
Grouped Discrete Representation for
Object-Centric Learning

Rongzhen Zhao1 �, Vivienne Wang1, Juho Kannala2,3, and Joni Pajarinen1

1 Department of Electrical Engineering and Automation, Aalto University, Finland
{rongzhen.zhao, vivienne.wang, joni.pajarinen}@aalto.fi
2 Department of Computer Science, Aalto University, Finland

juho.kannala@aalto.fi
3 Center for Machine Vision and Signal Analysis, University of Oulu, Finland

Abstract. Object-Centric Learning (OCL) aims to discover objects
in images or videos by reconstructing the input. Representative meth-
ods achieve this by reconstructing the input as its Variational Au-
toencoder (VAE) discrete representations, which suppress (super-)pixel
noise and enhance object separability. However, these methods treat
features as indivisible units, overlooking their compositional attributes,
and discretize features via scalar code indexes, losing attribute-level
similarities and differences. We propose Grouped Discrete Representa-
tion (GDR) for OCL. For better generalization, features are decomposed
into combinatorial attributes by organized channel grouping. For bet-
ter convergence, features are quantized into discrete representations via
tuple code indexes. Experiments demonstrate that GDR consistently
improves both mainstream and state-of-the-art OCL methods across
various datasets. Visualizations further highlight GDR’s superior ob-
ject separability and interpretability. The source code is available on
https://github.com/Genera1Z/GroupedDiscreteRepresentation.

Keywords: Object-Centric Learning · Variational Autoencoder · Dis-
crete Representation · Channel Grouping.

1 Introduction

Under self or weak supervision, Object-Centric Learning (OCL) [10, 5] represents
dense image or video pixels as sparse object feature vectors, known as slots.
These slots can be used for set prediction while their corresponding attention
maps for object discovery [20]. OCL is bio-plausible, as humans perceive visual
scenes as objects for visual cognition, like understanding, reasoning, planning,
and decision-making [2, 7, 22]. OCL is versatile, as object-level representations of
images or videos fit to tasks involving different modalities [34, 31].

The training signal comes from reconstructing the input. Directly reconstruct-
ing input pixels [20, 10] struggles with complex-textured objects. Mixture-based
OCL methods [16, 9] reconstruct more object-separable modalities, like optical
flow and depth maps. Foundation-based methods [24, 35] use the input’s founda-
tion model features as the target. Transformer-based [25, 27] and Diffusion-based

2 Authors Suppressed Due to Excessive Length

0

1

2

3

4

5

black
triangle

balck
circle

black
square

white
triangle

white
circle

white
square

4
0

1
5

4
0

1
5

1
0

1
2

1
0

0
1

1
0

1
2

1
0

0
1

image

continuous
representation

scalar number
indexes

co
d

eb
o

o
k

one super-pixel
(continuous feature)

0

1 white

0

1

2

black
triangle

circle

square

attribute group #1 attribute group #2
tuple number

indexes

codebook grouped

discrete
representation

feature as unit

attribute as unit

one super-pixel
(template feature)

grouped discrete
representation

one super-pixel
(template attributes)

0

1

2

3

4

5

black
triangle

balck
circle

black
square

white
triangle

white
circle

white
square

4
0

1
5

1
0

1
2

1
0

0
1

image

continuous
representation

scalar number
indexes

co
d

eb
o

o
k

one super-pixel
(continuous feature)

0

1 white

0

1

2

black
triangle

circle

square

attribute group #1 attribute group #2
tuple number

indexes

codebook grouped

discrete
representation

feature as unit

attribute as unit

one super-pixel
(template feature)

grouped discrete
representation

one super-pixel
(template attributes)

Fig. 1: Non-grouped vs grouped discrete representation. (upper) Existing methods
treat features as units, selecting template features from a codebook by scalar
indexes to discretize superpixels. (lower) We treat attributes as units, selecting
template attributes from a grouped codebook by tuple indexes.

methods [32, 14] reconstruct the input’s Variational Autoencoder (VAE) inter-
mediate representation. With a limited number of shared template features, i.e.,
codes in a codebook, continuous-valued superpixels in VAE representations are
discretized [12, 28]. This suppresses (super-)pixel noise and enhances object sepa-
rability. Empirically, improved object separability in the reconstruction target
offers OCL more effective training guidance.

However, these methods treat features as atomic units and entangle their
composing attributes together, thus limiting model generalization. Moreover,
the corresponding scalar code indexes fail to capture superpixels’ attribute-level
similarities and differences, thus hindering model convergence.

As illustrated in Fig. 1, consider a dataset characterized by two attribute
groups: color (black, white) and shape (triangle, square, circle). An image in it
contains four objects, each downsampled to a superpixel in the feature map. To
select template features from a feature-level codebook, six scalar code indexes
are needed, where digits 0-5 refer to black-triangle, black-circle, black-square, etc.
Each code is reused with probability 1

6 . The feature map can thus be discretized
as [0 4

5 1]. But if decomposed, superpixels can be discretized as combinations of
template attributes from two attribute groups, i.e., [0,0 1,1

1,2 0,1]. The first and second
numbers in these index tuples indicate whether superpixels’ attributes are the
same or different, facilitating model convergence. These codes are reused with
higher probabilities 1

2 and 1
3 respectively, benefiting model generalization.

