogy dataset, represented in the unified
manner, and demonstrate their limitations in this unified problem setup;

– Introduce the Unified Model for Abstract Visual Reasoning (UMAVR), ca-
pable of effectively dealing with the unified problem representation, and out-
performing strong baselines in this arrangement;

– Show the benefits of transfer learning (TL) and curriculum learning (CL)
within the proposed unified AVR problem formulation.

On a general note, we postulate shifting the main focus of AVR research from
developing dedicated task-specific models to general AVR models, capable of
solving a variety of AVR problems.

2 Related Work

Tasks. Recently AVR has seen rapid expansion in terms of available bench-
marks. In particular, several RPM datasets, such as PGM [1], I-RAVEN [33, 9],
A-I-RAVEN [15] or G-set [19, 24] have been proposed. While the benchmarks
differ in the number of rendered matrices, types and attributes of the objects,
degree of compositional complexity, or the number of available answers, they all
present matrices with the context panels arranged in the form of a 3 × 3 grid.
VAPs [7] form a related challenge that focuses on conceptual abstraction, and
are composed of a 2 × 3 grid of panels (see Fig. 1b and Appendix D). Other
AVR problems further differ from the above two tasks in the number of con-
text panels and their structure. For instance, the Odd One Out tests (O3) [19]
present images arranged in a single row, while panels in Bongard Problems [3]
are divided into left and right ones. Common to all AVR problems is their input
representation in Machine Learning (ML) models, as an explicit set of distinct
panels. This way of representing input data is in stark contrast to typical image
recognition tasks, where each input is simply presented in the form of a single
image, without further division into sub-images (though, such a division is often
induced as part of a training process). In effect, existing AVR datasets cannot
be easily considered when evaluating contemporary image recognition methods
and are largely omitted in multi-task vision datasets. The proposed unified rep-
resentation of AVR tasks enables to utilize existing AVR datasets for measuring
abstract reasoning skills of current (and future) CV models.

AVR models. Due to inherent differences in the number of panels and the task
structure across AVR datasets, as well as their explicit panel-based arrangement,
main AVR research lines focus on designing task-specific architectures that op-
erate on matrices pre-segmented into individual panels. Specifically, Wild Re-
lation Network [1] employs a convolutional encoder to generate embeddings of
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individual panels, which are later processed by a Relation Network. Stratified
Rule-Aware Network [9] considers 3 different RPM hierarchies: single images,
rows/columns, and pairs of rows/columns. For each hierarchy, a separate convo-
lutional network is used, and a set of MLPs is employed to gradually merge
the obtained embeddings. SCL [30] introduces the scattering transformation
that splits panel representations, processes them in parallel with an MLP, and
merges the results. Slot Transformer Scoring Network (STSN) [20] employs Slot
Attention to discover objects in matrix panels and reasons about them with a
transformer-based module [26]. SCAR [14] introduces the structure-aware dy-
namic layer that adapts its computation to the considered problem instance en-
abling the processing of AVR tasks with diverse structure. PoNG [16] integrates
group convolution, normalization, and a parallel design.

The underlying assumption of the above approaches is that a problem in-
stance is already pre-segmented into individual panels. Consequently, direct ap-
plication of these methods to other image recognition tasks (where the input
is formed by a single image), or other AVR tasks that differ in the number
of panels or their structure is significantly hindered. In contrast, the proposed
unified perspective facilitates and encourages the development of universal ML
image recognition models that can be applied to solving diverse AVR tasks and,
furthermore, other vision problems.

3 Method

We start with introducing the unified perspective that can be applied to virtually
all AVR tasks, and then propose a novel image recognition model, well-suited to
the proposed challenge.

3.1 Current Perspective (Disjoint)

In general, each AVR task t ∈ T , where T is the family of all AVR tasks, can
be defined as t = ({Mt

i}
Nt
i=1,St), where {Mt

i}
Nt
i=1 is a set of Nt different matrices

(problem instances) and St is a task’s structure (common for all instances). In
this work, we treat each AVR dataset as a separate task. While matrices don’t
repeat across tasks, some tasks may have a common structure.