Our main contributions are as follows: (i) We propose Grouped Discrete Rep-
resentation (GDR) for VAE discrete representation to guide OCL training better;
(ii) GDR is compatible with mainstream OCL methods and boosts both their
convergence and generalization; (iii) GDR captures attribute-level similarities
and differences, also enhances object separability in VAE representations.

Grouped Discrete Representation for Object-Centric Learning 3

2 Related Work

Object-Centric Learning (OCL). Mainstream OCL obtains supervision from
reconstruction using slots aggregated by SlotAttention [20, 1] from the input’s
dense superpixels. SLATE [25] and STEVE [27], which are Transformer-based,
generate input tokens from slots via a Transformer decoder [29], guided by
dVAE [12] discrete representations. SlotDiffusion [32] and LSD [14], which are
Diffusion-based, recover input noise from slots via a Diffusion model [23], guided
by VQ-VAE [28] discrete representations. DINOSAUR [24] and VideoSAUR
[35], which are foundation model-based, reconstruct input features from slots
via a spatial broadcast decoder [30], guided by well-pretrained features of the
foundation model DINO [6, 21]. We focus on the VAE part of OCL.

Variational Autoencoder (VAE). Discrete representations of VAE have
been shown to guide OCL better than direct input pixels as reconstruction targets.
Transformer-based OCL methods [25, 27] utilize dVAE [12] to discretize encoder
representations by selecting template features from a codebook via Gumbel
sampling [13]. Diffusion-based OCL methods [14, 32] employ VQ-VAE [28] to
achieve discretization by replacing features with their closest codebook codes.
Similar to our idea, both [4] and [19] seek to decompose features into attributes,
but their monolithic VAE representation is incompatible with OCL. Other VAE
variants also offer techniques, like grouping [33], residual [3] and clustering [18],
to enhance VAE representations. We borrow some for the OCL setting.

Channel Grouping. Splitting features along the channel dimension and
transforming them separately is often used to diversify representations [17, 8, 11,
37, 36]. These solutions mainly perform grouping directly on feature maps [17]
or on learnable parameters [36]. To the best of our knowledge, only one work
has explored this idea in the OCL setting. SysBinder [26] groups slots along
the channel dimension in the slot attention [20] to aggregate different attributes
of objects, yielding better interpretability in object representation but limited
performance gains. We group VAE intermediate representations along channels,
yielding grouped discrete representations to guide OCL training better.

3 Proposed Method

We propose Grouped Discrete Representation (GDR), applicable to mainstream
OCL methods, either Transformer-based [25, 27, 15, 35] or Diffusion-based [32, 14].
Simply modifying their VAE, our GDR improves them by providing reconstruction
targets, or guidance, with better object separability.

Notations: As shown in Fig. 2, image or video frame I, continuous represen-
tation Z, discrete representation X, and noise N are tensors in shape (height,
width, channel); queries Q and slots S are tensors in shape (number-of-slots,
channel); segmentation M is a tensor in shape (height, width).

4 Authors Suppressed Due to Excessive Length

project
-down
@W

+Xi

L2
Distance

CodeBook

L2
Distance

project
-up

@W.pinv

CodeBook

Z XX+Z+

Discretiz.
@Codebook

VQ-VAE
Encoder

VQ-VAE
Decoder

Slot
Attention

Diffusion
Decoder

X

queries Q

N’

Z
recon. I’

Primary
Encoder

Xi

segment. M

noise N
Xn

Discretiz.
@Codebook

dVAE
Encoder

dVAE
Decoder

Slot
Attention

Transformer
Decoder

X

queries Q
Xi’

Z

image
I

recon. I’

Primary
Encoder

Xi

segment. M

Zs

Gumbel
sampling

CodeBook

X

Z

Xi

Zs

L2
Distance

CodeBook

X

Z

Xi

image
I

slots S slots S

Fig. 2: Our GDR is applicable to mainstream OCL. First row: architectures of
Transformer-based (left) and Diffusion-based (right) methods. Second row: non-
grouped representation discretization in dVAE (left), non-grouped discretization
in VQ-VAE (right), and grouped discretization (center) of our method.

3.1 Preliminary: Discrete Representation

Both Transformer-based and Diffusion-based methods learn to aggregate pixels
into slots by reconstructing the input as its VAE discrete representation.

Transformer-based architecture is depicted in Fig. 2 first row left. The input
image or video frame I is encoded by a primary encoder and aggregated by
SlotAttention [20] into slots S under queries Q, with object (and background)
segmentation masks M as byproducts. Meanwhile, pretrained VAE represents I
as discrete representation X and the corresponding code indexes Xi. Subsequently,
using a Transformer decoder, S is tasked with reconstructing Xi as classification,
guided by causal-masked X. For videos, current slots S are transformed by a
Transformer encoder block into queries for the next frame.

Specifically, discrete representations for Transformer-based OCL are obtained
as shown in Fig. 2 second row left:

– Predefine a codebook C containing n c-dimensional learnable codes as tem-
plate features;

– Transform input I with a dVAE encoder into continuous intermediate repre-
sentation Z;

– Sample Z via Gumbel softmax, yielding one-hot indexes Xi and soft sampling
Zs for dVAE decoding;

– Select template features from C by Xi and compose the discrete representa-
tion X to guide OCL training.

Diffusion-based architecture is drawn in Fig. 2 first row right. The key dif-
ference is that, with a conditional Diffusion model decoder, S is tasked with
reconstructing Gaussian noise N added to X as regression.

Grouped Discrete Representation for Object-Centric Learning 5

Specifically, discrete representations for Diffusion-based OCL are obtained as
in Fig. 2 second row right:

– Predefine a codebook C containing n learnable codes as template features;
– Transform input I via VQ-VAE encoder into continuous representation Z;
– Find the closest codes’ indexes Xi in C for each superpixel in Z;
– Form discrete representation X by selecting C using Xi, for OCL training.

Remark. These methods’ features as discretization units overlooks the com-
posing attributes, thus impeding generalization. Their scalars as code indexes
loses sub-feature similarities and differences, thus hindering convergence.

3.2 Naive Grouped Discrete Representation

Our naive GDR decomposes features into attributes via direct channel grouping
in VQ-VAE for both Transformer- and Diffusion-based methods.

Beforehand, suppose a dataset is fully described by n c-dimensional template
features, which are further decomposed into g attribute groups. Each group
consists of a d-dimensional template attributes, n = ag and c = g × d. Thus, we
predefine a set of attribute codebooks C = {C(1),C(2)...C(g)}, whose parameters
are in shape (g, a, d). The combinations of these codes are equivalent to the
non-grouped feature-level codebook, whose parameters are in shape (n, c).

Afterwards, we transform the input I with a VAE encoder into continuous
intermediate representation Z. In VQ-VAE, we sample distances between Z and
C via Gumbel noise, yielding tuple code indexes Xi:

D = l2(Z(1),C(1)) ◦ l2(Z(2),C(2))... ◦ l2(Z(g),C(g)) (1)

Ds = softmax(
D(1) +G(1)

τ
) ◦ softmax(

D(2) +G(2)

τ
)... ◦ softmax(

D(g) +G(g)

τ
) (2)

Xi = argmin(D(1)
s) ◦ argmin(D(2)

s)... ◦ argmin(D(g)
s) (3)

where Z(1)...Z(g) are channel groupings of Z; G(1)...G(g) are Gumbel noises;
◦ is channel concatenation; l2(·, ·) denotes L2 distances between every vector
pair in its two arguments; Ds is soft Gumbel sampling of distances D between
continuous representations and codes; argmin(·) is along the code dimension. For
our grouped VAE, multiple code indexes are selected from the attribute groups,
forming “tuple indexes”. In contrast, the non-grouped VAE selects only one index
from a feature-level codebook, forming “scalar indexes”.

Subsequently, we select template attributes by Xi from C, forming grouped
discrete representation X, which is the target of Diffusion decoding:

X = select(C(1),X
(1)
i) ◦ select(C(2),X

(2)
i)... ◦ select(C(g),X

(g)
i) (4)

where index(·, ·) selects codes from a codebook given indexes.
Finally, we transform Xi from tuple into scalar, which is the target of

Transformer decoding:

Xi := a0 ×X
(1)
i + a1 ×X

(2)
i + ...+ ag−1 ×X

(g)
i (5)

6 Authors Suppressed Due to Excessive Length

C
O
C
O

V
O
C

image truth slate-dino +gdr@best slotdiffuz-dino +gdr@best image truth slate-dino +gdr@best slotdiffuz-dino +gdr@best

C
O
C
O

V
O
C

image truth slate-dino +gdr@best slotdiffuz-dino +gdr@best image truth slate-dino +gdr@best slotdiffuz-dino +gdr@best

Fig. 3: Object discovery visualization of SLATE and SlotDiffusion plus GDR.

where X
(1)
i ...X(g)

i are the channel groupings of Xi from Eq. 3.
Besides, we introduce a mild loss to encourage code utilization after grouping

lu = −entropy(E[D(1)
s])− entropy(E[D(2)

s])...− entropy(E[D(g)
s]) (6)

where E[·] is computed along spatial dimensions while entropy(·) is computed
along the channel dimension.

Remark. As illustrated in Fig. 1, by decomposing features into more reusable
attributes, ideally any feature can be represented as a combination of these
attributes, thus enhancing generalization. By indexing features with tuples rather
than scalars, attribute-level similarities and differences can be captured for better
object separability, thus benefiting convergence. Notably, when g=1, the above
formulation except Eq. 6 reduces to the original non-grouped VAE.

However, directly grouping feature channels into different attributes may sep-
arate channels belonging to the same attribute apart or place channels belonging
to different attributes together. This can degrade performance.

3.3 Organizing Channel Grouping

In case incorrect channel grouping, we further design a channel organizing
mechanism. The key idea is: We use an invertible projection to organize the
channel order of the continuous representation for grouped discretization, then
apply this projection again to recover the (discretized) representation.

Firstly, we project continuous representation Z to a higher channel dimension
using the pseudo-inverse of a learnable matrix W :

Z+ = Z · pinv(W) (7)

where Z is in shape (height, width, channel=c); pinv(·) is pseudo-inverse; and
matrix pinv(W) is in shape (channel=c, expanded channel=8c). This facilitates
channels belonging to the same attribute to be placed together by (i) enabling
channel reordering and (ii) generating extra channels to mitigate mis-grouping.

Secondly, we group Z+ along the channel dimension and discretize it using
the attribute-level codebooks C. This yields code indexes Xi and the expanded
discrete representation X+. This follows the formulation in Eq. 1-5 above.