For each t, a single matrix (problem instance) from t can be defined as Mt
i =

(Xt
i , y

t
i), where Xt

i = {xt
i,j}

Pt
j=1 is composed of Pt panels. Each panel xt

i,j is a
greyscale image with height h and width w, i.e. xt

i,j ∈ [0, 1]h×w, and yti is the
answer to the problem. For single-choice tasks, such as RPMs or VAPs, yti is an
index of the correct answer.

The above definition of a problem instance is rather general and doesn’t
include any information about the problem’s specificity. Such problem-specific
metadata is expressed by the task’s structure St, which defines how the images
should be interpreted and arranged to form a 2D problem instance. For example,
the structure of RPMs specifies that the set of images should be split into two
sets: a set of 8 context panels arranged in a 3× 3 grid, with a missing panel in
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the bottom-right corner, and a set of up to 8 answer panels also arranged in a
grid.

In summary, while each AVR task t is defined as: t = ({({xt
i,j}

Pt
j=1,y

t
i)}

Nt
i=1,St)

its actual representation (i.e. the respective AVR dataset) is a collection of im-
ages: t = ({({xt

i,j}
Pt
j=1,y

t
i)}

Nt
i=1) with implicitly defined structure. Consequently,

each AVR model Ft for solving matrices from t embeds the problem structure
directly in its architecture. A construction of such a model using a building pro-
cess B may be defined as a composition of functions f , given the task’s structure
St:

B(f∗ ◦ f# ◦ . . . ◦ f$ | St) = Ft (1)

In the AVR literature, f∗, f#, . . . , f$ are most often implemented as neural net-
work components. This leads to the following general form of a model for solving
problems from t:

Ft({xt
i,j}

Pt
j=1) = ŷt

i (2)

Due to the dependence on both St (implicit) and Pt (explicit), Ft cannot be
directly applied to solving any task t′ ∈ T ′

t with a different structure or number
of panels: T ′

t = {t′ ∈ T : St ̸= St′ ∨ Pt ̸= Pt′}

3.2 Proposed New Perspective (Unified)

Instead of treating an AVR problem instance as a set of images with an associated
structure, we propose to employ a rendering algorithm R that merges separate
images, given the task’s structure, into a single image χ ∈ [0, 1]h

′×w′
with new

height h′ and width w′ (see Figs. 1 and 2):

R({xt
i,j}

Pt
j=1 | St) = χt

i (3)

In practice, R defines how instances of a given task should be presented. To
implement the algorithm for RPMs and VAPs considered in this work, for a given
instance we first arrange the context panels, together with the missing panel
(which is presented as a blank image with a centred question mark) into a grid
with a small margin separating the panels. This gives a 3×3 grid accommodating
8 context panels for RPMs, and a 2×3 grid containing 5 context panels for VAPs.
Next, we arrange the answer panels in another grid and position it below the
context grid. Depending on the task, the number of available answers (na) differs,
e.g. matrices from VAP, G-set, and I-RAVEN datasets, have na = 4, 5, 8, resp.
To accommodate this variability, we render the answer grid with up to 4 panels
in each row, resulting in up to 2 rows. A text label is placed above each answer
panel. Next, we initialize a blank canvas and resize the constructed image to
fit the canvas. While resizing, we keep the height to width ratio of the image
in order to preserve the relative size of panel dimensions and to not distort the
encompassed objects. We fix the width of the canvas to 416, and depending on
the considered problem setting, set its height to 384 for VAPs, 448 for RPMs
with na ≤ 4, and 544 for RPMs with 4 < na ≤ 8, which gives enough space
to clearly render the panels. All dimensions are divisible by 16 to ensure that
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patch-based methods (with patch size p = 16z, for z ∈ N) can be directly applied
without the need to resize the underlying image.

R converts a considered AVR task into a common, unified representation
that (a) facilitates construction of new universal AVR models capable of solving
diverse AVR tasks, and (b) enables application of TL in existing SOTA AVR
models. To the best of our knowledge, neither (a) nor (b) have ever been consid-
ered in the AVR literature. Within the above unified perspective, one can view
any task t as: t = {(χt

i,y
t
i)}

Nt
i=1.