Grouped Discrete Representation for Object-Centric Learning 7

Fig. 4: GDR’s invertible projection learns to organize channels’ orders for grouped
discretization. Every sub-plot has three columns of channels (black bars) and
matrix weights among them (grey ribbons). The first column corresponds to
continuous representation channels. Ribbons between the first and second columns
are the project-up weights. The second column is discretization attribute groups.
Ribbons between the second and third columns are the project-down weights.
The third column is discretized representation channels.

Meanwhile, we add Z+ to X+:

X+ := Z+ × α+X+ × (1− α) (8)

where α decays via cosine annealing4 from 0.5 to 0 in the first half of pretraining
and is zeroed 0 afterward. With such residual preserving information through
the discretization, VAE can be well pretrained even under mis-grouping.

Thirdly, we project X+ back to obtain the final organized grouped discrete
representation:

X = X+ ·W (9)

where W is the previously introduced learnable matrix in shape (expanded
channel=8c, channel=c).

Fourthly, to address potential numerical instability arising from matrix pseudo-
inverse multiplcation, we normalize X:

X :=
X − E[X]√
V[X] + ϵ

(10)

where E and V are the mean and variance over height, width and channel.

3.4 Grouped vs Non-Grouped

Codebook parameters. Compared to the non-grouped, the number of parameters
in our grouped codebook is significantly reduced to agd

agc= ac
agc=

1
ag−1 . E.g., only 1

64
when a=64, g=2, c=256 and ag=4096. We increase c to 8c and apply normalization
plus linear to project it back to c, yielding 1

1.6 the original number of codebook
parameters – still 30% fewer.
4 https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html

8 Authors Suppressed Due to Excessive Length

ari ari-fg mbo miou

27.8

31.0

34.1

37.3

40.5

50.8

52.4

53.9

55.4

56.9

33.0

34.5

36.1

37.6

39.1

31.7

33.3

34.8

36.4

38.0

@clevrtex

ari ari-fg mbo miou

20.4

23.0

25.5

28.0

30.5

20.9

23.4

25.9

28.4

31.0

18.1

19.3

20.5

21.7

22.9

18.0

19.1

20.1

21.1

22.2

@coco

slate
+sysbind.
+gdr@g2
+gdr@g4
+gdr@g8
+gdr@g12

ari ari-fg mbo miou

12.8

13.7

14.5

15.4

16.2

12.8

13.5

14.2

14.9

15.7

13.6

14.2

14.7

15.3

15.8

13.4

14.1

14.8

15.5

16.2

@voc

ari ari-fg mbo miou

47.3

49.6

51.9

54.3

56.6

35.0

37.0

38.9

40.9

42.9

15.3

17.0

18.7

20.4

22.1

14.7

16.1

17.5

18.9

20.3

@movi_c
steve
+sysbind.
+gdr@g2
+gdr@g4
+gdr@g8
+gdr@g12

ari ari-fg mbo miou

28.1

29.6

31.1

32.6

34.1

49.1

50.3

51.4

52.6

53.7

14.6

16.2

17.7

19.3

20.9

14.3

15.4

16.5

17.6

18.7

@movi_d

ari ari-fg mbo miou

25.1

27.2

29.3

31.3

33.4

49.0

51.6

54.2

56.9

59.5

14.2

15.8

17.3

18.9

20.4

14.7

16.0

17.4

18.8

20.1

@movi_e

ari ari-fg mbo miou

26.3

30.2

34.1

38.0

41.9

28.0

29.0

29.9

30.9

31.8

25.5

26.2

26.9

27.6

28.3

25.3

26.0

26.7

27.4

28.0

@clevrtex
slotdiffuz.
+gdr@g2
+gdr@g4
+gdr@g8

ari ari-fg mbo miou

27.8

28.4

29.0

29.6

30.2

27.5

28.2

28.9

29.7

30.4

21.1

21.9

22.7

23.5

24.3

21.1

21.8

22.5

23.2

23.9

@coco

ari ari-fg mbo miou

11.8

12.7

13.7

14.6

15.6

11.3

11.9

12.4

13.0

13.6

13.8

14.3

14.7

15.1

15.6

13.2

13.9

14.6

15.3

16.0

@voc

ari ari-fg mbo miou

56.3

61.7

67.0

72.4

77.7

18.7

20.5

22.3

24.1

25.8

17.9

18.7

19.5

20.2

21.0

17.7

18.4

19.1

19.9

20.6

@movi_c

ari ari-fg mbo miou

55.2

58.1

60.9

63.8

66.7

25.8

27.8

29.7

31.7

33.7

10.5

12.6

14.7

16.8

18.8

10.8

12.7

14.6

16.5

18.4

@movi_d

slotdiffuz.
+gdr@g2
+gdr@g4
+gdr@g8

ari ari-fg mbo miou

30.2

33.8

37.4

40.9

44.5

19.6

25.4

31.2

36.9

42.7

18.2

19.0

19.8

20.6

21.3

18.0

18.8

19.6

20.4

21.1

@movi_e

Fig. 5: GDR boosts object discovery performance of both Transformer- (top) and
Diffusion-based (bottom) methods on images (left) and videos (right). A naive
CNN is used as their primary encoder. Titles are datasets; x ticks are metrics
while y ticks are metric values in adaptive scope. Higher values are better.