3.3 General AVR Solver

Using the proposed unified perspective, it is possible to construct a general AVR
model:

B(f∗ ◦ f# ◦ . . . ◦ f$) = F (4) F(χt
i) = ŷi (5)

Since B no longer depends on the task’s structure (Eq. 1 vs Eq. 4) and the
model doesn’t depend on the number of panels in the matrix (Eq. 2 vs Eq. 5),
the proposed unified perspective allows building a general model F applicable to
solving diverse AVR tasks. At the same time, F has to support input images χt

i

that may vary in size. Also, since F is no longer aware of which task it operates
on, it has to provide its prediction in a common (fixed) format ŷ. We assume
that ŷ ∈ N is an index of the correct answer, which is the case of RPMs, VAPs,
and many other AVR tasks [12]. This assumption may not be valid in some tasks,
such as the original Bongard Problems [3], where an answer has to be provided
in natural language. An extension of the unified perspective to problems with
specific output formats is left for future work. Lastly, to be applicable to diverse
AVR tasks, F has to be flexible enough to handle various structures of the tasks
of interest.

3.4 Proposed Unified AVR Model

In the initial experiments, we’ve discovered that SOTA CV baseline models
struggle to deal with the above structural diversity. Consequently, we propose
UMAVR (Unified Model for Abstract Visual Reasoning) a neural architecture
well-suited for the introduced unified view that takes rectangular images as in-
put. To build local representations of low-level features, a convolutional backbone
with depth DL is employed. Each layer is composed of a convolution layer with
kernel size 3×3, and 2×2 stride for dimensionality reduction, followed by Batch
Normalization layer with ReLU activation. In the default setting, we use DL = 4,
and the layers have 16, 16, 32, and 128 output channels, resp. The size of the
last channel determines the embedding size of a token at a given spatial location
and is further referred to as d. Applying this perception backbone yields a latent
representation z0 ∈ Rd×r×c, where r and c are the numbers of rows and columns
in the resultant token embedding matrix, resp. For an image of size 544 × 416,
this gives z0 ∈ R128×27×25.
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Next, we attach a component with a global receptive field to facilitate the
discovery of patterns that span multiple panels. As a base layout, we adopt the
MetaFormer architecture [31], which follows a layer-wise design, where the same
layer is repeated DG = 4 times, and the weights are not shared across layers.
The operation performed in layer l ∈ [1, DG] can be formalized as:

z∗l = TokenMixer (Norm(zl−1)) + zl−1 (6)
zl = ChannelMixer (Norm(z∗l )) + z∗l (7)

where zl is the output of the l’th layer, z∗l is an intermediate representation in
layer l, and Norm is the Layer Normalization. After the last layer, the token em-
bedding matrix is passed through Layer Normalization, averaged along the width
and height dimensions, and projected with a linear layer into na−dimensional
vector. The output is passed through the softmax function, and the model is
optimized end-to-end with cross-entropy. The model architecture diagram is pre-
sented in Appendix B.

TokenMixer. The input zl−1 is normalized and passed through a residual 2D
convolution layer with a kernel of size 5× 5, and 2× 2 padding to enrich tokens
with the context from their spatial proximity. Next, three parallel pathways are
employed as introduced in the Vision Permutator (ViP) [8], which process the
token matrix along the width, height, and channel dimensions, resp. In each
branch, S = 8 segments are used. Outputs of the pathways are concatenated
depthwise and a 2D convolution with 1 × 1 kernel and d output channels is
applied to fuse information from the separate paths, in contrast to ViP which
merges the branches with sum or Split Attention [34].

ChannelMixer. The above global reasoning step is followed by local processing
using a two-layer non-linear feed-forward block, input normalization, and a resid-
ual connection, as popularized by the Transformer [26]: zl = σ(Norm(z∗l )W1)W2+
z∗l , where W1 ∈ Rd×kd and W2 ∈ Rkd×d are learnable weights with an expansion
factor k, and σ is a non-linearity. In the default setting, we use k = 4 and GELU.

4 Experiments

We conduct experiments in three learning settings: STL, TL and CL. In each
case, the performance of UMAVR is compared with the baseline models belong-
ing to distinct model families. All models are designed to return a logit vector
v ∈ Rna representing a score for each answer, and the softmax function is used
to compute the probability distribution p̂ over the set of answers. The index
corresponding to the highest probability is considered the predicted answer.

Baselines. The set of benchmark models includes convolutional networks, repre-
sented by ResNet [6] and ConvNext [11], Vision Transformer (ViT) [5], MaxViT
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Table 1: Model size. The number of parameters of each model in millions (M).
Model # Parameters Model # Parameters

ResNet-18 11.2M Mixer S/16 20.0M
ResNet-50 23.8M Mixer S/32 18.2M
ConvNext-Pico 8.7M ViP-Nano 4.0M
ConvNext-Nano 15.1M ViP-Tiny 7.9M

MaxViT-Pico 7.3M UMAVR 3.5M
MaxViT-Nano 15.0M
TinyViT-5M 5.1M
TinyViT-11M 10.6M

Table 2: Dataset details. The benchmarks differ w.r.t. their size, allocation
into train / val / test splits, and the maximal number of available answers nmax

a .
Dataset Size Train Val Test nmax

a

G-set 49K 34.4K 9.8K 4.8K 5
I-RAVEN 70K 42K 14K 14K 8
PGM 1.42M 1.2M 20K 200K 8
VAP 710K 600K 10K 100K 4
VASR 154.8K 150K 2.25K 2.55K 4

[25], TinyViT [29] and Swin Transformer [10] as representatives of the Trans-
former family, adapted to vision tasks, and MLP-based models such as MLP-
Mixer [23] and Vision Permutator (ViP) [8]. Table 1 compares the numbers of
model parameters.

Tasks. The models are evaluated on three challenging AVR problems. Firstly,
we consider the problem of solving RPMs from three datasets: G-set [19, 24]
with visually simple matrices following experiment 1 from [24]; I-RAVEN [33,
9] with a much richer set of available objects, attributes, and abstract rules;
and the Neutral regime of PGM [1] which is of much bigger size. Secondly, we
consider the VAP dataset [7] which presents a conceptual abstraction challenge
with matrices that are structurally different from RPMs. Thirdly, we employ
the Visual Analogies of Situation Recognition dataset (VASR) [2] that presents
visual analogies comprising real-world images. We employ the dataset variant
with random distractors.

Overall, the datasets vary in size, the content of the matrices (geometric
shapes, real-world images), and the number of available answers (see Table 2).
This diversity allows gaining insights into models’ performance in different axes.
To deeper analyse the limitations of the discussed models, in some experiments
we reduced the number of available answers in the matrices, expecting that this
simplification would make the task more comprehensible.
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Experimental setting. The models are trained with batches of 256 matrices for
PGM and VAP datasets, and of 128 matrices in all the remaining cases. Model
parameters are optimized with Adam with β1 = 0.9, β2 = 0.999 and ϵ = 10−8,
until the validation loss doesn’t improve for 10 consecutive epochs. We tuned
learning rate λ of each model separately with 3 randomly initialized runs on G-
set and I-RAVEN with na = 2 and selected λ that worked best on average. We
applied linear learning rate warmup starting from λ = 10−6 over 500 iterations
and cosine decay with λmin = 10−6. When learning to solve matrices from PGM,
I-RAVEN and VAP, we make use of a supplementary training signal in the form
of an auxiliary loss [1, 33] with sparse encoding [13], where the model has to
additionally predict the hidden rules that govern the matrix construction. To this
end, in parallel to the answer prediction layer, a shallow rule classifier is applied.
The classifier operates on the token embedding matrix zDG

passed through the
Layer Normalization and averaged along the width and height dimensions. The
classifier is composed of a linear layer with 128 units, followed by GELU and
another linear layer with |r| output neurons, where |r| is the size of the one-hot
encoded rule vector. Depending on the dataset, this gives 50, 40 and 28 units
for PGM, I-RAVEN and VAP, respectively, which corresponds to the number of
unique rules in each dataset. Each training run is performed on a node with a
single NVIDIA DGX A100 GPU.