ari ari-fg mbo miou

29.0

30.1

31.2

32.3

33.4

28.7

29.9

31.2

32.4

33.6

22.8

23.4

24.0

24.6

25.2

23.0

23.4

23.8

24.2

24.6

@coco
slate-dino
+gdr@g2
+gdr@g4
+gdr@g8
+gdr@g12

ari ari-fg mbo miou

13.0

13.5

14.0

14.5

15.0

16.0

16.3

16.7

17.1

17.5

15.2

15.8

16.4

17.0

17.6

14.9

15.4

16.0

16.6

17.2

@voc

ari ari-fg mbo miou

32.2

33.5

34.8

36.1

37.4

32.1

33.5

34.8

36.2

37.5

23.3

24.0

24.6

25.3

26.0

23.3

23.9

24.4

25.0

25.6

@coco
slotdiffuz.-dino
+gdr@g2
+gdr@g4
+gdr@g8
dinosaur

ari ari-fg mbo miou

15.3

16.1

17.0

17.8

18.6

14.6

15.5

16.4

17.2

18.1

16.0

16.6

17.1

17.6

18.2

15.7

16.2

16.8

17.3

17.9

@voc

Fig. 6: With DINO1-B/8 for primary encoding, GDR still improves Transformer-
(left) and Diffusion-based (right) methods. Higher values are better.

Codebook computation. Non-grouped computation only involves code matching
using inner product for each continuous feature: c×n× 1=256× 4096=220. GDR
computation involves two projections and code matching: 8c× c× 2 + 8c× g

√
n,

which results in 220 + 217 for g2 and 220 + 214 for g4 – computation burden that
is nearly identical to the original non-grouped case.

4 Experiments

We conduct experiments using three random seeds to evaluate: (i) How well
GDR improves mainstream OCL, including Transformer- and Diffusion-based
methods; (ii) What visual intuitions GDR exhibits in VAE representation; (iii)
How designs of GDR contribute to its success in the OCL setting.

4.1 Experiment Overview

Models. We use both Transformer-based and Diffusion-based models as our GDR’s
basis. The former includes SLATE [25] for image and STEVE [27] for video. The
latter includes SlotDiffusion [32] and its temporal variant. Upon such basis, we

Grouped Discrete Representation for Object-Centric Learning 9

COCO #slots=7 ARIfg↑ mBO↑ YTVIS #slots=7 ARIfg↑ mBO↑
SPOT 37.5±0.6 34.8±0.1 VideoSAUR 39.5±0.6 29.0±0.4

SPOT+GDR@g2 39.7±0.5 35.1±0.1 VideoSAUR+GDR@g2 43.6±0.5 31.7±0.4

COCO #slots=7 class@top1↑ bbox@R2↑
SPOT + MLP 0.59±0.1 0.54±0.1

SPOT+GDR@g2 + MLP 0.62±0.1 0.56±0.1

Table 1: Object discovery (upper) and set prediction (lower) of GDR upon state-
of-the-arts, SPOT and VideoSAUR. DINO1-B/8 is used for primary encoding.

compare GDR against SysBinder@g4 [26]. We also apply GDR to state-of-the-art
models, SPOT [15] and VideoSAUR [35], which are also Transformer-based.
Methods such as SA [20] and SAVi [16] are excluded due to their low performance
or reliance on additional modalities.

Datasets. We evaluate those models on ClevrTex5, COCO6 and VOC7 for
image OCL tasks, while MOVi-C/D/E8 for video. We also use YTVIS9, YouTube
video instance segmentation. These encompass both synthetic and real-world
cases, featuring multiple objects and complex textures. Except for those two
state-of-the-arts, the input size is unified to 128×128 and other data processing
follows the convention. Note that we use COCO panoptic instead of instance
segmentation and the high-quality YTVIS10 for strict evaluation.

Hyperparameters. The codebook size is n=ag=4096 for all. GDR’s group
number is set to GDR@g2, g4, g8 and g12. Correspondingly, the attribute group
sizes are (64, 64), (8, 8, 8, 8), (2, 2, 2, 2, 4, 4, 4, 4) and (2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2), ensuring 4096 combinations. The number of slots is roughly set to
the maximum/average object count plus one: 10+1 for ClevrTex, COCO, VOC
and MOVi-C; 20+1 for MOVi-D; and 23+1 for MOVi-E. However, for those two
state-of-the-arts, we strictly follow their official experiment settings.

4.2 Performance

Object discovery. We use common object discovery metrics: Adjusted Rand
Index (ARI)11, ARI foreground (ARIfg), mean Best Overlap (mBO)12 and mean
Intersection-over-Union (mIoU)13. As shown in Fig. 5, GDR significantly enhances
accuracy across both synthetic and real-world images and videos. With the naive

5 https://www.robots.ox.ac.uk/~vgg/data/clevrtex
6 https://cocodataset.org/#panoptic-2020
7 http://host.robots.ox.ac.uk/pascal/VOC
8 https://github.com/google-research/kubric/tree/main/challenges/movi
9 https://youtube-vos.org/dataset/vis

10 https://github.com/SysCV/vmt?tab=readme-ov-file#hq-ytvis-high-quality-video-instance-
segmentation-dataset

11 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html
12 https://ieeexplore.ieee.org/document/7423791
13 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html