In the experiments with na < nmax
a , in the original problem instance (with

nmax
a answer panels) nmax

a −na randomly sampled incorrect answers are deleted.

4.1 Single-Task Learning

STL experiments assess the ability of modern CV models to solve uniformly
viewed AVR tasks. In preliminary experiments conducted on 4 AVR tasks (G-
set, I-RAVEN, PGM, VAP) we discovered that large CV models typically strug-
gled to perform better than chance, irrespectively of the dataset and the number
of possible answers. These models included ConvNext (Tiny, Small and Base),
ViT-B/16, ViT-B/32, Swin (Tiny and Small), ViP-S/7 and ViP-M/7. To over-
come their limitations, in subsequent experiments we employed their smaller
parameter-efficient variants including ConvNext Pico and Nano [28], MaxViT
(Pico and Nano) [25] and TinyViT (5M and 11M) [29]. For ViP, variants smaller
than Small weren’t defined in the original paper, which lead us to construct two
new variants coined Nano and Tiny. Their detailed description is provided in
Appendix A.

Table 3 compares test accuracy of the models on 4 datasets with variable
numbers of answers. In G-set, where the amount of available data is scarce,
ConvNext and ViP models struggle to perform better than chance, while re-
maining models achieve high performance, typically above 90%. ResNet-50 and
Mixer S/16 scored slightly above 80% on the most challenging dataset configu-
ration with na = 5. In I-RAVEN, which contains visually richer matrices with a
hierarchical structure, both ResNet variants and MaxViT-Pico demonstrate per-
formance at the random guess level across all na, other baseline models achieve
non-random results only for na = 2, while UMAVR significantly outcompetes
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Table 3: Single-task learning. Test accuracy of three baseline families of mod-
els (convolutional networks, vision transformers, MLP models for vision) and
UMAVR in solving matrices from five datasets with variable numbers of possi-
ble answers na. Results higher than a random guess by more than 0.5 p.p are
highlighted with a blue background. Best results are marked in bold and the
second best are underlined. P, N and T denote Pico, Nano and Tiny, resp.

Model
G-set, na = I-RAVEN, na = PGM, na = VAP, na =VASR
2 4 5 2 4 8 2 4 8 2 4 4

ResNet-18 97.0 91.5 91.1 50.0 25.0 12.5 73.8 59.0 41.2 98.3 95.4 25.0
ResNet-50 96.9 94.1 81.7 50.2 25.0 12.5 73.8 56.4 32.7 98.4 96.1 43.7
ConvNext-P 50.0 25.0 20.0 67.0 29.4 12.7 50.0 25.0 12.5 96.0 90.4 25.0
ConvNext-N 50.0 25.0 20.0 69.8 25.1 12.5 50.0 25.0 12.5 95.9 91.7 25.0

MaxViT-P 97.1 95.8 95.6 50.1 25.2 12.6 85.7 97.1 92.0 99.4 98.4 62.3
MaxViT-N 97.3 96.1 95.5 81.0 25.0 12.7 85.2 94.6 97.3 99.3 98.2 24.0
TinyViT-5M 97.2 95.6 95.4 83.5 25.0 12.5 72.7 41.1 34.3 99.0 97.1 55.4
TinyViT-11M 97.0 94.7 95.4 71.2 25.5 12.7 84.3 46.6 34.0 98.3 96.3 54.2

Mixer S/16 96.3 92.2 82.8 62.3 25.5 12.9 88.8 74.5 61.1 97.5 88.4 54.5
Mixer S/32 97.0 95.6 94.9 74.9 25.5 12.8 90.1 76.4 73.4 97.2 93.0 54.1
ViP-N 50.0 25.0 20.0 88.3 25.1 12.5 77.6 46.3 81.7 97.6 95.2 25.0
ViP-T 50.0 25.0 20.0 75.6 25.0 12.5 85.2 73.8 49.0 97.3 95.5 25.0

UMAVR 97.596.1 95.1 95.689.4 13.1 76.9 63.3 52.3 93.9 97.3 59.8

all methods for na ∈ {2, 4}. On PGM, all models but ConvNext learned to
solve some matrices, though notably the best results were achieved by MaxViT
ones. On VAP, all models present satisfactory results, commonly exceeding 90%.
UMAVR demonstrates consistent and strong performance across nearly all con-
sidered settings, showing its general strength in visual reasoning, rather than
overfitting to a particular task. The only exception is I-RAVEN with na = 8, in
which all tested models performed at the random guess level. We conclude that
UMAVR is a versatile method that in spite of its simplicity outcompetes other
mainstream CV models in certain settings (specifically I-RAVEN with na = 4).

Pre-trained checkpoints. To better understand the abstract reasoning capacity
of large vision models, we repeated the STL experiments for ConvNext (Tiny,
Small, Base), ViT (B/16, B/32) and Swin (Tiny, Small), starting from check-
points pre-trained on ImageNet available in the TorchVision package. However,
the only setting where any of these models performed better than chance was
I-RAVEN with na = 2, where ConvNext-T and ConvNext-S achieved test accu-
racy of 75.6% and 83.6%, resp. This shows that despite using large pre-training
datasets, the contemporary large vision models are generally incapable of solv-
ing AVR tasks represented in a unified manner proposed in this paper. Since
the problem of classifying real-world images formulated in ImageNet is funda-
mentally different from AVR tasks considered in this work, we hypothesize that
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Fig. 3: Ablation study. UMAVR test accuracy with various DG and S settings
on G-set and I-RAVEN with na ∈ {2, 4}. In the default setting, we used DG = 4
and S = 8.

pre-training of large vision models on AVR data of sufficient scale might poten-
tially boost their performance. Until this hypothesis is validated in future work,
relatively smaller, parameter-efficient supervised models remain SOTA in the
domain.

Real-world analogies. The VASR dataset [2] presents visual analogies formed
from real-world images. Methods used in [2] employ pre-trained popular CV
models (e.g. ViT or ConvNext) to embed each matrix image separately. The
answer is predicted by applying vector arithmetics or training a shallow super-
vised classifier on frozen image embeddings. A limitation of these approaches is
the lack of ability to reason about the relations between matrix panels in early
layers of the model. Instead, the reasoning is only framed as a post-processing
step. Differently, we applied the proposed unified view to VASR, which enables
application of CV models in an entirely different setup, in which the models rea-
son over the whole matrix starting already from early layers of the model. The
results are displayed in Table 3 (the rightmost column). Certain models, includ-
ing ResNet-18, both ConvNext variants, MaxVit-Nano and both ViP variants
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Table 4: Transfer learning. Test accuracy of models that performed better
than chance with STL on PGM (cf. Table 3). The models are first pre-trained
on PGM with na = 2, 4, 8, resp., and then fine-tuned on G-set with na = 2, 4, 5
and I-RAVEN with na = 2, 4, 8, resp. TL and STL scores are shown on left/right
resp.

Model
G-set test accuracy (%) I-RAVEN test accuracy (%)
na = 2 na = 4 na = 5 na = 2 na = 4 na = 8

ResNet-18 96.7/97.0 92.4/91.5 93.0/91.1 78.7/50.0 40.2/25.0 12.5/12.5
ResNet-50 96.7/96.9 92.9/94.1 93.8/81.7 71.2/50.2 44.6/25.0 12.5/12.5

MaxViT-P 97.5/97.1 96.0/95.8 95.6/95.6 83.7/50.1 67.5/25.2 41.6/12.6
MaxViT-N 97.2/97.3 96.2/96.1 95.9/95.5 86.4/81.0 61.3/25.0 38.5/12.7
TinyViT-5M 95.7/97.2 92.7/95.6 92.9/95.4 56.9/83.5 29.8/25.0 26.0/12.5
TinyViT-11M 97.4/97.0 90.6/94.7 95.6/95.4 82.7/71.2 46.6/25.5 27.3/12.7