10 Authors Suppressed Due to Excessive Length

0 10 20 30 40 50

0.50

0.52

0.54

0.56

0.58

0.60

ar
i+

ar
i fg

slate-dino@coco

slate
+gdr@g2
+gdr@g4
+gdr@g8

0 10 20 30 40 50

0.50

0.55

0.60

0.65

0.70

0.75

ar
i+

ar
i fg

slotdiffuz.-dino@coco
slotdiffuz.
+gdr@g2
+gdr@g4
+gdr@g8

ari ari-fg mbo miou

23.2

25.3

27.4

29.5

31.6

45.7

46.6

47.4

48.3

49.2

30.2

31.5

32.8

34.2

35.5

28.5

29.9

31.4

32.9

34.3

@clevrtex-ood

slate
+gdr@g2
+gdr@g4
+gdr@g8

ari ari-fg mbo miou

25.9

28.5

31.1

33.7

36.3

25.8

26.6

27.5

28.4

29.2

22.5

23.6

24.8

25.9

27.1

22.3

23.2

24.1

25.0

25.9

@clevrtex-ood
slotdiffuz.
+gdr@g2
+gdr@g4
+gdr@g8

Fig. 7: (left) GDR accelerates model convergence. The x axis is val epochs while
y is accuracy in ARI+ARIfg. Smoothed with a Gaussian kernel size 5. (right)
GDR improves model generalization. Models are trained on Clevrtex and tested
on its out-of-distribution version. Higher values are better.

CNN [16] for primary encoding, it boosts both Transformer-based methods and
Diffusion-based methods. GDR always outperforms the competitor SysBinder by
a large margin. We further evaluate GDR’s effectiveness with vision foundation
model DINO1-B/8 [6] for strong primary encoding. As shown in Fig. 6 and 3,
on both SLATE and SlotDiffusion, GDR improves accuracy across all metrics in
most cases.

Applying to state-of-the-art. Following the original settings, we apply GDR to
SPOT [15] and VideoSAUR [35], by replacing SPOT’s VAE with GDR and by
replacing VideoSAUR’s reconstruction target (continuous DINO features) with
GDR discretized DINO features, respectively. As shown in Table 1 upper, GDR
is still able to boost state-of-the-art methods’ performance further.

Set prediction. Following [24], we employ OCL to represent dataset COCO
as slots, and use a small MLP to predict the object class and bounding box
corresponding to each slot, with metrics of top-1 accuracy and the R2 score
respectively. As shown in Table 1 lower, our GDR improves SLATE in set
prediction, demonstrating is superior quality in object representation.

Convergence. The validation curves of ARI+ARIfg in Fig. 7 left demonstrate
that GDR consistently accelerates the basis’ convergence in OCL training. Along
with Fig. 9, forming VAE discrete representation with tuple indexes captures
attribute-level similarities and differences among super-pixels, thereby guiding
OCL models to converge better.

Generalization. We transfer models from ClevrTex to its out-of-distribution
version ClevrTex-OOD without finetuning. As shown in Fig. 7 right, GDR con-
sistently improves basis methods’ generalization. This confirms that GDR’s
decomposition from features into attributes helps the model learn more funda-
mental representations that are robust to distribution shifts.

4.3 Interpretability

Decomposition from features to attributes. Although without explicit supervision
models can hardly learn concepts [26] as human-readable as in Fig. 1, we can still
analyze GDR’s decomposition from features to attributes as follows. Given GDR
discrete representation X, we replace the attributes of objects’ superpixels with

Grouped Discrete Representation for Object-Centric Learning 11

decoded from modification of 1st attribute of gdr@g2 image decoded from modification of 2nd attribute of gdr@g2decoded from modification of 1st attribute of gdr@g2 image decoded from modification of 2nd attribute of gdr@g2

Fig. 8: For GDR@g2, one attribute group roughly learns colors, while the other
roughly learns textures. The original image is at the center. The left and right
are images decoded from the modified VAE discrete representation.

arbitrary attribute codes then decode them into images to observe the changes.
As shown in Fig. 8, under g2 setting, modifying one attribute group roughly
alters the colors, whereas modifying the other destroys the textures. This suggests
that the first group learns colors while the second learns textures.

Attribute-level similarities and differences. Basis methods’ scalar index tensor
and GDR’s tuple index tensor Xi can be visualized by mapping different indexes
to distinct colors. For our only competitor, SysBinder, we assign different colors
to its different attention groups. As shown in Fig. 9, scalar indexes mix all
attributes together, whereas our tuple indexes highlight similarities (identical
colors) and differences (distinct colors) among superpixels in each attribute group.
In contrast, SysBinder also captures such attribute-level information but with
very limited diversity and details.

Object separability. The visualization of X for both the basis VQ-VAE and
GDR can be achieved by coloring the different distances between each superpixel
and the reference point (the average of all superpixels). As shown in Fig. 10, GDR
consistently exhibits better object separability across all g settings, suggesting
GDR’s superior guidance to OCL. However, using an excessive number of groups
in GDR may result in the omission of certain objects.

4.4 Ablation

The effects of different designs in GDR are listed in Tab. 2. We use ARI+ARIfg
since ARI largely indicates how well the background is segmented while ARIfg
reflects the discovery quality of foreground objects.