Mixer S/16 96.9/96.3 93.6/92.2 91.6/82.8 78.3/62.3 46.7/25.5 20.1/12.9
Mixer S/32 96.5/97.0 93.4/95.6 94.9/94.9 79.5/74.9 45.4/25.5 36.2/12.8
ViP-N 96.3/50.0 91.8/25.0 95.0/20.0 74.0/88.3 46.4/25.1 43.6/12.5
ViP-T 97.6/50.0 95.2/25.0 94.9/20.0 81.2/75.6 60.1/25.0 28.4/12.5

UMAVR 97.3/97.5 95.9/96.1 95.4/95.1 95.5/95.6 89.7/89.4 42.8/13.1

performed indistinguishably from random guessing. Other models present perfor-
mance typically exceeding 50%, with the best results achieved by MaxViT-Pico
and UMAVR. We conclude that VASR matrices presented in the unified view
pose a significant challenge for the contemporary vision models.

Ablation study. We conducted additional experiments with several model vari-
ants to understand the contribution of respective components: 1) UMAVR with
the convolutional backbone replaced with MetaFormer’s patch emebdding layer;
2) UMAVR with TokenMixer replaced with the identity layer; 3) MetaFormer.
We also considered PoolFormer-S12 [31], PoolFormerV2-S12, ConvFormer-S18,
and CAFormer-S18 [32] as baselines related to UMAVR. The models were eval-
uated in STL on G-set and I-RAVEN with na ∈ {2, 4}. In all cases, the re-
sults were indistinguishable from random guessing, which shows the relevance
of all specific UMAVR components for effective learning and reasoning. Further,
we explored various model depths DG ∈ {1, 2, 4, 8} and numbers of segments
S ∈ {1, 2, 4, 8, 16, 32} to identify the optimal configuration. As shown in Fig. 3,
DG = 4 and S = 8 lead to the best performance, justifying our choice of these
values as the default setting for these hyperparameters.

4.2 Transfer Learning

Next, for the models that performed better than chance in at least one of the STL
experiments, we explore a TL scenario, where models pre-trained on the largest
dataset (PGM) are fine-tuned on the two smallest ones (G-set or I-RAVEN).
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Algorithm 1 Curriculum learning. Solving matrices of gradually increasing
difficulty.
Input: randomly initialized model fθ, nmax

a , λ0

Output: trained model fθ
1: na = 2
2: while na ≤ nmax

a do
3: λ← λ0 # reset the learning rate
4: fθ ← train(fθ, na, λ) # until convergence with early stopping
5: na ← na + 1
6: end while

For both the pre-training and fine-tuning datasets the same value of na is used,
except for G-set with na = 5, for which pre-training on PGM is performed with
na = 8. Table 4 presents the results. Application of TL leads to significant gains
in multiple considered settings. Specifically, the performance of ResNet-50 and
Mixer S/16 improved respectively from 81.7% and 82.8% to 93.8% and 91.6% on
G-set with na = 5, while the performance of ViP Nano and Tiny improved from
random guessing level to being on-par with other top performers across all na

configurations. On I-RAVEN, significant improvement across most considered
settings is observed, as after TL only ResNets struggle in the most demanding
setting (na = 8).

The results signify the importance of utilizing a shared problem representa-
tion in the AVR domain, as pre-training the models on a large dataset can lead to
notable performance improvements on the tasks, for which the available data is
scarce. In certain cases, however, we observe the impact of the negative transfer
effect, which brings attention to the need of designing robust TL techniques.

4.3 Curriculum Learning

We evaluate the CL approach, in which the model is iteratively trained on grad-
ually more demanding matrices, starting from na = 2 to na = nmax

a with step
1, with the reuse of previously gathered knowledge (see Algorithm 1).

We considered all models listed in Table 3 and evaluated them with CL
on G-set and I-RAVEN. On the former dataset, CL improved the performance
of ResNet-50 from 81.7% to 90.4% and Mixer S/16 from 82.8% to 95.2%. On
I-RAVEN, CL improved the results of MaxViT Pico to 75.7% (+63.1 p.p.),
TinyViT-5M to 28.3% (+15.8 p.p.), TinyViT-11M to 31.4% (+18.7 p.p.), Mixer
S/16 to 31.7% (+18.8 p.p.), Mixer S/32 to 37.7% (+24.9 p.p.), ViP Tiny to 55.7%
(+43.2 p.p.), and UMAVR to 86.9% (+73.8 p.p.). Performance in the remaining
settings stayed at the STL level (±0.3 p.p.). Overall, for certain models, including
the best-performing model – UMAVR, application of CL raised the STL results
significantly, showing the potential of effective knowledge reuse within the unified
view framework.
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Fig. 4: PGM embeddings. The embeddings of PGM matrices (na = 2) from
the test split of the Neutral regime, visualized with t-SNE. For the sake of
interpretability, the figure considers matrices with a single rule applied to Shape
objects.

4.4 Qualitative Analysis

Figure 4 compares UMAVR matrix embeddings (na = 2) with selected represen-
tative models on PGM. Overall, the clustering quality correlates with the model
performance on the target task (cf. Table 3). Across all visualized models, the
embeddings of matrices with rules applied to Number and Position attributes
(green and purple, resp.) cluster into distinct groups. In addition, the embeddings
of Mixer S/32 start to form distinguishable clusters for the remaining attributes
as well, which aligns with the model leading performance in this setting. The
visualization confirms that the models learn to identify the underlying abstract
rules instead of relying on visual shortcuts or dataset biases. Appendix C extends
this analysis to other relevant models and datasets.

4.5 Unified vs. Disjoint Representation

For the most demanding setting of na = nmax
a , the best-performing unified ap-

proaches outperformed the state-of-the-art disjoint result on G-set (97.6% vs.
82.8% [24]), were on-par on PGM (97.3% vs. 98.2% [20]) and VAP (98.4% vs.
98.5% [20]), and were inferior on I-RAVEN (86.9% vs. 95.7% [20]) and VASR
(62.3% vs. 86.0% [2]).

While the comparison shows a slight advantage of disjoint representation, it is
important to note that the unified view opens several research avenues and poses
challenges that extend beyond the sole performance improvement. Specifically,
the use of the unified representation allows bridging the domains of broad CV and
AVR by means of enabling the development of methods that could be seamlessly
applied to both areas. Furthermore, the unified representation allows employing
the current CV methods operating on single images to solve AVR tasks, and
to use pre-trained checkpoints for their initialization. Finally, universal methods
developed for solving uniformly viewed AVR tasks may accelerate progress in
other domains that require relational reasoning, via knowledge reuse.
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5 Conclusions and Future Work

Existing CV models that excel in solving AVR problems are generally task-
specific, which prevents their application to other, even similar problems. In this
work, we have formulated a unified view on AVR tasks in which an AVR instance
is regarded as a single image, with no indication about the location or role of
individual panels (context panels vs. answer panels). Apparently, even the SOTA
CV models struggle to efficiently perform in this new setting, and in certain cases
are unable to exceed a random guess level. To address this new challenge, we
propose the UMAVR model, applicable to solving diverse AVR tasks within the
above unified perspective. UMAVR shows its strength in the STL setup, and
also demonstrates effective knowledge reuse in TL and CL setups, surpassing
the performance of strong baselines.

The development of universal AVR methods has potential to foster progress
in related areas via knowledge transfer. One possible target domain is document
understanding that requires a high degree of relational reasoning. Large-scale
datasets, with uniformly viewed AVR tasks, could be used to pre-train effective
reasoning models and facilitate the development of new solutions in this area.

Moreover, AVR tasks were employed to analyze the reasoning capabilities of
large language models (LLMs) using text-based task representations [27]. Recent
studies extended this line of research to encompass multi-modal LLMs [18]. We
believe that the proposed unified view of AVR tasks can support these advance-
ments by providing a general problem representation, reducing the reliance on
task-specific solution strategies.
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