Number of groups, formulated in Eq. 1-6: g=2, 4, 8 or 12. As shown in Fig. 5
and 6, the optimal g depends on the specific dataset. However, g12 and g8 tend
to result in suboptimal performance while g4 consistently leads to guaranteed
performance gains over the basis methods.

Channel expansion rate, formulated in Eq. 7: c, 2c, 4c or 8c. Although 8c
generally performs best, the expansion rate has a nearly saturated impact on

12 Authors Suppressed Due to Excessive Length

+gdr@g2 +gdr@g4 +gdr@g8

+gdr@g12img vqvae

+gdr@g2 +gdr@g4 +gdr@g8

+gdr@g12img vqvae

img sysbinder@4

+gdr@g2 +gdr@g4 +gdr@g8

+gdr@g12img vqvae

img sysbinder@4

Fig. 9: SysBinder’s attribute groups (upper), i.e., attention maps, and GDR’s
attribute groups (lower), i.e., tuple code indexes. GDR captures attribute-level
similarities and differences among superpixels, whereas the non-grouped “vqvae”
mixes all together. SysBinder lacks too much diversity and detail.

Fig. 10: GDR improves object separability in VAE discrete representation. More
groups improve object separability but increase the risk of losing some objects.

GDR’s performance. This suggests that our channel organizing mechanism is
effective, reducing the necessity for a higher channel expansion rate.

The channel organizing based on our invertible projection designed in Sect. 3.3
is crucial for OCL model performance. If we disrupt it by replacing W pseudo-
inverse in project-up with specified weights, as formulated in Eq. 7, the object
discovery accuracy drops significantly.

We also visualize how the invertible project-up and project-down organize
channels for grouping. As shown in Fig. 4, some input channels are mixed,
switched or split into different attributes for discretization, then the pseudo-
inverse recovers them in the form of discrete representations. Such patterns are
clearly observed across most datasets and grouping configurations.

Using annealing residual connection during training, formulated in Eq. 8,
consistently yields better performance than without.

Normalization at last, formulated in Eq. 10, is generally beneficial, though its
effect is not highly significant.

Grouped Discrete Representation for Object-Centric Learning 13

expansion rate 8c 4c 2c 1c
ARI+ARIfg 89.47 89.29 88.93 88.16

utiliz. loss invertible project residual connection final normaliz. ARI+ARIfg
✓ ✓ ✓ ✓ 89.47
✗ 84.78

✗ 81.52
✗ Wpinv 32.25

✗ 88.84
✗ 89.16

Table 2: Effects of expansion rate, utilization loss, invertible projection (and
replacing W pinv with specified weights), residual connection in training and
final normalization. Experimented SLATE+GDR@g4 on ClevrTex.

5 Conclusion

We propose grouped discrete representation in VAE to guide OCL training better.
This technique improves the mainstream Transformer- and Diffusion-based OCL
methods in both convergence and generalization. Although self-supervision cannot
guarantee different groups learn different human-readable attributes, our method
still exhibits interesting and interpretable patterns in attribute-level discrete
representations. Fundamentally, we only modify the VAE part of OCL models,
indicating broader applicability to other VAE-based models.

Acknowledgment

We acknowledge the support of the Finnish Center for Artificial Intelligence
(FCAI) and the Research Council of Finland through its Flagship program.
Additionally, we thank the Research Council of Finland for funding the projects
ADEREHA (grant no. 353198), BERMUDA (362407) and PROFI7 (352788). We
also appreciate CSC-IT Center for Science, Finland, for granting access to the
LUMI supercomputer, owned by the EuroHPC Joint Undertaking and hosted
by CSC (Finland) in collaboration with the LUMI consortium. Furthermore,
we acknowledge the computational resources provided by the Aalto Science-IT
project through the Triton cluster. Finally, the first author expresses his heartfelt
gratitude to his wife for her unwavering support and companionship.

References

1. Bahdanau, D., Cho, K.H., Bengio, Y.: Neural Machine Translation by Jointly Learn-
ing to Align and Translate. International Conference on Learning Representations
(2015)

2. Bar, M.: Visual Objects in Context. Nature Reviews Neuroscience 5(8), 617–629
(2004)

14 Authors Suppressed Due to Excessive Length

3. Barnes, C., Rizvi, S., Nasrabadi, N.: Advances in Residual Vector Quantization: A
Review. IEEE Transactions on Image Processing 5(2), 226–262 (1996)

4. Bouchacourt, D., Tomioka, R., Nowozin, S.: Multi-Level Variational Autoencoder:
Learning Disentangled Representations from Grouped Observations. In: Proceedings
of the AAAI Conference on Artificial Intelligence. vol. 32 (2018)

5. Burgess, C., Matthey, L., Watters, N., et al.: MONet: Unsupervised Scene Decom-
position and Representation. arXiv preprint arXiv:1901.11390 (2019)

6. Caron, M., Touvron, H., Misra, I., et al.: Emerging Properties in Self-Supervised
Vision Transformers. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 9650–9660 (2021)

7. Cavanagh, P.: Visual Cognition. Vision Research 51(13), 1538–1551 (2011)
8. Chen, Y., Fan, H., Xu, B., et al.: Drop an Octave: Reducing Spatial Redundancy in

Convolutional Neural Networks With Octave Convolution. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 3435–3444 (2019)

9. Elsayed, G., Mahendran, A., Van Steenkiste, S., et al.: SAVi++: Towards End-
to-End Object-Centric Learning from Real-World Videos. Advances in Neural
Information Processing Systems 35, 28940–28954 (2022)

10. Greff, K., Kaufman, R.L., Kabra, R., et al.: Multi-Object Representation Learn-
ing with Iterative Variational Inference. In: International Conference on Machine
Learning. pp. 2424–2433. PMLR (2019)

11. Huang, G., Liu, S., Van der Maaten, L., Weinberger, K.: CondenseNet: An Effi-
cient DenseNet Using Learned Group Convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 2752–2761 (2018)

12. Im Im, D., Ahn, S., Memisevic, R., Bengio, Y.: Denoising criterion for variational
auto-encoding framework. In: Proceedings of the AAAI conference on artificial
intelligence. vol. 31 (2017)

13. Jang, E., Gu, S., Poole, B.: Categorical Reparameterization with Gumbel-Softmax.
International Conference on Learning Representations (2017)

14. Jiang, J., Deng, F., Singh, G., Ahn, S.: Object-Centric Slot Diffusion. Advances in
Neural Information Processing Systems (2023)

15. Kakogeorgiou, I., Gidaris, S., Karantzalos, K., Komodakis, N.: SPOT: Self-Training
with Patch-Order Permutation for Object-Centric Learning with Autoregressive
Transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 22776–22786 (2024)

16. Kipf, T., Elsayed, G., Mahendran, A., et al.: Conditional Object-Centric Learning
from Video. International Conference on Learning Representations (2022)

17. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet Classification with Deep Con-
volutional Neural Networks. Advances in Neural Information Processing Systems
25 (2012)

18. Lim, K.L., Jiang, X., Yi, C.: Deep Clustering with Variational Autoencoder. IEEE
Signal Processing Letters 27, 231–235 (2020)

19. Liu, X., Yuan, J., An, B., Xu, Y., Yang, Y., Huang, F.: C-Disentanglement: Dis-
covering Causally-Independent Generative Factors under an Inductive Bias of
Confounder. Advances in Neural Information Processing Systems 36, 39566–39581
(2023)

20. Locatello, F., Weissenborn, D., Unterthiner, T., et al.: Object-Centric Learning with
Slot Attention. Advances in Neural Information Processing Systems 33, 11525–11538
(2020)

21. Oquab, M., Darcet, T., Moutakanni, T., et al.: DINOv2: Learning Robust Visual
Features without Supervision. Transactions on Machine Learning Research (2023)

Grouped Discrete Representation for Object-Centric Learning 15

22. Palmeri, T., Gauthier, I.: Visual Object Understanding. Nature Reviews Neuro-
science 5(4), 291–303 (2004)

23. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-Resolution
Image Synthesis with Latent Diffusion Models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10684–10695 (2022)

24. Seitzer, M., Horn, M., Zadaianchuk, A., et al.: Bridging the Gap to Real-World
Object-Centric Learning. International Conference on Learning Representations
(2023)

25. Singh, G., Deng, F., Ahn, S.: Illiterate DALL-E Learns to Compose. International
Conference on Learning Representations (2022)

26. Singh, G., Kim, Y., Ahn, S.: Neural Systematic Binder. International Conference
on Learning Representations (2022)

27. Singh, G., Wu, Y.F., Ahn, S.: Simple Unsupervised Object-Centric Learning for
Complex and Naturalistic Videos. Advances in Neural Information Processing
Systems 35, 18181–18196 (2022)

28. Van Den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural Discrete Representation
Learning. Advances in Neural Information Processing Systems 30 (2017)

29. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention Is All You Need. Advances
in Neural Information Processing Systems 30 (2017)

30. Watters, N., Matthey, L., Burgess, C., Alexander, L.: Spatial Broadcast Decoder:
A Simple Architecture for Disentangled Representations in VAEs. ICLR 2019
Workshop LLD (2019)

31. Wu, Z., Dvornik, N., Greff, K., Kipf, T., Garg, A.: SlotFormer: Unsupervised Visual
Dynamics Simulation with Object-Centric Models. International Conference on
Learning Representations (2023)

32. Wu, Z., Hu, J., Lu, W., Gilitschenski, I., Garg, A.: SlotDiffusion: Object-Centric
Generative Modeling with Diffusion Models. Advances in Neural Information Pro-
cessing Systems 36, 50932–50958 (2023)

33. Yang, D., Liu, S., Huang, R., et al.: Hifi-Codec: Group-Residual Vector Quantization
for High Fidelity Audio Codec. arXiv preprint arXiv:2305.02765 (2023)

34. Yi, K., Gan, C., Li, Y., Kohli, P., et al.: CLEVRER: CoLlision Events for Video REp-
resentation and Reasoning. International Conference on Learning Representations
(2020)

35. Zadaianchuk, A., Seitzer, M., Martius, G.: Object-Centric Learning for Real-World
Videos by Predicting Temporal Feature Similarities. Advances in Neural Information
Processing Systems 36 (2024)

36. Zhao, R., Li, J., Wu, Z.: Convolution of Convolution: Let Kernels Spatially Col-
laborate. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 651–660 (2022)

37. Zhao, R., Wu, Z., Zhang, Q.: Learnable Heterogeneous Convolution: Learning both
Topology and Strength. Neural Networks 141, 270–280 (2021)

